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Satake Y, Satoh K, Nogi M, Omura J, Godo S, Miyata S, Saito
H, Tanaka S, Ikumi Y, Yamashita S, Kaiho Y, Tsutsui M, Arai Y,
Shimokawa H. Crucial roles of nitric oxide synthases in �-adreno-
ceptor-mediated bladder relaxation in mice. Am J Physiol Renal
Physiol 312: F33–F42, 2017. First published October 26, 2016;
doi:10.1152/ajprenal.00137.2016.—The specific roles of nitric oxide
(NO) synthases (NOSs) in bladder smooth muscle remain to be
elucidated. We examined the roles of NOSs in �-adrenoceptor (AR)-
mediated bladder relaxation. Male mice (C57BL6) deficient of neu-
ronal NOS [nNOS-knockout (KO)], endothelial NOS (eNOS-KO),
neuronal/endothelial NOS (n/eNOS-KO), neuronal/endothelial/induc-
ible NOS (n/e/iNOS-KO), and their controls [wild-type (WT)] were
used. Immunohistochemical analysis was performed in the bladder.
Then the responses to relaxing agents and the effects of several
inhibitors on the relaxing responses were examined in bladder strips
precontracted with carbachol. Immunofluorescence staining showed
expressions of nNOS and eNOS in the urothelium and smooth muscle
of the bladder. Isoproterenol-induced relaxations were significantly
reduced in nNOS-KO mice and were further reduced in n/eNOS-KO
and n/e/iNOS-KO mice compared with WT mice. The relaxation in
n/e/iNOS-KO mice was almost the same as in n/eNOS-KO mice.
Inhibition of Ca2�-activated K� (KCa) channel with charybdotoxin
and apamin abolished isoproterenol-induced bladder relaxation in WT
mice. Moreover, direct activation of KCa channel with NS1619 caused
comparable extent of relaxations among WT, nNOS-KO, and
n/eNOS-KO mice. In contrast, NONOate (a NO donor) or hydrogen
peroxide (H2O2) (another possible relaxing factor from eNOS) caused
minimal relaxations, and catalase (H2O2 scavenger) had no inhibitory
effects on isoproterenol-induced relaxations. These results indicate
that both nNOS and eNOS are substantially involved in �-AR-
mediated bladder relaxations in a NO- or H2O2-independent manner
through activation of KCa channels.
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BLADDER IS A UNIQUE ORGAN that stores and excretes urine by
smooth muscle relaxation and contraction, respectively (39).
The physiological contraction of the bladder is principally
caused by acetylcholine released from parasympathetic nerve
terminal (4). Adenosine triphosphate, bradykinin, and 5-HT are
also associated with bladder contractions in physiological or

pathological conditions (27, 48, 59). It has also been demon-
strated that bladder relaxation is caused by noradrenaline-
induced activation of �-adrenoceptors (AR) (34, 39). The
balance of contraction and relaxation is regulated by many
mechanisms in the bladder (8), including nitric oxide (NO)
(20). NO is synthesized by three distinct NO synthase (NOS)
isoforms [neuronal NOS (nNOS), endothelial NOS (eNOS),
and inducible NOS (iNOS)] (18). nNOS and eNOS are con-
stitutively expressed in various organs and tissues (18). Major
functions of nNOS are synaptic plasticity, blood pressure
regulation, and neurotransmission, such as penile erection (18),
whereas those of eNOS include vasodilatation, prevention of
atherosclerosis, and erection (10). In contrast, iNOS is upregu-
lated in response to inflammation, such as urinary tract infec-
tion (5).

