
C
d
b
a
d
(
p
t

F
M
U
T
C
D
T

Journal of the American College of Cardiology Vol. 50, No. 13, 2007
© 2007 by the American College of Cardiology Foundation ISSN 0735-1097/07/$32.00
P

PRECLINICAL STUDIES

Important Role of Endogenous
Hydrogen Peroxide in Pacing-Induced
Metabolic Coronary Vasodilation in Dogs In Vivo
Toyotaka Yada, MD, PHD,* Hiroaki Shimokawa, MD, PHD,† Osamu Hiramatsu, PHD,*
Yoshiro Shinozaki, BS,‡ Hidezo Mori, MD, PHD,§ Masami Goto, MD, PHD,*
Yasuo Ogasawara, PHD,* Fumihiko Kajiya, MD, PHD*

Kurashiki, Sendai, Isehara, and Suita, Japan

Objectives We examined whether endogenous hydrogen peroxide (H2O2) is involved in pacing-induced metabolic vasodila-
tion in vivo.

Background We have previously demonstrated that endothelium-derived H2O2 is an endothelium-derived hyperpolarizing fac-
tor in canine coronary microcirculation in vivo. However, the role of endogenous H2O2 in metabolic coronary va-
sodilation in vivo remains to be examined.

Methods Canine subepicardial small coronary arteries (�100 �m) and arterioles (�100 �m) were continuously observed
by a microscope under cyclooxygenase blockade (ibuprofen, 12.5 mg/kg intravenous [IV]) (n � 60). Experiments
were performed during paired right ventricular pacing under the following 7 conditions: control, nitric oxide (NO)
synthase inhibitor (NG-monomethyl-L-arginine [L-NMMA], 2 �mol/min for 20 min intracoronary [IC]), catalase (a
decomposer of H2O2, 40,000 U/kg IV and 240,000 U/kg/min for 10 min IC), 8-sulfophenyltheophylline (SPT) (an
adenosine receptor blocker, 25 �g/kg/min for 5 min IC), L-NMMA�catalase, L-NMMA�tetraethylammonium
(TEA) (KCa-channel blocker, 10 �g/kg/min for 10 min IC), and L-NMMA�catalase�8-SPT.

Results Cardiac tachypacing (60 to 120 beats/min) caused coronary vasodilation in both-sized arteries under control
conditions in response to the increase in myocardial oxygen consumption. The metabolic coronary vasodilation
was decreased after L-NMMA in subepicardial small arteries with an increased fluorescent H2O2 production com-
pared with catalase group, whereas catalase decreased the vasodilation of arterioles with an increased fluores-
cent NO production compared with the L-NMMA group, and 8-SPT also decreased the vasodilation of arterioles.
Furthermore, the metabolic coronary vasodilation was markedly attenuated after L-NMMA�catalase,
L-NMMA�TEA, and L-NMMA�catalase�8-SPT in both-sized arteries.

Conclusions These results indicate that endogenous H2O2 plays an important role in pacing-induced metabolic coronary vaso-
dilation in vivo. (J Am Coll Cardiol 2007;50:1272–8) © 2007 by the American College of Cardiology
Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.05.039
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ardiac tachycardia by pacing or exercise increases myocar-
ial oxygen consumption (MVO2) and increases coronary
lood flow by several mechanisms (1–3). Shear stress plays
crucial role in modulating vascular tone by endothelium-
erived releasing factors (EDRFs), including nitric oxide
NO), prostacyclin (PGI2), and endothelium-derived hy-
erpolarizing factor (EDHF) (4,5). Flow-induced vasodila-
ion is mediated by either NO (6,7), PGI2 (8), both of them
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9), or EDHF (10). Matoba et al. have previously identified
hat endothelium-derived hydrogen peroxide (H2O2) is a
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rimary EDHF in mesenteric arteries of mice and humans
11,12). Morikawa et al. (13,14) subsequently confirmed
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hat endothelial Cu,Zn-superoxide dismutase (SOD) plays
n important role as an EDHF synthase in mice and
umans. Miura et al. (15) demonstrated that endothelium-
erived H2O2 is involved as an EDHF in the flow-induced
asodilation of isolated human coronary arterioles in vitro.

e have recently confirmed that endogenous H2O2 plays
n important compensatory role during coronary autoregu-
ation (16) and reperfusion injury in vivo (17) through the
nteractions with NO and adenosine.

