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Abstract Diffuse and focal epicardial coronary disease and coronary microvascular abnormalities may exist side-by-side.
Identifying the contributions of each of these three players in the coronary circulation is a difficult task. Yet identify-
ing coronary microvascular dysfunction (CMD) as an additional player in patients with coronary artery disease
(CAD) may provide explanations of why symptoms may persist frequently following and why global coronary flow
reserve may be more prognostically important than fractional flow reserve measured in a single vessel before per-
cutaneous coronary intervention. This review focuses on the challenges of identifying the presence of CMD in the
context of diffuse non-obstructive CAD and obstructive CAD. Furthermore, it is going to discuss the pathophysiol-
ogy in this complex situation, examine the clinical context in which the interaction of the three components of dis-
ease takes place and finally look at non-invasive diagnostic methods relevant for addressing this question.
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This article is part of the Spotlight Issue on Coronary Microvascular Dysfunction.

1. Introduction

Recently, it has become increasingly obvious that diffuse and focal epi-
cardial coronary disease and coronary microvascular abnormalities
may exist side-by-side.1,2 Identifying the contributions of each of these
three players in the coronary circulation is a difficult task. However,
looking at the problem of coronary microvascular dysfunction (CMD)
as an adjunct to diffuse and focal plaque and stenosis formation in the
coronary arteries makes sense in the context of the vexing challenges
of proving the symptomatic and prognostic value of percutaneous
coronary interventions (PCIs).3,4 Identifying CMD as an additional
player in patients with coronary artery disease (CAD) may provide
explanations of why symptoms persist so frequently following PCI5

and why global coronary flow reserve (CFR) may be more

prognostically important6 than fractional flow reserve (FFR) measured
in a single vessel before PCI. The term CMD focuses on the func-
tional aspect of microvascular disease. However, we should not forget
that, especially in patients with epicardial coronary plaque formation
or stenoses morphological changes, such as occlusive microvascular
lesions7 (Figure 1) or microvascular rarefaction,8 may also be found in
the resistance vessels of the coronary tree.

In this review, we take a closer look at the challenges of identifying the
presence of CMD in the context of diffuse non-obstructive CAD
(NOCAD) and obstructive CAD (OCAD). Furthermore, we are going
to discuss the pathophysiology in this complex situation, examine the
clinical context in which the interaction of the three components takes
place and finally look at the non-invasive diagnostic methods relevant for
addressing this question.
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..2. How to identify microvascular
abnormalities in the presence of
diffuse non-stenotic coronary
epicardial plaque formation or
coronary epicardial stenosis?

There are several clinical scenarios in which the identification of CMD
existing in addition to NOCAD or OCAD would be helpful. Let us have
a look at a common situation in the catheterization laboratory: a patient
is lying on the catheterization table because his general practitioner felt
that clarity regarding the patient’s symptoms is needed: does this man
have an epicardial stenosis or not? There has been no testing for myocar-
dial ischaemia. The coronary arteries of the patient show diffuse disease
and some of the irregularities may represent stenoses of 50% severity.
The interventional cardiologist performs a measurement of the FFR
which is 0.81. Fortunately, the interventional cardiologist used a dual-
purpose wire which also carries a thermistor at its tip which allows tem-
perature measurements over time (alternatively the colleague might
have also used a dual-purpose catheter equipped with a pressure sensor
for FFR measurements and a Doppler probe for measurements of the
velocity of coronary blood flow). Using this wire,9 CFR is measured and
returns a value of 1.9 which is abnormal in this laboratory. What is the in-
terpretation of this finding of a normal FFR value and low CFR value? FFR
has been designed as a surrogate measure of impairment of coronary
flow to the myocardium. The pressure drop across a coronary stenosis
is proportional to the magnitude of coronary flow through the stenosis
which is the essence of Ohm’s law. Thus, a low coronary flow through a
stenosis is usually associated with a normal FFR value even if the stenosis
is tight, whereas a high coronary flow through the same stenosis will re-
sult in a low FFR. An increase of flow through a coronary stenosis can be
achieved by administration of vasodilator drugs such as adenosine. But
what determines the amount of flow through the stenosis once

adenosine has been applied? It is the degree of vasodilatation in the pe-
riphery of the coronary artery, the microvasculature! Therefore, CMD
resulting in very little vasodilatation in response to adenosine will as a
consequence result in a rather normal FFR value whereas—in the pres-
ence of the same stenosis—a normally functioning microvasculature by
inducing a much larger increase in coronary flow will result in a low FFR
value.

The thermodilution catheter used in our patient does not measure
coronary flow but measures how quickly a bolus of 3 mL of room tem-
perature saline passes the thermistor at its tip. This value is called the
transit time. When coronary flow is high, transit time will be low and
vice versa. Using this technique, CFR is determined by dividing the transit
time at rest by the transit time during maximal vasodilatation of the mi-
crovasculature after adenosine stimulation. Coming back to our patient:
a low CFR of 1.9 may mean one of two things: (i) resting flow is elevated
resulting in a short mean transit time at rest10; thus, even if flow after
adenosine would rise to levels regarded as almost normal and mean
transit time would shorten further as compared to the value at rest, CFR
would be low. Under these circumstances, the normal FFR value is reli-
able (due to the near-normal flow following adenosine) and the epicar-
dial stenosis is not significant; and (ii) flow at rest is normal, whereas
maximal flow following adenosine is low; in this case, FFR will underesti-
mate the significance of the stenosis.11 One way of deciding whether
resting flow is abnormally high is to compare mean transit time of the
afflicted vessel with a normal vessel although this increases the complex-
ity of the procedure. Unfortunately, indeed, there are no absolute nor-
mal values for mean transit times due to the complexity of the
measurement and the variability of parameters influencing mean transit
times.