In the lower urinary tract, all of the NOS isoforms are
expressed, playing crucial physiological roles in smooth mus-
cle relaxation of the urethra (35). nNOS and NO mediate
urethral relaxation in mice (12), and neuronally released NO
also acts on the urethral sphincter and prostatic smooth muscle
cells (35). Reduced NOS/NO promotes prostatic smooth mus-
cle proliferation and enhance urinary tract symptoms in pa-
tients with benign prostatic hyperplasia (38). Recently, phos-
phodiesterase type 5 inhibitors with NO-mediated relaxing
effects are used for men with lower urinary tract symptoms (5,
15, 20). However, direct relaxing effects of NO in bladder
smooth muscle (detrusor muscle) may be minimal in ani-
mals and humans (58). Detrusor relaxation to a NO donor
may also be trivial in mice (12) and humans (54). Although
NOS/NO functions in the detrusor muscle have not been
fully understood, they may be involved in the bladder
functions because phosphodiesterase type 5 inhibitors im-
prove not only the excretion symptoms, but also the storage
symptoms (15). The major role of NOSs in the bladder is
considered to be mediated by modulation of afferent nerve
signals (5). Indeed, it has been demonstrated that NO
modulates N-type Ca2� channels in bladder afferent neurons
(60) or inhibits afferent nerve from the bladder (2, 14). NO
is also produced by eNOS and is released from the urothe-
lium in response to noradrenaline or �-AR agonist (9).
Urothelium-derived NO may modulate the afferent nerve
activities (56). NO donor was shown to decrease the ampli-
tude of spontaneous and carbachol (CCh)-enhanced contrac-

Address for reprint requests and other correspondence: H. Shimokawa,
Dept. of Cardiovascular Medicine, Tohoku University Graduate School of
Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (e-mail: shimo
@cardio.med.tohoku.ac.jp).

Am J Physiol Renal Physiol 312: F33–F42, 2017.
First published October 26, 2016; doi:10.1152/ajprenal.00137.2016.

1931-857X/17 Copyright © 2017 the American Physiological Societyhttp://www.ajprenal.org F33

 by 10.220.33.3 on M
arch 16, 2017

http://ajprenal.physiology.org/
D

ow
nloaded from

 

http://doi.org/10.1152/ajprenal.00137.2016.
mailto:shimo@cardio.med.tohoku.ac.jp
mailto:shimo@cardio.med.tohoku.ac.jp
http://ajprenal.physiology.org/


tions via cGMP and protein kinase G (7), suggesting that
NOS/NO is associated with bladder smooth muscle activity.
In this way, there is a long time question as to whether NO
has direct effects on the smooth muscle cells of the bladder
(31, 43). Furthermore, the specific roles and regulations of

NOS isoforms in bladder smooth muscle relaxation remain
to be fully elucidated. In most of the previous studies,
physiological roles of NOS in the urinary tract were exam-
ined by pharmacological intervention with NOS inhibitors,
such as N�-nitro-L-arginine methyl ester (6, 41) and NG-
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Fig. 1. Expression of three NOS isoforms in the bladder. A: representative immunofluorescence staining showing neuronal NOS (nNOS), endothelial NOS
(eNOS) and inducible NOS (iNOS) in the bladder of wild-type mice. Bladder smooth muscle cells and vascular smooth muscle cells are stained with �-smooth
muscle actin (�-SMA, Cy3, red). Three NOS isoforms (nNOS, eNOS, and iNOS) are shown in green (Alexa Fluor-488) in the urothelium and bladder smooth
muscle cells. Nuclei are shown in blue [4=-6-diamidino-2- phenylindole (DAPI)]. Scale bars in low-power fields, 200 �m, and in high-power fields, 50 �m.
B: representative immunofluorescence staining of nNOS in the bladder. nNOS is expressed in the urothelium and bladder smooth muscle cells, with spotty
patterns (white arrows). Scale bars, 50 �m. C: representative immunofluorescence staining of eNOS in the bladder. eNOS is expressed in all layers of the
urothelium, suburothelial microvascular endothelium (white arrows), and bladder smooth muscle cells (yellow arrows). Scale bars, 50 �m. D: representative
immunofluorescence staining of iNOS in the bladder. iNOS is expressed to the limited extent in the urothelium (white arrows) and smooth muscle cells. Scale
bars, 50 �m.
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monomethyl-L-arginine (36). However, those NOS inhibi-
tors possess nonspecific actions (13). Although some studies
reported the role of nNOS in the bladder using nNOS-
knockout (KO) mice (12, 51), the results were contradictory,
probably due to possible compensatory mechanisms among
the NOS isoforms (50, 55).

