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Abstract

Background Asthma is characterized by airflow limita-

tion with chronic airway inflammation, hyperresponsive-

ness and mucus hypersecretion. NO is generated by three

nitric oxide synthase (i/n/eNOSs) isoforms, but conflicting

results have been reported using asthmatic mice treated

with NOSs inhibitors and NOS-knockout mice. To eluci-

date the authentic role of NO/NOSs in asthma, we used

asthmatic mice lacking all NOSs (n/i/eNOS-/-).

Methods Wild-type and n/i/eNOS-/- mice were sensi-

tized and challenged with ovalbumin. Pathological findings

and expressions of interferon (IFN)-c, interleukin (IL)-4,

-5, -10, -13 and chemokines in the lung were evaluated.

Results Decreased eosinophilic inflammation, bronchial

thickening and mucus secretion, IL-4, -5 and -13, mono-

cyte chemoattractant protein-1, eotaxin-1 and thymus and

activation-regulated chemokine expressions were observed

in n/i/eNOS-/- mice compared to wild-type, but expres-

sions of IFN-c and IL-10 were similar.

Conclusion Using asthmatic n/i/eNOS-/- mice, NO

plays important roles in accelerating bronchial eosinophilic

inflammation and mucus hypersecretion in the pathophys-

iology of asthma.

Keywords Nitric oxide � Nitric oxide synthase �
Eosinophilic inflammation � Bronchial asthma

Introduction

Asthma is characterized by airflow limitation with airway

hyperresponsiveness, bronchial inflammation, mucus

hypersecretion and remodeling. A fraction of exhaled nitric

oxide (FENO) is clinically used as a marker of eosinophilic

bronchial inflammation [1], and the role of nitric oxide

(NO) in asthma is of particular interest. NO is generated by

three isoforms of nitric oxide synthase (NOS): neuronal

(nNOS), inducible (iNOS), and endothelial (eNOS) NOSs,

and all three NOS isoforms are found in the bronchial

epithelium [2]. NO is involved in the Th2-cell-mediated

(mainly eosinophils) asthmatic inflammatory responses and

has multiple roles from proinflammatory to anti-inflam-

matory actions, regulating bronchomotor tone. Accelerated

NO production with oxidative stress may be harmful in

asthma, and iNOS-induced epithelial NO production by

inflammatory stimuli such as proinflammatory cytokines is

observed during asthma exacerbation [3]. In addition to

iNOS, eNOS and nNOS are also involved in the patho-

physiology of allergic asthma [4, 5].

The roles of NO and NOSs in asthma have been

examined using selective or non-selective pharmacological

inhibitors of NOSs, and also using NOS-knockout mice,

however, conflicting results have been observed. Reduced

eosinophilic bronchial inflammation was reported in
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asthmatic mice treated with inhibitors of nonselective

NOSs [6, 7] and selective iNOS inhibitors [8, 9], but no

effect on bronchoalveolar lavage fluid (BALF) eosinophis

were observed in mice treated with selsctive iNOS inhi-

bitor [6]. Similar eosinophilic inflammation among

nNOS-/-, iNOS-/-, eNOS-/- and n/eNOS-/- asthmatic

mice was observed, and nNOS was considered to be

important in the airway hyperresponsiveness [10].

Whereas, reduced eosinophilic bronchial inflammation was

also reported in iNOS-/- [11] and eNOS transgenic mice

[12]. The limitations of these animal studies were due to

the specificity and pharmacokinetic concerns of NOS

inhibitors, compensatory reactions between NOS isoforms

to provide NO by the other NOS isoforms in NOS-

knockout mice, differences between asthmatic murine

models and mouse strains, that might be responsible for

these conflicting findings. Because of heterogeneous and

complicated activities of NO and NOSs, the comprehensive

roles of NO and NOSs in the pathophysiology of allergic

asthma is not fully understood so far.

A murine model lacking all three NOSs (n/i/eNOS-/-)

was developed to evaluate the essential role of NO and the

authentic role of NOSs [13, 14] to overcome these issues

described above. Using this triply-n/i/eNOSs-/- mice, we

evaluated whether complete deletion of all NOS isoforms

has an impact on allergic asthma.

Materials and Method

Male wild-type (WT; C57/BL6) and n/i/eNOS-/- mice (6

to 8-weeks-old) were sensitized with an intraperitoneal

(i.p.) injection of 20 lg ovalbumin (OVA) (GradeV,

Sigma-Aldrich, St. Louis, MO) and 2.25 mg of Al(OH)3
(Sigma-Aldrich) as an adjuvant on days 1 and 14. The

mice were exposed to aerosolized 1 % OVA for 20 min

on days 26–28, and were sacrificed under deep anesthesia

on day 30 [15]. Total RNA was extracted from homoge-

nized right lung and reverse-transcribed. The expression

of each mRNA (interferon (IFN)-c, interleukin (IL)-4, IL-

5, IL-10, IL-13, C–C chemokines (monocyte chemoat-

tractant protein (MCP)-1, eotaxin-1 and thymus and acti-

vation-regulated chemokine (TARC) and GAPDH) was

evaluated using real-time quantitative PCR (ABI Prism

7000, Applied Biosystems, Foster City, CA). The left lung

was fixed with formalin and embedded in paraffin, sec-

tioned and stained with hematoxylin and eosin (HE) and

periodic acid-Schiff (PAS). This study was approved by

the Ethics Committee of Animal Care and Experimenta-

tion, University of Occupational and Environmental

Health, Japan, and was carried out according to the related

guidelines.