It is known that vascular �-adrenergic receptor is mod-
lated by the endothelium in dogs (18), whereas cardiac
-adrenergic receptor is modulated by KCa channels in pigs

19) and H2O2 in mice (20). However, the role of endog-
nous H2O2 in metabolic coronary vasodilation in vivo
emains largely unknown. In the present study, we thus
xamined whether H2O2 is involved in pacing-induced
etabolic coronary vasodilation in canine coronary micro-

irculation in vivo.

ethods

his study conformed to the Guideline on Animal Exper-
ments of Kawasaki Medical School and the Guide for the
are and Use of Laboratory Animals published by the U.S.
ational Institutes of Health.
nimal preparation. Anesthetized mongrel dogs of either
ender (15 to 25 kg in body weight, n � 60) were ventilated
ith a ventilator (Model VS600, IDC, Pittsburgh, Penn-

ylvania). We continuously monitored aortic pressure and
eft ventricular pressure (LVP) with a catheter (SPC-784A,

illar, Houston, Texas) and blood flow of the left anterior
escending coronary artery (LAD) with a transonic flow
robe (T206, Transonic Systems, Ithaca, New York).

easurements of coronary diameter by intravital micro-
cope. We continuously monitored coronary vascular re-
ponses by an intravital microscope (VMS 1210, Nihon
ohden, Tokyo, Japan) with a needle-probe in vivo, as
reviously described (21). We gently placed the needle-
robe on subepicardial microvessels. When a clear vascular
mage was obtained, end-diastolic vascular images were
aken with 30 pictures/s (21).

easurements of regional myocardial blood flow. Re-
ional myocardial blood flow was measured by the non-
adioactive microsphere (Sekisui Plastic Co. Ltd., Tokyo,
apan) technique, as previously described (22). Briefly, the
icrospheres suspension was injected into the left atrium 3
in after tachypacing. Myocardial flow in the LAD area
as calculated according to the formula “time flow � tissue

ounts � (reference flow/reference counts)” and was ex-
ressed in ml/g/min (22).
etection of H2O2 and NO production in coronary
icrovessels. 2=,7=-dichlorodihydrofluorescein diace-

ate (DCF) (Molecular Probes, Eugene, Oregon) and
iaminorhodamine-4M AM (DAR) (Daiichi Pure Chem-

cals, Tokyo, Japan) were used to detect H2O2 and NO

roduction in coronary microvessels, respectively, as previ-
usly described (17). Briefly,
resh and unfixed heart tissues
ere cut into several blocks and

mmediately frozen in optimal
utting temperature compound
Tissue-Tek, Sakura Fine
hemical, Tokyo, Japan). Fluo-

escent images of the microves-
els were obtained 3 min after
pplication of acetylcholine
ACh) by using a fluorescence
icroscope (OLYMPUS BX51,
okyo, Japan) (17).
xperimental protocols. After

he surgical procedure and in-
trumentation, at least 30 min
ere allowed for stabilization
hile monitoring hemodynamic
ariables. Coronary vasodilator
esponses were examined before
nd after cardiac tachypacing (60
o 120 beats/min) under the fol-
owing 7 conditions with cyclo-
xygenase blockade (ibuprofen,
2.5 mg/kg, IV) to evaluate the
ole of H2O2 and NO without PGI2 in a different set of
nimals (Fig. 1): 1) control conditions without any inhibitor;
) L-NMMA alone (2 �mol/min intracoronary [IC] for 20
in); 3) catalase alone (40,000 U/kg intravenous [IV] and