Thus, in the present study, we examined the roles of eNOS
and nNOS in modulation of bladder smooth muscle relaxation,
contraction, and urinary tract function, using eNOS, nNOS,
n/eNOS double-KO mice, and n/e/iNOS triple-KO mice.

METHODS

Animals. This study was approved by the Committee on Ethics of
Animal Experiments of Tohoku University (no. 2014-Kodo-006), in
accordance with the “Guidelines for Proper Conduct of Animal
Experiments, Japan” and the “Guide for the Care and Use of Labo-
ratory Animals, National Research Council of the National Acade-
mies, USA.” nNOS-KO (23), eNOS-KO (24), n/eNOS-KO (42), and
n/e/iNOS-KO mice (42) (11–14 wk old males, C57BL6 background)
and their controls [wild type (WT)] were used. We generated
n/eNOS-KO and n/e/iNOS-KO mice by crossing nNOS-KO, eNOS-KO
mice, and iNOS-KO mice (42). All animals were fed a standard chow
and maintained on 12:12-h light-dark cycles.

Immunohistochemistry. Mice were anesthetized with isoflurane
(1.5%) and perfused with calcium- and magnesium-free phosphate-
buffered saline and 4% paraformaldehyde via the inferior vena cava.
Bladders were removed and fixed with 4% paraformaldehyde and
dehydrated in phosphate-buffered saline containing 10, 20, and 30%
sucrose, were then embedded in optimal cutting temperature com-
pound, and frozen sections were prepared. Tissues were incubated in
Tris-buffered saline with 3% bovine serum albumin containing 0.2%
Triton X-100 for 1 h at room temperature and incubated with primary
antibody overnight at 4°C. Primary antibodies used were rabbit
polyclonal nNOS antibody (610310, BD Transduction Laboratories,
Lexington, KY), rabbit polyclonal eNOS antibody (ab66127, Abcam,
Cambridge, UK), rabbit polyclonal iNOS antibody (ab3523, Abcam,
Cambridge, UK), and mouse monoclonal anti-�-smooth muscle actin-
Cy3 antibody (C6198, Sigma Aldrich, St. Lois, MO). All primary
antibodies were used at a dilution of 1:400, followed by incubation
with Alexa Fluor 488 goat anti-rabbit IgG (H�L; A11008, Invitrogen
Molecular Probes) for 1.5 h. Tissues were mounted using mounting
solution contained with 4=-6-diamidino-2-phenylindole. Slides were
viewed with a LSM 780 confocal microscope (Carl Zeiss, Jena,
Germany).

Tissue preparations. Mice were killed by intraperitoneal injection
of pentobarbital, and bladders were immediately removed via a lower
midabdominal incision. Transverse circular strips from the middle of
the bladder excluding bladder neck were dissected in 3-mm widths. In
some strips, the urothelium was gently removed by peeling the lamina
propria with a cotton swab under a microscope. The strips were
mounted in the 5-ml organ bath system (myograph, 620M, Danish
Myo Technology, Aarhus, Denmark) containing Krebs-Henseleit so-
lution aerated with 95% O2 and 5% CO2 at 37°C. The strips were
stretched to a tension of 5 mN, the tension was adjusted to 5 mN every
2–5 min for 1 h, and the buffer solution was refreshed every 15 min.
The strips were equilibrated for 30 min. Following the equilibration,
the strips were contracted with 60 mM KCl. After washout and 30 min
later, the experiments were performed. The responses were monitored
by a computer-based analysis system in LabChart 7.0 software.

