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hyperpolarization in the pulmonary microcirculation in male mice:
implications for hypoxia-induced pulmonary hypertension. Am J
Physiol Heart Circ Physiol 314: H940–H953, 2018. First published
January 5, 2018; doi:10.1152/ajpheart.00487.2017.—Endothelium-
dependent hyperpolarization (EDH) plays important roles in the
systemic circulation, whereas its role in the pulmonary circulation
remains largely unknown. Furthermore, the underlying mechanisms
of pulmonary hypertension (PH) also remain to be elucidated. We thus
aimed to elucidate the role of EDH in pulmonary circulation in
general and in PH in particular. In isolated perfused lung and using
male wild-type mice, endothelium-dependent relaxation to bradykinin
(BK) was significantly reduced in the presence of N�-nitro-L-arginine
by ~50% compared with those in the presence of indomethacin, and
the combination of apamin plus charybdotoxin abolished the residual
relaxation, showing the comparable contributions of nitric oxide (NO)
and EDH in the pulmonary microcirculation under physiological
conditions. Catalase markedly inhibited EDH-mediated relaxation,
indicating the predominant contribution of endothelium-derived
H2O2. BK-mediated relaxation was significantly reduced at day 1 of
hypoxia, whereas it thereafter remained unchanged until day 28.
EDH-mediated relaxation was diminished at day 2 of hypoxia, indi-
cating a transition from EDH to NO in BK-mediated relaxation before
the development of hypoxia-induced PH. Mechanistically, chronic
hypoxia enhanced endothelial NO synthase expression and activity
associated with downregulation of caveolin-1. Nitrotyrosine levels
were significantly higher in vascular smooth muscle of pulmonary
microvessels under chronic hypoxia than under normoxia. A similar
transition of the mediators in BK-mediated relaxation was also noted
in the Sugen hypoxia mouse model. These results indicate that EDH
plays important roles in the pulmonary microcirculation in addition to
NO under normoxic conditions and that impaired EDH-mediated
relaxation and subsequent nitrosative stress may be potential triggers
of the onset of PH.

NEW & NOTEWORTHY This study provides novel evidence that
both endothelium-dependent hyperpolarization and nitric oxide play
important roles in endothelium-dependent relaxation in the pulmonary
microcirculation under physiological conditions in mice and that
hypoxia first impairs endothelium-dependent hyperpolarization-medi-
ated relaxation, with compensatory upregulation of nitric oxide, be-
fore the development of hypoxia-induced pulmonary hypertension.

endothelium-dependent hyperpolarization; hypoxia; pulmonary mi-
crocirculation

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a progressive
vasculopathy characterized by specific histological changes,
including intimal and medial wall thickness, muscularization
of distal pulmonary arteries, and concentric obliterative and
plexiform lesions (38). These structural changes increase pul-
monary arterial resistance and pressure, resulting in the devel-
opment of right ventricular (RV) failure and premature death
(31, 32). However, the trigger(s) of these vascular disorders
still remains unclear. Endothelial dysfunction, including de-
creased bioavailability of PGI2 and nitric oxide (NO) and also
increased activity of endothelin and thromboxane, has been
considered a key underlying mechanism of pulmonary vascular
remodeling in PAH (9, 15, 26, 34, 67). Indeed, a variety of
vasodilatory therapies targeting these mediators attributable to
endothelial dysfunction have been developed, including PGI2

and its analogs (3, 61), inhalation of NO (30, 39), soluble
guanylyl cyclase (sGC) modulators (23, 24), selective phos-
phodiesterase 5 (PDE5) inhibitors (20), and endothelin recep-
tor antagonists (56). They are beneficial for some patients with
PAH by reducing pulmonary arterial pressure and improving
long-term survival (38). However, many patients with PAH
still die or need lung transplantation even with these therapies
(31). Thus, a new therapeutic target remains to be elucidated to
improve long-term survival of PAH patients.

The endothelium regulates vascular tonus by synthesizing and
releasing endothelium-derived relaxing factors (EDRFs), includ-
ing vasodilator PGs (mainly PGI2), NO, and endothelium-depen-
dent hyperpolarization (EDH) factor (59). We (39) have previ-
ously demonstrated that the contribution of EDRFs varies depend-
ing on blood vessel size; NO plays an important role in relatively
large arteries, whereas the importance of EDH increases as vessel
size decreases. In contrast, PGI2 has a minor but constant role
regardless of vessel size (60). Thus, it is conceivable that EDH
is involved in the regulatory mechanisms of arterial blood
pressure and organ perfusion in systemic circulation (59). We
also have previously demonstrated that endothelium-derived
H2O2 is an important EDH factor in several arteries in animals
and humans (43–45). Although NO and EDH are well bal-
anced in a distinct vessel size-dependent manner under phys-
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iological conditions, the physiological balance between NO
and EDH can be disrupted under various pathological condi-
tions, such as aging, dyslipidemia, and hypertension, leading to
enhanced vasoconstriction and the initial step toward cardio-
vascular diseases (69). For example, in a chronic cardiac
pressure overload model, the disruption of the physiological
balance between NO and EDH exhibited reduced survival rate,
impaired coronary flow reserve, and enhanced myocardial
hypoxia in mice in vivo (28). Thus, not only NO but also EDH
plays important roles in regulating vascular tonus and main-
taining cardiovascular homeostasis in systemic circulation.
However, the role of EDH in the pulmonary microcirculation
remains to be clarified.