40,000 U/kg/min IC for 10 min, an enzyme that dismutates

Abbreviations
and Acronyms

CBF � coronary blood flow

DAR � diaminorhodamine-
4M AM

DCF � 2=,7=-
dichlorodihydrofluorescein
diacetate

EDHF � endothelium-
derived hyperpolarizing
factor

H2O2 � hydrogen peroxide

L-NMMA �

NG-monomethyl-L-arginine

LAD � left anterior
descending coronary artery

MVO2 � myocardial oxygen
consumption

NO � nitric oxide

PGI2 � prostacyclin

SPT �

sulfophenyltheophylline

TEA � tetraethylammonium

Figure 1 Experimental Protocols

CCD � charge-coupled device; L-NMMA � NG-monomethyl-L-arginine;
SPT � sulfophenyltheophylline; TEA � tetraethylammonium.
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2O2 into water and oxygen); 4) adenosine receptor blockade
lone (8-sulfophenyltheophylline [8-SPT], 25 �g/kg/min IC
or 5 min); 5) catalase plus L-NMMA; 6) catalase plus
etraethylammonium (TEA) (10 �g/kg/min IC for 10 min, an
nhibitor of large conductance KCa channels to inhibit EDHF-

ediated responses) (23); and 7) catalase plus L-NMMA with
-SPT (16). These inhibitors were given at 30 min before
ardiac tachypacing (Fig. 1). The basal coronary diameter was
efined as that before pacing. We continuously observed the
iameter change in subepicardial small coronary arteries (�100
m) and arterioles (�100 �m) with an intravital microscope
efore and at 2 min after pacing. Microspheres were admin-
stered at 3 min after the pacing was started (Fig. 1). In the
ombined infusion protocol (L-NMMA�catalase�8-SPT),
-NMMA infusion was first started, followed by catalase

nfusion, and then 8-SPT was added at 15 min after the
nitiation of L-NMMA infusion (Fig. 1). Then, fresh and
nfixed heart tissues were cut into several blocks and immedi-
tely frozen in optimal cutting temperature compound after the
acing. The flow and MVO2 were measured as full-thickness
alues.

rugs. All drugs were obtained from Sigma Chemical Co.
nd were diluted in a physiological saline immediately
efore use.
tatistical analysis. Results are expressed as means �
EM. Differences in the vasodilation of subepicardial cor-
nary microvessels before and after pacing (Fig. 2) were
xamined by a multiple regression analysis using a model, in
hich the change in coronary diameter was set as a
ependent variable (y) and vascular size as an explanatory

Figure 2 Coronary Vascular Responses to Cardiac Pacing

The coronary vasodilating responses of both-sized coronary arteries were significan
inhibited in all experimental conditions except L-NMMA alone. **p � 0.01. Abbrev
ariable (x), while the statuses of control and other inhibi- (
ors were set as dummy variables (D1, D2) in the following
quation: y � a0 � a1x � a2D1 � a3D2, where a0 through
3 are partial regression coefficients (16). Significance tests
ere made as simultaneous tests for slope and intercept
ifferences. Pairwise comparisons against control were made
ithout adjustment for multiple comparisons. The vessel
as the unit of analysis without correction for correlated
bservations. The power of this analysis is greater than that
f using the animal as the unit of analysis, giving smaller
values. Vascular fluorescent responses (Figs. 3 and 4) were

nalyzed by one-way analysis of variance followed by Scheffe’s
ost hoc test for multiple comparisons. The criterion for
tatistical significance was at p � 0.05.

esults

emodynamic status and blood gases during pacing.
hroughout the experiments, mean aortic pressure was

onstant and comparable (Table 1), and pO2, pCO2, and
H were maintained within the physiological ranges (pO2
70 mm Hg, pCO2 25 to 40 mm Hg, and pH 7.35 to

.45). Baseline coronary diameter was comparable in the
bsence and presence of inhibitors under the 7 different
xperimental conditions (Table 1). Cardiac tachypacing in-
reased coronary blood flow and MVO2 from the baseline
alues (Table 2, both p � 0.01). Combined infusion of
-NMMA�catalase�8-SPT significantly decreased coronary
lood flow (CBF) and MVO2 as compared with control,
-NMMA alone (both p � 0.01), catalase alone (both p �
.01), 8-SPT alone (both p � 0.01), L-NMMA�catalase

as in Figure 1.