Relaxation and contraction effects. Strips were precontracted with 1
�M CCh, and, after ~25–35 min when the strips had reached a stable
tension, cumulative concentration of relaxing agents was administered.
The relaxation responses were calculated as a percentage of precontrac-
tion level induced by CCh (45). To verify the contributions of adenylyl
cyclase, prostaglandins, NO, hydrogen peroxide (H2O2), and Ca2�-activated

K� (KCa) channel and for �-AR-mediated relaxations, we used each inhib-
itor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536, 10�4 M), indo-
methacin (10�4 M), N�-nitro-L-arginine (L-NNA, 10�4 M), catalase (1,250
U/ml), iberiotoxin [large-conductance Ca2�-activated K� channel (BK)
inhibitor, 10�7 M], a combination of charybdotoxin [BK channel and
intermediate-conductance Ca2�-activated K� (IK) channel inhibitor, 10�7

M], and apamin [small-conductance Ca2�-activated K� (SK) channel inhib-
itor, 10�7 M], respectively. Catalase was applied 60 min before, and
other inhibitors were applied 30 min before, precontraction with CCh.
We also assessed relaxation responses to cumulative concentration of
forskolin (adenylyl cyclase activator), 1,3-dihydro-1-[2-hydroxy-5-
(trifluoromethyl)phenyl]-5-(trifluoromethyl) �2H-benzimidazol-2-
one (NS1619, KCa channel opener), sodium nitroprusside (SNP, NO
donor), 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA
NONOate, NO donor), and H2O2. Detrusor contractions were exam-
ined in response to cumulative concentration of CCh and were
calculated as a percentage of the contractions by 60 mM KCl (45).

Drugs and solution. SQ22536 was purchased from Abcam (Cam-
bridge, UK), iberiotoxin, and charybdotoxin from Peptide Institute
(Osaka, Japan), SNP from Maruishi Seiyaku (Osaka, Japan), and all
other drugs from Sigma Aldrich (St. Lois, MO). The composition of
Krebs-Henseleit solution was as follows (mM): Na� 144, K� 5.9,
Mg2� 1.2, Ca2� 2.5, H2PO4

� 1.2, HCO3
� 24, Cl� 129.7, and glucose

5.5 (314 mosmol/kgH2O). To achieve the contractions by 60 mM
KCl, we added the solutions prepared by mixture of KCl, distilled
water, and Krebs-Hensleit solution (277 mosmol/kgH2O).

Statistical analysis. Results are expressed as means � SD. Con-
centration-response curve was analyzed by two-way ANOVA, fol-
lowed by Tukey’s honestly significant difference for multiple com-
parisons. Statistical analysis was performed using JMP Pro version 11
software (SAS Institute, Cary; NC) and R version 3.3.1. P value 	
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Fig. 2. Isoproterenol-induced relaxation and carbachol (CCh)-induced contrac-
tion of the bladder. A: representative recording of CCh-induced precontraction
and isoproterenol-induced relaxation. B: representative recording of contrac-
tion in response to cumulative concentration of CCh.
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0.05 was considered to be statistically significant. Since sample sizes
had not been prespecified in the present study, P values were consid-
ered to be descriptive only and were not hypothesis-testing.

RESULTS

Expressions of the three NOS isoforms in the bladder. We
performed immunofluorescence staining for the NOSs in the
bladder of WT mice (Fig. 1). The expression pattern of nNOS
was spotty in both the urothelium and bladder smooth muscle
cells (Fig. 1B, arrows). The expression of eNOS was intense in
all layers of the urothelium and suburothelial microvascular
endothelium (Fig. 1C, white arrows), while eNOS was mod-
erately expressed in bladder smooth muscle cells (Fig. 1C,
yellow arrows). iNOS expression was weak in the urothelium
and smooth muscle cells (Fig. 1D, arrows).

Role of the urothelium in bladder relaxation and contraction.
CCh (1 �M) rapidly caused contraction in bladder strip, then it
was decreased and reached a stable tension thereafter (Fig. 2A).
Isoproterenol caused relaxation of bladder strip in a concen-
tration-dependent manner (Fig. 2A). The contractile responses
to CCh were concentration dependent until 3 
 10�5 M, but
decreased with higher concentrations (Fig. 2B). Interestingly,

isoproterenol-induced relaxations (Fig. 3A) were comparable
between urothelium-denuded and urothelium-intact strips. Al-
though significant difference was noted, CCh-induced contrac-
tions (Fig. 3B) were small between urothelium-denuded and
urothelium-intact strips. These results suggest no involvement
of the three NOS isoforms in the urothelium in �-AR-mediated
relaxations or cholinergic contractions of the bladder. Thus we
used urothelium-intact strips in the following experiments.