In the present study, we thus aimed to examine the role of
EDH in the pulmonary microcirculation in general and in
pulmonary hypertension (PH) in particular. We tested our
hypothesis that EDH plays a primary role in the pulmonary
microcirculation under physiological conditions and that its
role is altered during the development of hypoxia-induced PH
in mice in vivo. Although it is generally known that female sex
is a risk factor for PAH (66), we used only male mice in the
present study along with our previous reports on systemic
circulation to examine the differences between the pulmonary
and systemic circulations.

METHODS

Animals. Experiments were conducted in 11- to 16-wk-old male
C57BL/6 mice (~25 g body wt under normoxia). This study was
reviewed and approved by the Committee on Ethics of Animal
Experiments of Tohoku University (2015MdA-281) based on Animal
Research: Reporting of In Vivo Experiments guidelines. Male
C57BL/6 mice were purchased from CLEA Japan (Tokyo, Japan). All
animals were cared for in accordance with the rules and regulations
configured by the committee, fed normal chow, and maintained on a
12:12-h light-dark cycle.

Wire myograph. We measured isometric tensions of the first to
second branches of the intrapulmonary arteries (~300–500 �m in
external diameter) as previously described (14). After mice had been
anesthetized with intraperitoneal injection of pentobarbital sodium (50
mg/kg), the intrapulmonary arteries were carefully isolated under a
microscope, cut into 1-mm-long rings without adventitia, and
mounted in a wire myograph (620M, Danish Myo Technology,
Aarhus, Denmark). Each arterial ring was bathed in organ chambers
filled with 5 ml of Krebs-Henseleit buffer (KHB) warmed to 37°C and
aerated with 95% O2 and 5% CO2 and then stretched to optimal
resting tension, which was determined in preliminary experiments
(data not shown). After a 60-min equilibration period, rings were
challenged with KCl (60 mmol/l) to test for their viability; rings that
were able to generate over 1 mN of force were allowed for the
following isometric tension recordings. In a preliminary study, we
obtained cumulative dose-response curves to U46619, a thromboxane
A2 mimetic (10�8�10–4.5 mol/l), and obtained the concentration of
U46619 to cause 50% contraction (EC50: –7.35 � 0.08 log mol/l).
After a washout and a 30-min recovery period, rings were precon-
tracted with the EC50 concentration of U46619 to examine the
relaxation in response to cumulative addition of acetylcholine (ACh;
10�10�10�5 mol/l). Relaxation to ACh was calculated as percentages
of the precontracted levels induced by U46619. The contributions of
PGI2, NO, and EDH to ACh-induced relaxation were determined by
the inhibitory effect of indomethacin (Indo; cyclooxygenase inhibitor,
10�5 mol/l), N�-nitro-L-arginine [L-NNA; NO synthase (NOS) inhib-
itor, 10�4 mol/l], and a combination of apamin [Apa; small-conduc-
tance Ca2�-activated K� (SKCa) channel blocker, 10�6 mol/l] and
charybdotoxin [CTx; intermediate-conductance (IKCa) and large-con-

ductance Ca2�-activated K� (BKCa) channel blocker, 10�7 mol/l],
respectively (28). All inhibitors were applied to the organ chambers
30 min before precontraction with U46619. Responses were contin-
uously monitored (PowerLab 8/30 computer system, AD Instruments,
Colorado Springs, CO) and were analyzed by a computer-based
analysis system in LabChart 7.0 software.

Isolated perfused lung model. For perfusion and ventilation, an
open-chest mouse lung preparation was used as previously described
in detail (62, 75). Mice were pretreated intraperitoneally with heparin
(100 U) and then, after 10 min, anesthetized by intraperitoneal
injection of pentobarbital sodium (50 mg/kg). They were then intu-
bated and positively ventilated with a gas mixture containing 95% O2

and 5% CO2 at 6 ml/kg tidal volume at a rate of 120 breaths/min
(MiniVent Mouse Ventilator 845, Harvard Apparatus, Holliston,
MA). A sternotomy was performed, cannulas were inserted into the
main pulmonary artery and left ventricle, and the main pulmonary
artery, aorta, and ventricles were ligated simultaneously, making the
lungs completely isolated from the hearts. After cannulation, the lungs
were perfused with warmed KHB containing 5% BSA through the
pulmonary arterial cannula at a constant flow (0.08 ml�1·min·g body
wt�1) using a peristaltic pump (Minipuls 3, Gilson Medical Electron-
ics, Middleton, WI). The lungs were flushed for 9 min to remove
blood and to gradually increase the target flow rate before establishing
recirculation. Left atrial pressure was maintained at ~4 mmHg by
adjusting the distance between the lung and the outlet of the cannula
inserted in the left ventricle. Pulmonary arterial pressure was moni-
tored and recorded using a pressure transducer connected to a side
port of the pulmonary arterial cannula (PowerLab 8/30 computer
system). We assumed the pulmonary venous pressure to be zero (1).
To clarify the responses to each agonist, each lung preparation was
used to study with only one dose of each agonist. After the 30-min
equilibration period, the lungs were precontracted with U46619, and
then vascular responses were examined. U46619 cumulative dose-
response curves (10�8�10–4.5 mol/l) were performed, and the con-
centration of U46619 required to produce a 50% response (EC50) was
used to precontract the vessels for subsequent vasorelaxation. We
adjusted the degree of precontraction in each preparation to precon-
tracted levels of the normoxic lungs in the absence of any inhibitors.
To assess endothelium-dependent relaxation, bradykinin (BK; 10�5