tly
iations
both p � 0.05), L-NMMA�TEA (both p � 0.05). Com-
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ined infusion of L-NMMA�catalase or L-NMMA�
EA significantly decreased CBF (both p � 0.05) and
VO2 (both p � 0.05) as compared with control after the

acing.
oronary vasodilation before and after cardiac tachy-

acing. Cardiac tachypacing caused coronary vasodilation
n both-sized arteries under control conditions (small cor-
nary arteries, 5 � 1%; arterioles, 14 � 2%) (Fig. 2A) with
ecreased coronary venous pO2 (Table 2). The metabolic
oronary vasodilation was significantly decreased after
-NMMA in small coronary arteries (3 � 1%) but not in
rterioles (14 � 2%), whereas catalase and 8-SPT decreased

Figure 3 Detection of H2O2 Production With DCF Fluorescent M

Hydrogen peroxide (H2O2) production was unaltered after NG-monomethyl-L-arginine
catalase. Number of arterioles/animals used was 5/5 for each group. *p � 0.05,

Figure 4 Detection of NO Production With DAR Fluorescent Me

Nitric oxide (NO) production was unaltered after catalase but was markedly suppre
(L-NMMA). Number of arterioles/animals used was 5/5 for each group. *p � 0.05
he vasodilation of arterioles (both 4 � 1%) but not in small
oronary arteries (both 7 � 1%) (Figs. 2B and 2C).
urthermore, the metabolic coronary vasodilation was
arkedly attenuated after L-NMMA�catalase and
-NMMA�TEA in small coronary arteries (both 2 � 1%),
nd L-NMMA�catalase�8-SPT almost abolished the va-
odilating responses in both-sized arteries (small coronary
rteries, �1 � 1%; arterioles, 1 � 1%) (Figs. 2D to 2F).

hen expressed in a linear regression analysis, the coronary
asodilating responses of both-sized coronary arteries were
ignificantly inhibited in all experimental conditions except
-NMMA alone (Fig. 2A).

d

MA) but was markedly suppressed by
0.01. DCF � 2=,7=-dichlorodihydrofluorescein diacetate.

y NG-monomethyl-L-arginine
� 0.01. DAR � diaminorhodamine-4M AM.
etho

(L-NM
**p �
thod

ssed b
, **p
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etection of H2O2 and NO production. Fluorescent
icroscopy with DCF showed that cardiac tachypacing in-

reased coronary H2O2 production compared with baseline
onditions in arterioles (Fig. 3). The pacing-induced H2O2
roduction as assessed by DCF fluorescent intensity was
naltered after L-NMMA but was markedly suppressed by
atalase (Fig. 3). By contrast, in small coronary arteries,
ascular NO production as assessed by DAR fluorescent
ntensity was significantly increased in response to the pacing
ompared with baseline conditions (Fig. 4). The pacing-
nduced NO production was unaltered after catalase but was

arkedly suppressed by L-NMMA (Fig. 4). Pacing caused no
ignificant increase in H2O2 production in small coronary
rteries or NO production in arterioles (data not shown).

iscussion

he major finding of the present study is that endogenous
2O2 plays an important role in pacing-induced metabolic

he Small Artery and Arteriolar Diameter Measurements at Rest an

Table 1 The Small Artery and Arteriolar Diameter Measuremen

Control L-NMMA (L) Catalas

Small artery

n (vessels/dogs) 12/10 12/10 9/

Rest (�m) 127 � 7 125 � 6 127 �

Cardiac pacing (�m) 134 � 7* 129 � 7† 132 �

Arteriole

n (vessels/dogs) 12/10 12/10 9/

Rest (�m) 75 � 5 73 � 5 71 �

Cardiac pacing (�m) 85 � 5* 82 � 5* 77 �

esults are expressed as mean � SEM. *p � 0.01, †p � 0.05 versus rest.
L-NMMA � NG-monomethyl-L-arginine; SPT � sulfophenyltheophylline; TEA � tetraethylammon