Both nNOS and eNOS regulate isoproterenol-induced blad-
der relaxation. To further examine the roles of NOSs in bladder
relaxation and contraction, we used nNOS-KO, eNOS-KO, n/eNOS-
KO, and n/e/iNOS-KO mice. Importantly, isoproterenol-induced re-
laxations of bladder strips were reduced in both nNOS-KO and
eNOS-KO mice compared with WT mice and were further attenu-
ated in n/eNOS-KO and n/e/iNOS-KO mice (Fig. 3C). The relax-
ations in n/eNOS-KO and n/e/iNOS-KO mice were comparable (Fig.
3C). These results suggest that both nNOS and eNOS play a crucial
role in �-AR-mediated bladder relaxation, and iNOS is not related to
the relaxation. In contrast, CCh-induced contraction of bladder strips
was significantly reduced in nNOS-KO mice and n/eNOS-KO mice
compared with WT mice. Contractions in nNOS-KO mice were
mostly decreased. However, n/e/iNOS-KO mice were almost the
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Fig. 3. Genetic disruption of nNOS and eNOS
attenuates �-AR-mediated relaxation of the bladder.
A: urothelium-denuded bladder strip and urothe-
lium-intact strip in isoproterenol-induced relaxation
(n � 4 each). F � 0.57. P � 0.05. B: urothelium-
denuded bladder strip and urothelium-intact strip in
CCh-induced contraction (n � 3 each). F � 11.09.
†P 	 0.01. C: isoproterenol-induced bladder relax-
ation in WT (n � 13), eNOS-KO (n � 7),
nNOS-KO (n � 4), n/eNOS-KO (n � 8), and
n/e/iNOS-KO mice (n � 6). F � 81.63. †P 	 0.01.
D: CCh-induced bladder contraction in WT (n � 7),
eNOS-KO (n � 2), nNOS-KO (n � 4), n/eNOS-KO
(n � 4), and n/e/iNOS-KO mice (n � 5). F � 6.28.
†P 	 0.01. *P 	 0.05. Values are means � SD.
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same as WT mice in bladder contractions (Fig. 3D). The relations
between the NOS genotype and the contractions are not clear.

Small relaxing effects of a NO donor or H2O2 in the bladder.
To examine the role of NO and H2O2 in �-AR-mediated
bladder relaxation, we used pharmacological approach. NO
donors, SNP (Fig. 4A) and DETA NONOate (Fig. 4B), caused
little relaxation in WT mice compared with time course con-
trol, indicating that NO has small direct relaxing effect in the
bladder. Next, to examine the role of endogenous H2O2, which
could be produced from eNOS in vascular wall (49), we used
cumulative concentrations of H2O2 and catalase (scavenger of
H2O2) for �-AR-mediated bladder relaxation. However, both
H2O2 (Fig. 4C) and catalase (Fig. 4D) showed slight effects on
bladder relaxation. These results suggest that involvement of
NO and H2O2 in �-AR-mediated bladder relaxation is minimal
in mice.

Both nNOS and eNOS regulate activation of KCa channel.
To further examine the roles of NOSs in �-AR-mediated
bladder relaxation, we performed several pharmacological ex-
periments. Isoproterenol-induced relaxations of bladder strips
were not altered by inhibition of BK channel (iberiotoxin) (Fig.
5A). Adenylyl cyclase inhibitor SQ22536 showed small inhib-
itory effect on isoproterenol-induced relaxation (Fig. 5A). Ad-
ditionally, L-NNA slightly reduced the relaxations, and indo-
methacin did not affect the relaxations (Fig. 5B). These results
suggest that �-AR-medicated bladder relaxations are not reg-
ulated by BK channel nor prostaglandins and are slightly

affected by adenylyl cyclase or NO. In contrast, inhibition of
the SK channel with apamin reduced �-AR-mediated bladder
relaxation (Fig. 5C), and, moreover, inhibition of all types of
KCa channels (BK, IK, and SK) with charybdotxin and apamin
abolished the relaxation (Fig. 5, B and C), suggesting that Kca

channels (mainly SK channel) play a crucial role in �-AR-
mediated bladder relaxation in mice.