Results

Comparing with WT, HE-stained and PAS-stained lung

sections of n/i/eNOS-/- mice showed a decrease in eosi-

nophilic inflammation and bronchial thickening (Fig. 1a, c)

and decreased airway mucus hypersecretion (Fig. 1b, d),

respectively. Compared to WT, IL-4, IL-5, MCP-1,

eotaxin-1, TARC and especially IL-13 mRNA expressions

in the lung were significantly reduced in n/i/eNOS-/- mice

(Fig. 2b, c, f, g, h, and e, respectively), but the expressions

of IFN-c and IL-10 were similar (Fig. 2a, d).

Discussion

Pathological findings of allergic asthmatic n/i/eNOS-/-

mice revealed a significant decrease in bronchial eosino-

philic inflammation, bronchial thickening, mucus secretion

and mRNA levels of IL-4, IL-5, IL-13, MCP-1, eotaxin-1

and TARC. These findings indicate that NO itself may have

promotive effects on airway eosinophilic inflammation and

airway mucus hypersecretion in allergic asthma.

Conflicting findings of pulmonary eosinophilic inflam-

mation have been reported in asthma model using phar-

macological suppressors of NOSs and NOS-knockout or

NOS-transgenic mice as described above [3–12]. In addi-

tion to pulmonary eosinophilic inflammation, conflicting

results of cytokines such as increased IL-4 and IL-5 pro-

duction from activated lung T cells in mice treated with

pharmacological selective iNOS inhibitor [8], decreased

production of IL-5 and IL-10 from isolated thoracic lymph

node cells from eNOS-transgenic asthmatic mice [12], and

Fig. 1 Hematoxylin and eosin staining of lung sections from wild-

type (WT) (a) and n/i/eNOS-/- mice (b) and periodic acid-Schiff

staining of lung sections from WT (c) and n/i/eNOS-/- mice (d).
Mice were sensitized and challenged with ovalbumin
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unchanged production of IL-4 and IL-5 isolated from lung

cells in the iNOS-/- than in WT instead of decreased

eosinophilic inflammation [11] were reported. In addition,

there have been only limited data of chemokine expres-

sions in the lung using asthmatic murine model. Decreased

expressions of MCP-1, eotaxin, C10 were observed in

asthmatic mice treated with NOS inhibitor with a decrease

of eosinophilic bronchial inflammation compared to wild

type mice [7]. Decreased eosinophilic inflammation,

expressions of macrophage inflammatory protein (MIP)-2

and MCP-1 were reported in asthmatic mice treated with

iNOS inhibitor with unchanged expressions of regulated on

activation, normal T cell expressed and secreted

(RANTES), eotaxin and T cell activation gene 3 (TCA-3)

[8]. By using n/i/eNOS-/- mice, our results indicated that

NO plays an important role in promoting eosinophilic

inflammation, mucus hypersecretion that might be related

to an increase of Th2 cytokines such as IL-4, IL-5, IL-13,

and C–C chemokines such as MCP-1, eotaxin-1 and TARC

in the pathophysiology of asthma.

Comparing to WT, expressions of pulmonary IFN-c and

IL-10 in n/i/eNOS-/- mice were similar (Fig. 2a, d). With

a decrease of eosinophilic inflammation, decreased

expression of IFN-c in activated lung T cells in asthmatic

mice treated with iNOS inhibitor [8], and also a decrease of

IFN-c expression in isolated thoracic lymph node cells in

asthmatic eNOS-transgenic mice [12] were observed,

whereas an increase of IFN-c expression was shown in

asthmatic mice lacking iNOS [10], compared to WT mice.

IL-10 is known as anti-inflammatory cytokine and sup-

presses iNOS and production of NO [16], and decreased

levels of IL-10 in the BALF of asthmatic patients com-

pared with those in normal subjects have been reported

[17]. IL-4 was significantly increased in asthmatic mice

lacking IL-10 [18], but only limited data regarding the

relationship between IL-10 and NOSs in murine asthma

models was reported. According to our results, decreased

levels of Th2 cell-mediated IL-4, IL-5 and IL-13 were not

due to IFN-c and IL-10 production, and NO and its

metabolic products or mediators might be related to the

decrease of Th2 cytokines.

In contrast to decreased inflammation in asthmatic

model using triply-NOS-/- mice, our previous report of a

bleomycin-induced pulmonary fibrosis using this n/i/

eNOS-/- mouse showed an exacerbation of pulmonary

fibrosis [19]. Based on these contrary pulmonary findings

of n/i/eNOS-/- mice, further studies are necessary to elu-

cidate complicated multiple roles of NO and NOSs in the

lung.

Phase 2 clinical trial of iNOS inhibitor in patients with

asthma, GW274150 showed a decrease of FENO but no

remarkable effects on asthma symptoms [20]. In this study

using n/i/eNOS-/- mice, our results provided the evidence

that NO undeniably plays important promotive roles in

bronchial eosinophilic inflammation and mucus hyper-

secretion in asthmatic airway, partially through an increase

in Th2 cytokines. We believe that these results of this study

might provide a clue to find some targets for drug devel-

opment to treat bronchial asthma.
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