emodynamic Status at Rest and During Cardiac Pacing

Table 2 Hemodynamic Status at Rest and During Cardiac Paci

Control L-NMMA (L) Catalase (Cat

n (dogs) 10 10 5

SBP

Rest (mm Hg) 135 � 14 135 � 14 114 � 9

Cardiac pacing 137 � 14 136 � 14 125 � 12

MBP

Rest (mm Hg) 117 � 10 117 � 10 98 � 8

Cardiac pacing 124 � 9 120 � 13 107 � 10

DP

Rest 8,100 � 845 8,100 � 845 6,855 � 527

Cardiac pacing 16,440 � 1,718* 16,320 � 1,680* 15,000 � 1,42

CVPO2

Rest (mm Hg) 20 � 1 17 � 1 16 � 1

Cardiac pacing 14 � 1* 11 � 1* 11 � 1*

MVO2

Rest (�lO2/min/g) 70 � 2 66 � 2 67 � 2

Cardiac pacing 171 � 4‡ 168 � 2‡ 158 � 12‡

CBF

Rest (ml/min/g) 0.66 � 0.06 0.63 � 0.06 0.66 � 0.03

Cardiac pacing 1.48 � 0.32‡ 1.46 � 0.06‡ 1.36 � 0.02

esults are expressed as mean � SEM. *p � 0.05 versus at rest. †p � 0.05 versus corresponding

CBF � coronary blood flow; CVPO2 � coronary venous pO2; DP � double product; MBP � mean b

bbreviations as in Table 2.
oronary dilation as a compensatory mechanism for NO in
ivo. We demonstrated the important role of endogenous

2O2 in the mechanisms for metabolic coronary dilation in vivo.
alidations of experimental model and methodology. We
hose, on the basis of our previous reports (16,17), the
dequate dose of L-NMMA, catalase, TEA, and 8-SPT in
rder to inhibit NO synthesis, H2O2, KCa channels, and the
denosine receptor, respectively. The TEA at low doses is
airly specific for KCa channel, but at higher doses it might
lock a number of other K channels. Because several KCa

hannels might be involved in H2O2-mediated responses
5), we selected nonselective KCa inhibitor, TEA, to inhibit
ll KCa channels (23). We have previously confirmed the
alidity of our present methods (21).
ole of NO and H2O2 after cardiac pacing. Matoba et al.
ave demonstrated that endothelium-derived H2O2 is an
DHF in mouse (11) and human (12) mesenteric arteries

nd pig coronary microvessels (24). Morikawa et al. also

ring Cardiac Pacing

Rest and During Cardiac Pacing

) 8-SPT L�Cat L�TEA L�Cat�8-SPT

7/5 12/10 12/10 12/10

126 � 6 125 � 7 123 � 6 124 � 7

131 � 6* 127 � 7 124 � 6 123 � 6

9/5 12/10 12/10 12/10

71 � 5 72 � 5 74 � 5 72 � 6

77 � 6† 77 � 5† 77 � 5 73 � 5

8-SPT L�Cat L�TEA L�Cat�8-SPT

5 10 10 10

123 � 5 98 � 9 99 � 9 96 � 8

130 � 7 100 � 9 100 � 8 103 � 9

99 � 5 89 � 10 90 � 10 87 � 9

110 � 7 91 � 10 92 � 10 92 � 10

7,350 � 312 5,880 � 537 5,910 � 527 5,730 � 478

15,630 � 778* 11,940 � 11,029* 12,000 � 1,011* 12,300 � 1,078*

17 � 1 15 � 1† 15 � 1† 14 � 1†

12 � 1* 10 � 1*† 10 � 1*† 9 � 1*†

73 � 5 62 � 5 61 � 5 60 � 5

168 � 13‡ 133 � 4†‡ 130 � 18†‡ 95 � 9*§

0.66 � 0.01 0.59 � 0.06 0.62 � 0.05 0.51 � 0.04

1.40 � 0.01‡ 1.22 � 0.01†‡ 1.24 � 0.12†‡ 0.96 � 0.07‡§

l measurements. ‡p � 0.01 versus rest. §p � 0.01 versus corresponding control measurements.
d Du

ts at

e (Cat

5

5

5*

5

5

6†
ng

)

3*

‡

contro

lood pressure; MVO2 � myocardial oxygen consumption; SBP � systolic blood pressure; other
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ave demonstrated that endothelial Cu,Zn-SOD plays an
mportant role as an H2O2/EDHF synthase in mouse (13)
nd human (14) mesenteric arteries. Subsequently, we
16,17) and others (15) confirmed that endogenous H2O2
xerts important vasodilator effects in canine coronary
icrocirculation in vivo and in isolated human coronary
icrovessels, respectively. In the present study, the

acing-induced metabolic coronary vasodilation was sig-
ificantly decreased after L-NMMA in small coronary
rteries but not in arterioles, whereas catalase decreased
he vasodilation of arterioles but not that of small
rteries, and the coronary vasodilation was markedly
ttenuated after L-NMMA�catalase (Fig. 2). These
ndings indicate that NO and H2O2 compensate for each
ther to maintain coronary vasodilation in response to
ncreased myocardial oxygen demand. Coronary venous
O2 tended to be lower after L-NMMA�catalase, sug-
esting that NO and H2O2 coordinately cause coronary
asodilation during cardiac tachypacing.