Although little difference was found between nNOS-KO and
eNOS-KO mice, bladder strips of NOS KO-mice caused com-
parable �-AR-mediated relaxations when treated with forsko-
lin (adenylyl cyclase activator) (Fig. 6A). In addition, NS1619
(KCa channel opener) also caused similar relaxations in the
bladder of NOS-KO mice (Fig. 6B). These results suggest that
the mechanistic involvement of nNOS and eNOS in �-AR-
mediated bladder relaxation is not in the downstream of ad-
enylyl cyclase or KCa channel signaling.

DISCUSSION

The major findings of the present study were that 1) nNOS
and eNOS are expressed in both the urothelium and bladder
smooth muscle cells in WT mice; 2) NO donors or H2O2

caused slight bladder relaxation; 3) nNOS and eNOS played a
cumulative role in �-AR-mediated bladder relaxation; and 4)
both nNOS and eNOS mainly regulated activation of KCa

channel or partially regulated adenylyl cyclase. Based on these
findings, we propose that both nNOS and eNOS in bladder
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Fig. 4. Small effect of nitric oxide (NO) or hydro-
gen peroxide (H2O2) in bladder relaxation. A: NO
donor (SNP) caused slight relaxation in WT mice
(n � 3 each). F � 10.78. †P 	 0.01. B: NO donor
(DETA NONOate) caused small relaxation in WT
mice (n � 3 each). F � 16.99. †P 	 0.01. C: H2O2

caused small relaxation in WT mice (n � 5).
F � 39.99. †P 	 0.01. n � 3, WT time course
control. D: isoproterenol-induced bladder relax-
ations were minimally affected in the presence of
catalase. n � 4, WT; n � 3, WT with catalase.
F � 8.64. †P 	 0.01. Values are means � SD.
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smooth muscle cells cause �-AR-mediated bladder relaxations
through activation of KCa channels. To the best of our knowl-
edge, this is the first study demonstrating the novel mechanism
for bladder relaxation.

Small effects of NO or H2O2 in bladder relaxation. In the
present study, NO donors (e.g., SNP and DETA NONOate)
slightly relaxed bladder strip and L-NNA reduced isoprotere-
nol-induced relaxations to a small extent. Thus the contribution
of NO for bladder relaxation may be minimal in �-AR-
mediated relaxation. Consistently, previous reports demon-
strated that NO had little effects on isoproterenol-induced
bladder relaxation in rats (19) or humans (11). Additionally,
detrusor muscle has been shown to be less sensitive to NO in
mice (12) and humans (44). However, the present study dem-
onstrated that nNOS and eNOS cause �-AR-mediated bladder
relaxation. H2O2 or catalase showed minor effects in isoprot-
erenol-induced bladder relaxation. Thus NO and H2O2 may not
be involved in the �-AR-mediated bladder relaxation.

Crucial roles of nNOS and eNOS in �-AR-mediated bladder
relaxation. All of the three NOS isoforms are expressed in
various tissues of the lower urinary tract (35). For example,
expression of eNOS has been shown in the urothelium (9, 16,
26) and bladder smooth muscle cells (9, 17). In addition,
expression of nNOS has been shown in nerves in interstitial
tissues (12, 17) and bladder smooth muscle cells (9, 17, 28).
However, the localization of eNOS and nNOS varies among
the species and the reports (5). Although many studies dem-
onstrated that NO is produced in the urothelium in response to
�-AR stimulation (9), it has long been a question whether
urothelium-derived NO has a direct effect on bladder smooth
muscle cells. In the present study, we identified all of the NOS
isoforms in both the urothelium and bladder smooth muscle
cells. However, there was no significant difference in isoprot-
erenol-induced relaxation between bladder strips with and
without urothelium, and removal of the urothelium caused
minor effects in CCh-induced contraction. These results indi-
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Fig. 5. KCa channel mediates isoproterenol-induced
relaxation of the bladder. A: effects of inhibition of
adenylyl cyclase (SQ22536) or BK channel (ibe-
riotoxin) on isoproterenol-induced bladder relax-
ation in WT mice (n � 3 each). F � 11.71. †P 	
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cate that NO produced in the urothelium, if any, does not cause
bladder relaxation and might affect bladder contraction.