mol/l) was used. The dose of BK was predetermined by experiments
that BK elicited the maximal relaxation in the control lungs (data not
shown). To assess endothelium-independent relaxation, sodium nitro-
prusside (SNP; 10�5 mol/l), a NO donor, was used. Vascular re-
sponses to exogenous H2O2 (10�4 mol/l) were examined in the
presence of Indo (10�5 mol/l) and L-NNA (10�4 mol/l). Relaxations
to vasodilators were calculated as percentages of the increased pres-
sure induced by U46619. The inhibitory effects of Indo, L-NNA, the
combination of Apa and CTx, and catalase (12,500 U/ml) were
examined. All inhibitors were administered from the start of perfu-
sion. We calculated basal vascular resistance as the value given by
baseline perfusion pressure (in mmHg)/flow (in ml/min). Each surgi-
cal preparation before perfusion needed ~6 min, and each procedure
took ~2 h. A few lungs exhibited massive edema and were excluded.

Hypoxia-induced PH model. A hypoxic exposure model was used
to assess the effect of hypoxia on the relaxation of pulmonary arteries
in mice (57). Briefly, 10- to 12-wk-old male wild-type (WT) mice on
a normal chow diet and under a 12:12-h light-dark cycle were exposed
to hypoxia (10% O2) for 1, 2, 7, 14, or 28 days. Hypoxic mice were
housed in an acrylic chamber with a nonrecirculating gas mixture of
10% O2 and 90% N2 by adsorption-type oxygen concentrator to use
exhaust air (Teijin, Tokyo, Japan), whereas normoxic mice were
housed in room air (21% O2). All hypoxic mice were studied within
1 h of removal from the chamber.

Western blot analysis. We performed Western blot analysis as
previously described (48). After perfusion with cold KHB, the lungs
were isolated and snap frozen. Frozen lungs were then lysed in tissue
protein extraction reagent (T-PER, ThermoFisher, Rockford, IL) con-
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taining protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO)
followed by homogenation and centrifugation. The supernatants from
lung homogenates were loaded with SDS-PAGE and transferred to
PVDF membranes (GE Healthcare, Fairfield County, CT) after being
blocked for 1 h at room temperature. The primary antibodies used
were as follows: �-tubulin (1:10,000, Sigma-Aldrich), endothelial
NOS [eNOS (1:5,000), BD transduction Laboratories, San Jose, CA)],
phosphorylated (p)Ser1177-eNOS (1:400, BD transduction Laborato-
ries), pThr495-eNOS (1:400, BD transduction Laboratories), pSer239-
vasodilator-stimulated phosphoprotein [VASP (1:500); Abcam, Cam-
bridge, UK], total VASP (1:1,000, Abcam), and caveolin-1 [Cav-1
(1:1,000), Cell Signaling Technology, Danvers, MA]. The regions
containing proteins were visualized by the enhanced chemilumines-
cence system (ECL Prime Western Blotting Detection Reagent, GE
Healthcare). Densitometric analysis was performed with ImageJ soft-
ware (National Institutes of Health, Bethesda, MD).

Immunoprecipitation. After perfusion with cold KHB, the lungs
were isolated and snap frozen. Frozen lungs were lysed in T-PER
(ThermoFisher) containing protease inhibitor cocktail (Sigma-Al-
drich) followed by homogenation and centrifugation. The superna-
tants were incubated with anti-eNOS antibody at a dilution of 1:100
for 1 h at 4°C. After the incubation, 25 �l of prewashed EZ View
Protein G Affinity gel (Sigma-Aldrich) were added to the lysates
followed by incubation for 1 h at 4°C. After centrifugation, the
supernatants were removed. After being washed three times with lysis
buffer, 50 �l of sample buffer (10% SDS, 30% 2-melcaptoethanol,
20% glycelol, and 0.1% bromophenol blue) were added and heated to
95°C for 5 min followed by centrifugation. The supernatants were
analyzed by immunoblot analysis (50).

Right heart catheterization. After 1, 2, 7, 14, or 28 days of exposure
to hypoxia (10% O2) or normoxia, mice were anesthetized with
isoflurane (1.0%). To examine the development of PH, we measured
RV systolic pressure (RVSP) and RV end-diastolic pressure
(RVEDP). For right heart catheterization, a 1.2-Fr pressure catheter
(Scisense, London, ON, Canada) was inserted into the RV through the
right jugular vein to measure RVSP and RVEDP. All data were
analyzed using the PowerLab 8/30 computer system and averaged
over 10 sequential beats (57).

Histological analysis. After right heart catheterization, the lungs
were rigorously and completely perfused with cold KHB at physio-
logical pressure until the color of the lungs clearly showed white.
They were then fixed in 10% formaldehyde solution for 24 h on a
shaker at room temperature. After serial steps of washing and
dehydration, the whole lungs were embedded in paraffin, and cross
sections (3 �m) were prepared. Paraffin sections were stained with
elastica-Masson. Pulmonary arteries adjacent to an airway distal to
the respiratory bronchiole were evaluated as previously reported
(57). Briefly, arteries were considered fully muscularized when
they had a distinct double elastic lamina visible throughout the
diameter of the vessel cross section. Arteries were considered
partially muscularized when they had a distinct double elastic
lamina visible for at least one-half of the diameter. The percentage
of vessels with double elastic lamina was calculated as the number
of muscularized vessels per total number of vessels counted. In
each section, a total of 60 – 80 vessels were examined using a
computer-assisted imaging system (BX51, Olympus, Tokyo, Ja-
pan). This analysis was performed for the small vessels with
external diameters of 20 –70 �m.