Saitoh et al. (25) suggested that the production of H2O2,
hich stems from the dismutation of ·O2

� that is formed
uring mitochondrial electron transport, is seminal in the
oupling between oxygen metabolism and blood flow in the
eart. Thus, the contribution of H2O2 production in re-
ponse to the change in metabolism cannot be excluded.

Endothelial Cu,Zn-SOD plays an important role in the
ynthesis of H2O2 as an EDHF synthase in mouse (13) and
uman (14) mesenteric arteries, and exercise training en-
ances expression of Cu,Zn-SOD in normal pigs (26). It
emains to be examined whether exercise-induced up-
egulation of Cu,Zn-SOD enhances metabolic coronary
asodilation mediated by endogenous H2O2.
ompensatory vasodilator mechanism among H2O2,
O, and adenosine. The EDHF acts as a partial compen-

atory mechanism to maintain endothelium-dependent va-
odilation in the forearm microcirculation of patients with
ssential hypertension, where NO activity is impaired owing
o oxidative stress (27). We have recently demonstrated in
he fluorescent microscopy study that coronary vascular
roduction of H2O2 and NO is enhanced after myocardial
schemia/reperfusion in small coronary arteries and arte-
ioles, respectively (17). In the present study, the DCF
uorescent intensity was comparable between control and
-NMMA, and that of DAR was also comparable between
ontrol and catalase (Figs. 3 and 4). Although the exact
ource of vascular production of H2O2 and NO remains to
e elucidated, it is highly possible that endothelium-derived
O and H2O2 compensate for each other to maintain

oronary vasodilation in response to increased MVO2.
In the dog, blockade of any vasodilator mechanisms fails

o blunt the increase in coronary blood flow in response to
xercise, indicating that adenosine, K�

ATP-channel open-
ng, prostanoids, or NO might not be mandatory for
xercise-induced coronary vasodilation, or that these redun-
ant vasodilator mechanisms compensate for each other

hen one mechanism is blocked (28). In the present study,
denosine blockade with 8-SPT alone inhibited the pacing-
nduced vasodilation of arteriole but not that of small artery,
hereas combined administration of L-NMMA�catalase�8-
PT almost abolished the pacing-induced coronary vasodila-
ion of both-sized arteries with an increase in coronary blood
ow (Fig. 2). The discrepancy between the diameter and flow
esponses is likely due to the metabolic autoregulation of
maller arterioles. These results indicate that adenosine also
lays an important role to maintain metabolic coronary vaso-
ilation in cooperation with NO and H2O2, a finding consis-
ent with our previous study on coronary autoregulatory mech-
nisms (15).
tudy limitations. Several limitations should be men-

ioned for the present study. First, although we were able to
emonstrate the production of H2O2 with fluorescent
icroscopy with DCF, we were unable to quantify the

ndothelial H2O2 production, because DCF reacts with
2O2, peroxynitrite, and hypochlorous acid (13). Second,
e were unable to find smaller arterioles, owing to the

imited spatial resolution of our charge-coupled device
ntravital microscope. With an intravital camera with higher
esolution, we would be able to observe coronary vasodila-
ion of smaller arterioles. Third, we were unable to deter-
ine whether H2O2 is produced by shear stress or cardiac
etabolism. This point remains to be elucidated in a future

tudy.

onclusions

e were able to demonstrate that endogenous H2O2 plays
n important role in pacing-induced metabolic coronary
asodilation in canine coronary microcirculation in vivo and
hat there are substantial compensatory interactions among
O, H2O2, and adenosine to maintain metabolic coronary

asodilation, which is one of the most important mecha-
isms for cardiovascular homeostasis in vivo.
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