Next, we examined isoproterenol-induced relaxation of
bladder strips in nNOS-KO, eNOS-KO, n/eNOS-KO, and
n/e/iNOS-KO mice. Interestingly, the relaxations were attenu-
ated in nNOS-KO mice compared with WT mice and were
further reduced in n/eNOS-KO and n/e/iNOS-KO mice. These
results suggest that nNOS and eNOS in bladder smooth muscle
cells play a crucial role in �-AR-mediated bladder relaxation.
The relaxation in n/e/iNOS-KO mice was almost the same with
n/eNOS-KO mice, indicating that iNOS is not involved in the
�-AR-mediated bladder relaxation. However, we showed that
NO donors minimally relaxed the bladder smooth muscle, and
the inhibitory effects of L-NNA in isoproterenol-induced re-
laxations were by far smaller than those of n/eNOS disruption.
Taken together with these results, nNOS and eNOS are asso-
ciated with �-AR-mediated bladder relaxation in a NO-inde-
pendent manner. Genetic disruption of n/e double NOS or n/e/i
triple NOS have several benefits compared with the pharma-
cological inhibition. Indeed, pharmacological NOS inhibitors
possess many kinds of nonspecific actions, such as muscarinic
receptors antagonism or generation of superoxide anions (55).
Moreover, they cannot inhibit generation of H2O2 from eNOS
(37) or may not inhibit unknown actions of NOSs. Thus
multiple NOS deficiency, including n/eNOS-KO and n/e/
iNOS-KO mice, may solve the problems of compensatory
mechanism (22, 29) by other preserved NOS isoforms in single
NOS-KO mice. CCh-induced contraction of bladder strips
showed some difference among nNOS-KO, n/eNOS-KO, n/e/
iNOS-KO, and WT mice. However, regularity was not found
in association with the number or the types of genetic NOS
disruption.

We further performed mechanistic experiments in isoprot-
erenol-induced bladder relaxation in WT mice, demonstrating
that �-AR-mediated relaxations were not mediated by BK
channel, prostaglandins. Inhibition of adenylyl cyclase slightly
reduced the relaxations, indicating that adenylyl cyclase is
partially associated with the �-AR-mediated bladder relaxation
(19, 46). In contrast, the results with charybdotoxin (BK

channel and IK channel inhibitor) and apamin (SK channel
inhibitor) showed the involvement of KCa channels. Particu-
larly, apamin treatment also reduced the relaxation, suggesting
that SK channel is mainly involved in the response. These
results are not consistent with the previous reports that showed
the roles of BK channels in �-AR-mediated bladder relaxation
(11, 19, 46). Since SK channels are expressed and involved in
human bladder smooth muscle contractility (1) and associated
with purinergic relaxation in the bladder (30), we consider that
the channels may have important roles in bladder smooth
muscle (47). However, many functions of SK channels in the
bladder remain to be fully elucidated, including the role in
�-AR-mediated relaxation. The present study may suggest a
novel role of SK channels in the bladder. We consider that all
types of KCa channels, including SK channels, are associated
with �-AR-mediated bladder relaxation when we consider our
present finding that the combination of charybdotoxin and
apamin completely abolished the relaxation.

Although isoproterenol-induced bladder relaxation was sig-
nificantly reduced in nNOS-KO and n/eNOS-KO mice, relax-
ations to forskolin (adenylyl cyclase activator) or NS1619 (KCa

channel opener) were comparable between nNOS-KO, eNOS-
KO, and n/eNOS-KO mice compared with WT mice. These
results suggest that mechanistic involvement of NOSs is not in
the downstream of adenylyl cyclase or KCa channels, but is in
the pathway between �-AR and KCa channels. KCa channels
may play a crucial role in �-AR-mediated bladder relaxation,
in which eNOS and nNOS may regulate the calcium sensitivity
of these channels or their associated proteins, such as calmod-
ulin, that interact with NOS (53) and binds to the cytoplasmic
COOH-terminus region of the peptide called the calmodulin
binding domain in KCa channels (33). Alternatively, unknown
agent produced by NOS, except NO or H2O2, may mediate the
activation of KCa channels.