Immunofluorescence analysis. We performed immunofluorescence
analysis using paraffin-embedded sections as previously described
(35). The lungs were rigorously and completely perfused with cold
KHB at physiological pressure until the color of the lungs had clearly
turned white. They were then fixed in 10% formaldehyde solution for
24 h on a shaker at room temperature. After serial steps of washing
and dehydration, the whole lungs were embedded in paraffin, and
cross sections (3 �m) were prepared. Paraffin sections were deparaf-
finized in xylene and thereafter rehydrated and washed in ethanol and

distilled water. Antigen retrieval was carried out by heating the
sections in citrate buffer (pH 6.0, Target Retrieval Solution, Dako,
Glostrup, Denmark) at 120°C for 5 min. After being blocked with 2%
skim milk, sections were incubated overnight at 4°C with the follow-
ing primary antibodies: nitrotyrosine (1:200, Millipore, Bedford, MA)
and actin �-smooth muscle-Cy3 (1:1,000, Sigma-Aldrich). After be-
ing washed and blocked with potential endogenous peroxidase, sec-
tions were incubated at room temperature for 60 min with secondary
antibody, Alexa fluor 488-conjugated donkey anti-rabbit (1:1,000,
Molecular Probes, Eugene, OR) for nitrotyrosine. Nuclei were stained
with DAPI (ThermoFisher), and immunofluorescence images were
obtained using a fluorescence microscope (BZ-9000, KEYENCE,
Osaka, Japan). To assess the specificity of nitrotyrosine immunoflu-
orescence, other sections were incubated with nonimmune rabbit IgG
instead of anti-nitrotyrosine antibody and were then processed under
the same conditions. Exposure time was unified to evaluate nitroty-
rosine expression, and the fluorescence intensity of vascular smooth
muscle layer, identified by �-smooth muscle staining, was analyzed
with ImageJ software. This analysis was performed for the small
vessels with external diameters of 20–70 �m; a total of ~15 vessels
were examined.

Sugen/hypoxia mouse model. The Sugen/hypoxia (SuHx) mouse
model was used as a more severe PH model than the hypoxia-induced
PH model (10). Briefly, 11-wk-old male WT mice on a normal
chow diet under a 12:12-h light-dark cycle were exposed to
hypoxia (10% O2) for 21 days, and SU5416 (Sigma-Aldrich) was
subcutaneously injected at 0, 7, and 14 days. SU5416 was sus-
pended in carboxymethylcellulose sodium containing 0.9% sodium
chloride, 0.4% polysorbate 80, and 0.9% benzyl alcohol in deion-
ized water. Hypoxic exposure was performed in an acrylic chamber
with a nonrecirculating gas mixture of 10% O2 and 90% N2 by
adsorption-type oxygen concentrator to use exhaust air as well as
hypoxia-induced PH model. All SuHx mice were studied within 1
h of removal from the chamber.

Materials. CTx was obtained from Peptide Institute (Osaka, Japan),
and SNP was obtained from Maruishi Seiyaku (Osaka, Japan). All
other materials were from Sigma-Aldrich. The ionic composition of
KHB was as follows (in mmol/l): 144 Na�, 5.9 K�, 1.2 Mg2�, 2.5
Ca2�, 1.2 H2PO4

�, 24 HCO3
�, 129.7 Cl�, and 5.5 glucose.

Statistical analysis. All results are expressed as means � SE.
Comparisons of means between two groups were performed by an
unpaired Student’s t-test. Comparisons of means among more than
four groups were analyzed by one- or two-way-ANOVA followed by
Dunnett’s or Tukey’s test for multiple comparisons. Statistical anal-
ysis was performed using GraphPad Prism v. 7.00 (GraphPad Soft-
ware, La Jolla, CA). Results were considered to be significantly
different at values of P � 0.05.

RESULTS

Endothelium-dependent relaxation of pulmonary arteries
under normoxia. To examine the contribution of EDRFs in
pulmonary arteries, we performed isometric tension experi-
ments using first- to second-branch of intrapulmonary arteries.
Isolated pulmonary arterial rings from normoxic mice were
precontracted with U46619 and subsequently exposed to cu-
mulative concentrations of ACh (10�10�10�5 mol/l; Fig. 1A).
The endothelium-dependent, ACh-mediated relaxations were
resistant to Indo but were highly sensitive to L-NNA, indicating
that NO predominantly regulates the tonus of these large
proximal intrapulmonary arteries. These results were consis-
tent with dominant roles of NO in endothelium-dependent
relaxation of relatively large vessels in the systemic circulation
(60). To explore the roles of EDH-mediated responses, we
performed isolated perfused lung experiments that enabled us
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to examine the contributions of EDRFs in the pulmonary
microcirculation (4). The schema of the experimental appara-
tus is shown in Fig. 1B. Since relaxations were not induced by
vasodilating agonists alone in these models, the lungs were
precontracted with U46619 and were then exposed to vasodi-
lating agonists (Fig. 1C). To determine the optimal tonus of
precontraction, U46619 dose-response curves were obtained
(Fig. 1D). The concentration of U46619 giving the half-
maximal response (EC50: �6.29 � 0.04 log mol/l) was used to
precontract the vessels for subsequent relaxation (46). Almost
full relaxations were obtained in response to BK in the absence
of any inhibitor in mice under normoxia. Endothelium-depen-
dent relaxation to BK was resistant to Indo, significantly
reduced in the presence of L-NNA by ~50% in the presence or
absence of Indo, and abolished by the combination of Apa and
CTx (Fig. 1E), indicating the comparable contributions of NO
and EDH to the pulmonary microcirculation under physiolog-
ical conditions. Importantly, EDH-mediated relaxation was
markedly inhibited by catalase (Fig. 1E), indicating that endo-
thelium-derived H2O2 contributes to EDH-mediated relaxation
mainly in the pulmonary microcirculation.

Endothelium-dependent relaxation of pulmonary arteries in
response to chronic hypoxia. To assess the roles of EDRFs in
the development of PH, we used a chronic hypoxia model as a
well-established model of PH (57). In mice exposed to chronic
hypoxia compared with those under normoxia, endothelium-
dependent relaxation to BK in the absence of any inhibitor was
significantly reduced, whereas BK-mediated relaxation in the
presence of Indo was enhanced compared with those without
Indo (Fig. 2A). These results indicate that vasoconstrictor PGs
might be increased by chronic hypoxia. Intriguingly, L-NNA
markedly inhibited BK-mediated relaxation in lungs exposed
to chronic hypoxia compared with normoxia, suggesting that
NO plays a compensatory role for reduced EDH-mediated
responses under chronic hypoxia (Fig. 2, A and B). In contrast,
endothelium- independent relaxations to SNP and to exoge-
nous H2O2 were comparable between normoxic and hypoxic
mice (Fig. 2, C and D).

Transition of the role in BK-mediated relaxation of the
pulmonary microcirculation from EDH to NO during hypoxia.
Next, we examined isolated perfused lungs using the mice
exposed to hypoxia for 1, 2, 7, and 14 days to clarify when
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Fig. 1. Endothelium-dependent relaxation of isolated pulmonary arteries under normoxia. A: endothelium-dependent relaxation to acetylcholine (ACh;
10�10�10�5 mol/l) in wild-type (WT) mice under normoxia. Contributions of PGI2, nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH)
were determined by the inhibitory effect of indomethacin (I; 10�5 mol/l), N�-nitro-L-arginine (L; 10�4 mol/l), apamin (A; 10�6 mol/l), and charybdotoxin (C;
10�7 mol/l), respectively. The number of rings examined was as follows: no inhibitor (n 	 7), indomethacin (n 	 6), indomethacin � N�-nitro-L-arginine (n 	
5), and indomethacine � N�-nitro-L-arginine � apamin � charybdotoxin (n 	 5). Results are shown as means � SE. *P � 0.05 vs. indomethacin, analyzed by
two-way ANOVA followed by Tukey’s test for multiple comparisons. B: schematic illustration of the isolated perfused apparatus. LAP, left atrial pressure; LV,
left ventricle; PA, pulmonary artery. C: representative recording in isolated perfused lung experiments. Relaxations were calculated as percent changes in
perfusion pressure from precontracted levels with U46619. We used bradykinin (BK; 10�5 mol/l), sodium nitroprusside (SNP; 10�5 mol/l), and H2O2 (10�4

mol/l) as vasodilating agonists. PAP, pulmonary arterial pressure (in mmHg). D: dose-response curves to U46619 in WT mice under normoxia. Responses are
expressed as percent contraction (n 	 5). E: pressure change to BK in WT mice under normoxia. Inhibitory effects of indomethacin (10�5 mol/l),
N�-nitro-L-arginine (10�4 mol/l), catalase (Cat; 12,500 U/ml), and the combination of apamin (10�6 mol/l) and charybdotoxin (10�7 mol/l) were examined (n 	
6 each). Results are shown as means � SE. *P � 0.05 vs. indomethacin and †P � 0.05 vs. indomethacin � N�-nitro-L-arginine, analyzed by two-way ANOVA
followed by Tukey’s test for multiple comparisons.
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hypoxia causes the transition from EDH to NO as a main
mediator in BK-induced relaxation. Baseline perfusion pres-
sure was comparable between normoxic and hypoxic mice
(Fig. 3A). In contrast, basal pulmonary vascular resistance was
significantly increased at day 2 of hypoxia compared with
normoxia (Fig. 3B). The discrepancy between baseline perfu-
sion pressure and basal pulmonary vascular resistance could be
attributed to the adjustment of the flow rate by body weight, as
hypoxic exposure significantly reduced body weight (data not
shown). Interestingly, although endothelium-dependent relax-
ation to BK was significantly reduced at day 1 of hypoxia
compared with normoxia and was then unchanged until day 28
(Fig. 3C), EDH-mediated relaxation was significantly reduced
as early as day 2 of hypoxia (Fig. 3D), suggesting that the
transition from EDH to NO during hypoxia occurred at day 2.

Mechanisms of the compensatory role of NO for reduced
EDH in endothelium-dependent relaxation of the pulmonary
microcirculation during hypoxia. Western blot analyses using
whole lung lysates showed that total eNOS expression was
increased in the lungs at day 28 of hypoxia (Fig. 4, A and C).
In the lungs from normoxic mice, eNOS phosphorylation was
evident at Thr495 but to a lesser extent at Ser1177 (Fig. 4A).
Hypoxia significantly dephosphorylated eNOS at Thr495 and

phosphorylated at Ser1177 at day 28 (Fig. 4, A, D, and E).
Similarly, hypoxia significantly pVASP at Ser239 at days 2 and
28 (Fig. 4, A and F). Furthermore, hypoxia significantly down-
regulated Cav-1, which negatively regulates eNOS activity by
binding to the eNOS oxygenase domain (25), at days 2 and 28
(Fig. 4, A and G). Immunoprecipitation of eNOS with Cav-1
showed that hypoxia had no significant effect on the eNOS:
Cav-1 complex (Fig. 4, B and H). Taken together, these results
suggest that upregulation and activation of eNOS associated
with downregulation of Cav-1 enhanced the compensatory role
of NO for reduced EDH, a consistent finding with the isolated
perfused lung experiments.