Study limitations. Several limitations should be mentioned
for the present study. First, we used systemic NOS-KO mice in
the present study. Systemic NOS deficiency during the devel-
opment may cause neural, vascular, or urethral dysfunction.
However, NOS-KO mice showed similar relaxation in re-
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not affect the bladder relaxation in response to activa-
tion of adenylyl cyclase or KCa channel. A: relaxation
responses to cumulative concentration of forskolin (ad-
enylyl cyclase activator) in eNOS-KO (n � 3),
nNOS-KO (n � 3), n/eNOS-KO (n � 8), and WT mice
(n � 5). F � 3.01. †P 	 0.01. B: relaxation responses
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sponse to forskolin or NS1619 compared with WT mice,
suggesting that potential relaxant ability of the bladder smooth
muscle is maintained in NOS-KO mice. Second, NOS defi-
ciency may have indirect effects on bladder relaxation. There-
fore, tissue-specific KO mice will be useful for clear demon-
stration of each NOS isoform in bladder function. Third, in
contrast to genetic disruption of eNOS and iNOS, alternative
splice variants of nNOS remain in nNOS-KO mice (3). Al-
though nNOS-� and - are expressed in nNOS-KO mice, NOS
activity of the brain has been reported to be markedly de-
creased in nNOS-KO mice (23), and the expressions of nNOS
and nNOS-� of the heart have been reported to be abolished in
nNOS-KO mice (25). However, there is no study that showed
the expressions of nNOS splice variants in the bladder. Thus
this is one of the limitations in the present study. Fourth, NOS
inhibitors possess many kinds of nonspecific actions, such as
muscarinic receptors antagonism or generation of superoxide
anions (55), and cannot inhibit generation of H2O2 from eNOS
(37). On the other hand, genetic NOS deficiency does not
involve pharmacological problems and can inhibit the H2O2

production by eNOS (52). Moreover, multiple NOS deficiency,
including n/eNOS-KO and n/e/iNOS-KO mice, would resolve
the problem of compensatory mechanism by other NOS iso-
forms. However, in the present study, we were unable to
determine whether NOS isoform can compensate each other in
the bladder of single NOS-KO mice. NOS activity and NOx
production have been reported to be well preserved in single
NOS-KO mice (42), and the compensatory mechanism of
nNOS in response to eNOS deficiency has been shown in the
vasculature (22, 29). Thus similar changes may also occur in
the bladder. Fifth, in the present study, we only used male
mice, and possible sex differences in NOS functions in the
bladder remain to be examined. Finally, since the sample size
was relatively small in some experiments, there is a possibility
of failure to detect the small effects of the inhibitors or NOS
deficiencies.

Clinical implications. �-AR-mediated detrusor relaxation is
one of the most important mechanisms in urine storage. Blad-
der smooth muscle relaxation occurs via �2-AR in mice, in
contrast via �3-AR in humans and rats (57, 58). The experi-
ments using rats are more important in terms of clinical
implication. However, NOS-KO rats are not available, and
NOS inhibitor cannot inhibit all of the isoforms of NOS.
Although there is a limitation as to the use of mice in the
present study, genetic disruption of all isoforms of NOS may
provide a new insight for better understanding of urinary
function. The prevalence of storage disorders, such as overac-
tive bladder, has been increasing along with rapid aging of the
society (21). It has been shown that NOS activities are reduced
in the bladder with aging in animal experiments, which may
implicate the involvement of NOSs in bladder dysfunction in
elderly patients (32, 40).

Conclusions. In the present study, we were able to demon-
strate that both nNOS and eNOS mediate isoproterenol-in-
duced bladder relaxation in a NO-independent manner, and
that the mechanistic site of action of nNOS and eNOS may
exist in the intracellular signaling between �-AR and KCa

channels. Further detailed analyses will contribute to the de-
velopment of novel therapy for lower urinary tract distur-
bances.
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