Pulmonary artery remodeling and development of PH after
hypoxic exposure. Elastica-Masson staining showed muscular-
ization of distal pulmonary arteries, which was defined as
nonmuscularized, partially muscularized, and fully muscular-
ized (Fig. 5A). As expected, the extent of muscularization was
significantly accelerated at day 28 of hypoxia (Fig. 5, B and C),
but morphological changes were not noted until day 2 of hypoxia.
Consistent with the muscularization of distal pulmonary arteries,
only mice exposed to hypoxia for 28 days exhibited marked
increases in RVSP (Fig. 5D) but not in RVEDP (Fig. 5E). These
results indicate that, during the development of hypoxia-induced
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PH, impairment of EDH-mediated relaxation precedes morpho-
logical changes of the pulmonary artery.

Increased nitrotyrosine levels in vascular smooth muscle
after hypoxic exposure. We next hypothesized that the transi-
tion from EDH to NO in BK-mediated relaxation might be
involved in vascular smooth muscle remodeling in response to
chronic hypoxia. Immunofluorescence showed the ubiquitous
presence of 3-nitrotyrosine (3-NT) in lung tissues of both nor-
moxia and hypoxia (Fig. 6A). In contrast, the lung tissues exposed
to chronic hypoxia slightly but significantly exhibited a higher
level of 3-NT in the vascular smooth muscle layer than in the
lungs under normoxia (Fig. 6, A and B). These results suggest that
chronic hypoxia-induced NO upregulation results in nitrosylation
in pulmonary artery vascular smooth muscle, implying that ni-
trosylation in vascular smooth muscle might be involved in
pulmonary artery remodeling after chronic hypoxia.

Endothelium-dependent relaxation in the SuHx mouse
model. To evaluate vascular reactivity in the severe PH model,
we performed isolated perfused lung experiments using the
SuHx mouse model, which is an established model of more
severe PH (10). Weekly SU5416 injections, during hypoxia for
3 wk, significantly elevated RVSP but not RVEDP compared
with normoxia (Fig. 7, A and B). RVSP tended to be elevated

more in SuHx than in chronic hypoxia (SuHx: 39.4 � 4.2
mmHg vs. chronic hypoxia: 36.6 � 2.0 mmHg, P 	 0.57).
SuHx exhibited higher baseline perfusion pressure and basal
pulmonary vascular resistance compared with normoxia (Fig.
7, C and D). In line with the results of the chronic hypoxia
model, endothelium-dependent relaxation to BK tended to be
reduced in SuHx compared with normoxia (P 	 0.07; Fig. 7E),
and Indo significantly improved but additive L-NNA markedly
diminished BK-mediated relaxation in SuHx compared with
normoxia (Fig. 7E), indicating that SuHx also induces the
transition from EDH to NO in BK-mediated relaxation as well
as chronic hypoxia (Fig. 7F).

DISCUSSION

The major findings of the present study are as follows. First,
EDH plays an important role in endothelium-dependent relax-
ation in the pulmonary microcirculation, in addition to NO,
under normoxia in mice. Second, endothelium-derived H2O2

plays an important role in EDH-mediated relaxation in the
pulmonary microcirculation under normoxia. Third, hypoxia
impairs the role of EDH in endothelium-dependent relaxation
as early as 2 days with a resultant compensatory role of NO.
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Fourth, this compensatory role of NO is mediated, at least in
part, by the enhanced expression and activation of eNOS
associated with decreased expression of Cav-1 before the
development of hypoxia-induced PH. Fifth, hypoxia induces
nitrosylation, especially in pulmonary artery vascular smooth
muscle. Sixth, NO-mediated relaxation compensates for im-
paired EDH-mediated relaxation in the SuHx PH model as in
the hypoxia-induced PH model. To the best of our knowledge,
this is the first study that demonstrates that EDH factor/H2O2

plays an important role in the pulmonary microcirculation in
addition to NO and that the impairment of the role of EDH
could be one of the initial processes of hypoxia-induced PH.

Contributions of EDH and other EDRFs in the pulmonary
circulation under normoxic conditions. In systemic vessels,
there is a general consensus on the converse contribution of
NO and EDH in a vessel size-dependent manner, as the
contribution of EDH increases while that of NO decreases as
vessel size becomes smaller (59). Indeed, we have previously
demonstrated the crucial roles of EDH in regulating the tonus

of resistance arteries, adjusting organ perfusion and blood
pressure, and modulating coronary autoregulation and meta-
bolic dilatation (64, 73, 74). The present study demonstrates
that EDH contributes to endothelium-dependent relaxation of
pulmonary arteries in addition to NO under normoxic condi-
tions. Importantly, in the present study, not only the combina-
tion of Apa and CTx but also catalase significantly inhibited
non-PG- and non-NO-mediated relaxation, suggesting the im-
portant role of endothelium-derived H2O2 as one of EDH
factors in pulmonary circulation. NO and H2O2 modulate each
other in a complex manner; H2O2 not only activates eNOS
through the phosphatidylinositol 3-kinase pathway (65) but
also suppresses the enzyme in a redox-dependent manner via
PKG modification (8). Also, NO desensitizes blood vessels to
H2O2-induced vasodilatation, and, in turn, pharmacological
inhibition of sGC sensitizes blood vessels to H2O2-induced
vasodilatation in mice (8, 29). There appears to be a physio-
logical balance between NO and EDH/H2O2 under physiolog-
ical conditions, and previous studies have shown that relative
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contributions of them to endothelium dependent vasodilatation
vary depending on the vasculature, species, and experimental
conditions examined (19, 59). We have previously reported
that Cav-1 is one of the key factors for regulating this physi-
ological balance between NO and EDH by binding to eNOS in
systemic arteries of male mice (28, 50). In addition, both
SKCa and IKCa channels in endothelial cells are involved in
EDH-mediated relaxation (13, 27), and BKCa channel acti-
vation leads to vascular smooth muscle hyperpolarization in
response to H2O2 (7, 33). In the present study, both catalase-
sensitive mediator and Apa/CTx-sensitive mediator contrib-
uted to EDH-mediated relaxation under physiological con-
ditions. The detailed mechanisms of the contributions of
NO, H2O2, SKCa, IKCa, and BKCa to the pulmonary circu-
lation remain to be fully elucidated in future studies. From
another viewpoint, in the pulmonary circulation, NO has an
approximately one-half contribution to BK-mediated relax-
ation even in resistance vessels, which may underlie the
difference in arterial functions between the systemic and
pulmonary circulations. Indeed, vascular responses to acute
hypoxia are quite different between coronary and pulmonary
arteries (12, 17). This viewpoint may provide a clue to
modulate vascular responses under hypoxia.

Effects of chronic hypoxia on endothelium-dependent relax-
ation in the pulmonary circulation. Chronic hypoxia impairs
endothelium-dependent relaxation and directly affects vascular
smooth muscle cells by altering substrate bioavailability for
NOS (16, 71). On the other hand, acute hypoxia does not affect
BK-mediated relaxation of either male or female porcine pul-
monary arteries or male guinea pig basilar arteries (17, 54). In
the present study, BK-mediated relaxation was impaired as
early as day 1 of hypoxia, whereas they remained unchanged
until day 28. Importantly, hypoxia for 2 days caused a transi-
tion from EDH to NO in BK-mediated relaxation, indicating
the compensatory role of NO for reduced EDH in response
to hypoxia. Furthermore, consistent with these results, ex-
posure to chronic hypoxia caused an ~1.5-fold increase in
eNOS expression, enhanced phosphorylation at stimulatory
Ser1177 and decreased phosphorylation at inhibitory Thr495.
Similarly, phosphorylation of VASP at Ser239, a marker of
PKG activity, was also significantly enhanced at day 2 of
hypoxia. Interestingly, Cav-1 expression was significantly
reduced only after 2 days of hypoxia, although eNOS:Cav-1
complexes were unaltered. Cav-1 hinders electron transfer
and inhibits NO generation by binding to eNOS and forming
eNOS:Cav-1 complex (25, 50). Thus, the reduced levels of
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Cav-1 in response to hypoxia may cause eNOS/VASP acti-
vation, triggering the transition from EDH to NO in endo-
thelium-dependent relaxation of pulmonary arteries. Al-
though the mechanisms of the comparable contributions of
NO and EDH under physiological conditions also remain
unclear, the interaction between eNOS and Cav-1 is likely to
be involved in hypoxia-induced functional alterations in
BK-mediated relaxation in pulmonary arteries as well as
systemic resistance vessels. In the SuHx model, NO also
played a dominant role in BK-mediated relaxation as well as
the hypoxia-induced PH model, although hypoxia itself may
be responsible for the compensatory increase of NO. Taken
together, it is also conceivable that Cav-1 can be a thera-
peutic target for PH to maintain the physiological balance
between NO and EDH (28).

Hypoxia-induced PH in mice is an established model, and
the phenotypes of PH, such as a rise in RVSP, pulmonary
vascular remodeling, and RV hypertrophy, appear after 3–4
wk of hypoxia (57). In the present study, baseline pulmonary
perfusion pressure in isolated perfused lung was unchanged

after chronic hypoxia, an inconsistent finding with previous
reports (1, 18). We consider that this discrepancy between the
present study and previous reports is based on the fact that we
adjusted perfusion flow rate by body weight in the present
study, since hypoxia caused a significant body weight loss and
induced a relatively low perfusion flow in hypoxic mice.
Indeed, 4 wk of hypoxia caused not only PH phenotypes in
mice but also significantly increased pulmonary vascular re-
sistance in isolated perfused lung, indicating the integrity of the
hypoxia-induced PH model in the present study. In addition,
we consider that baseline pulmonary perfusion pressure was
appropriately evaluated, since it reflected the severity of PH in
the SuHx model.

Effects of hypoxia-induced compensatory NO upregulation
on pulmonary artery vascular smooth muscle. NO regulates
vascular tonus via the sGC/cGMP/PKG pathway (70). In the
pulmonary circulation, it has been previously reported that
reduced NO bioavailability is involved in the pathogenesis of
PH (15, 26, 53). Moreover, the importance of the NO pathway
in the pulmonary circulation is supported by the effectiveness
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of inhaled NO (30, 39), sGC modulators (23, 24), and selective
PDE5 inhibitors (20) in PAH patients. However, it has been
controversial whether the pathogenesis of PAH is attributed to
the reduced bioavailability of NO. Although it has been re-
ported that reduced NO bioavailability leads to the onset of PH
(15, 26, 53), there also is opposite evidence that upregulated
eNOS or enhanced eNOS-derived NO production could lead to
the development of PH in animals and humans (42, 72, 77).
From the latter viewpoint, it is conceivable that excessive NO
might be involved in the pathogenesis of PH.

NO reacts with superoxide anions at an extremely fast rate
and forms peroxynitrite, which causes protein modification via
tyrosine nitration (55). It has been previously reported that
chronic exposure to hypoxia increases the production of super-
oxide anions through NADPH oxidase in male mice (41, 49).

In the present study, hypoxia diminished EDH-mediated relax-
ation and induced compensatory NO upregulation with in-
creased expression and activation of eNOS. All together, the
present study suggests that the hypoxia-induced transition of
vasodilators from EDH to NO resulted in peroxynitrite forma-
tion followed by nitrosative stress in pulmonary arteries. In-
deed, the present immunofluorescence data showed that 3-NT
is ubiquitously present, especially in the vascular smooth
muscle layer of hypoxic mice, providing evidence that en-
hanced NO production induced by chronic hypoxia causes
nitrosative stress in pulmonary artery vascular smooth muscle.
Although it remains unclear whether nitrosylation of vascular
smooth muscle causes vascular remodeling, a previous report
(6) has shown that 3-NT expression is ubiquitously present in
the lungs of patients with severe PH but not in those from
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controls. Similarly, inhaled NO increases both superoxide and
peroxynitrite, resulting in elevated pulmonary vascular resis-
tance and the onset of rebound PH (51). In contrast, Sheak et
al. (58) recently reported that chronic hypoxia does not alter
the expression of 3-NT in neonatal rats regardless of enhanced
NO. The discrepancy between that report and the present study
may be attributed to the different experimental methods to
evaluate 3-NT: Western blot analysis with whole lung homog-
enates from neonatal rats (58) versus immunofluorescence in
the present study. It is possible that the whole lung evaluation
may underestimate the increased expression of 3-NT in the
vascular smooth muscle layer of chronic hypoxic lungs. Thus,
although it is inconclusive whether nitrosylation in vascular
smooth muscle directly causes vascular remodeling in the
clinical situation, it may be an effective treatment to reduce
nitrosative stress for PH patients. It should be mentioned that
SNP-mediated relaxation was unaltered in response to chronic
hypoxia in the present study, indicating preserved function of
the pathway downstream of NO after chronic hypoxia. These
results are consistent with the clinical evidence that inhaled
NO, sGC modulators, and selective PDE5 inhibitors are effec-
tive in reducing pulmonary artery pressure in PAH patients
(20, 23, 24, 30, 39).

Study limitations. Several limitations should be mentioned
for the present study. First, although catalase-sensitive relax-
ation generally indicates H2O2-mediated relaxation, catalase
may not be a specific scavenger of H2O2 (22). In systemic
blood vessels, we have previously demonstrated that endothe-
lium-derived H2O2 plays a major role as an EDH in animals
and humans using dichlorodihydrofluorescein diacetate and
electron spin resonance (45, 59, 64). In contrast, several factors
other than H2O2 have been proposed as a candidate of EDH in
systemic blood vessels (21, 40), and several K� channels may
also be involved in the development of PAH (2, 5, 52, 71).
Further studies are needed to address this point. Second, it
remains to be elucidated whether changes in Cav-1 expression
contribute to the onset of PH. It has been reported that mutant
Cav-1-F92A increases NO bioavailability but does not cause
PH as in the case of male Cav-1 knockout mice (36). On the
other hand, it has also been reported that Cav-1 is downregu-
lated in PAH patients (76) and that endothelial Cav-1 exerts a
protective role against spontaneous development of PH in male
mice (47). Third, although PAH is a disease with high preva-
lence in females (66), we used only male mice in the present
study. Regarding the high prevalence of females, sex hor-
mones, especially estrogen, are considered to be one of the
possible contributors to the pathogenesis of PAH (63). Estro-
gen has positive roles in the vascular functions of pulmonary
arteries through eNOS upregulation and activation in addition
to enhancing PGI2 release and endothelin-1 downregulation,
leading to relaxation of pulmonary arteries and inhibition of
hypoxic pulmonary vasoconstriction (37). Thus, female sex
may exhibit better pulmonary artery reactivity than male sex.
However, despite the positive effects of estrogen on pulmonary
vessels, the opposite evidence has also been demonstrated, i.e.,
that exogenous estrogen treatments promote the onset of PAH
(63); these two-sided effects of estrogen are known as the
“estrogen paradox” (68). Further studies are warranted to
investigate the sex difference in endothelium-dependent relax-
ation in the pulmonary circulation. Fourth, the discrepancy
between the slight rise in RVSP and the marked increase in

basal pulmonary vascular resistance could be attributed to the
development of RV failure, which was not evaluated in the
present isolated perfused lung model. However, according to
the previous report, RV contractility is preserved after 21 days
of hypoxia in WT mice (11).

Conclusions. In the present study, we were able to demon-
strate that EDH plays an important role in pulmonary micro-
circulation in addition to NO under normoxic conditions and
that impaired EDH-mediated relaxation and subsequent nitro-
sative stress may be potential triggers of the onset of PH.
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