A partial solution is measuring the index of microvascular resistance
(IMR) which in contrast to CFR is a measure independent of stenosis se-
verity.12 IMR is calculated as the product of distal coronary pressure
times hyperaemic mean transit time.9 Although IMR measurements

Figure 1 Intramural arteriole of a 59-year-old male patient with ischaemic cardiomyopathy. Left: haematoxylin–eosin staining. Fibrosis is blue and smooth
muscle cells are violet. White spaces represent fat accumulation. There is diffuse narrowing of the vessel by a process which resembles vaguely plaque for-
mation in the larger epicardial vessels. Right: same vessel with actin staining. Actin is a marker of smooth muscle cells and shows the irregular proliferation of
these cell in the arteriolar wall. Courtesy of Professor Karin Klingel, MD, Director of Cardiac Pathology, Institute of General and Molecular Pathology and
Pathologic Anatomy, University of Tübingen, Germany.
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suffer from similar limitations as those of mean transit times a value
>25 mmHg � seconds has been agreed upon to indicate abnormally
high microvascular resistance.13,14 A somewhat worse clinical course has
recently been demonstrated, however, for values above only 18 mmHg
� seconds.15

Possible combinations of FFR and CFR measurements fall into four
main categories11,16 (Figure 2) allowing one to better distinguish between
the epicardial and microvascular parts contributing to ischaemia and
symptoms. Measurements of hyperaemic microvascular resistance
(HMR) using intracoronary Doppler wires or IMR may further help in
interpreting the extent of microvascular involvement17 (Figure 3).
Obviously, such measurements are time-consuming and need meticu-
lous attention to detail. However, clarifying the haemodynamic situation
in the coronary artery by measuring FFR plus CFR coupled with HMR or
IMR may avoid useless interventions and direct attention to necessary
medical treatment.18

3. Pathophysiology of CMD

Accumulating evidence has demonstrated that CMD plays an important
role in the pathophysiology of myocardial ischaemia in patients with sta-
ble ischaemic heart disease (IHD).2,19 Although structural and functional
abnormalities of epicardial coronary arteries in IHD patients have been
the main focus of interest, those of coronary microvasculature have
attracted growing attention in view of their unexpectedly high preva-
lence and their potential prognostic impact on clinical outcomes in
various clinical settings.20–22 The aetiologies of CMD may be heteroge-
neous; several structural (e.g. vascular remodelling, vascular rarefaction,
extramural compression, etc.) and functional [e.g. endothelial
dysfunction, vascular smooth muscle cell (VSMC) dysfunction, and mi-
crovascular spasm, etc.] alterations have been proposed for the patho-
physiological mechanisms of CMD.19,23 As structural alterations may
also play an important part in the ultimate consequences of microvascu-
lar abnormalities it may also be justified to summarize the entire complex
of abnormalities as coronary microvascular disease. Herein, we will
briefly summarize the current knowledge on coronary vasomotor ab-
normalities relevant to CMD in patients with stable IHD with a special
reference to endothelial modulation of vascular tone and coronary mi-
crovascular spasm (CMS). Further discussions on the coronary microcir-
culation physiology are available elsewhere.2,23–26

3.1 Endothelial modulation of vascular
tone
The endothelium plays crucial roles in modulating vascular tone by syn-
thesizing and releasing endothelium-derived relaxing factors including va-
sodilator prostaglandins (e.g. prostacyclin), nitric oxide (NO), and
endothelium-derived hyperpolarizing factor(s) (EDHF) in a distinct ves-
sel size-dependent manner (Figure 4).24,27 Endothelium-derived NO
mainly mediates vasodilatation of relatively large, conduit vessels (e.g.
epicardial coronary arteries), while EDHF-mediated responses are the
predominant mechanisms of endothelium-dependent vasodilatation of
resistance arteries (e.g. coronary microvessels). This vessel size-depen-
dent contribution of NO and EDHF to endothelium-dependent vasodi-
latation is well-preserved from rodents to humans, making a
physiological balance between them.27 EDHF cause hyperpolarization
and subsequent relaxation of underlying VSMCs with resultant vasodila-
tation of small resistance vessels and thus finely regulate blood pressure
and organ perfusion in a moment to moment manner in response to

diverse physiological demands.27 Although the nature of EDHF probably
varies depending on the vascular bed, vessel size, and species of inter-
est,27 endothelium-derived hydrogen peroxide (H2O2) is one of the ma-
jor EDHF in human,28,29 porcine,30 and canine coronary arteries.31–33

The estimated normal concentrations of H2O2 as an EDHF are in micro
molar order (<50mmol/L),30,31 which are much lower than those
observed in various pathological conditions.34 In the canine coronary mi-
crocirculation in vivo, endothelium-derived H2O2 exerts cardioprotec-
tive effects, including myocardial protection against ischaemia/
reperfusion injury,31 coronary autoregulation,32 and metabolic coronary
vasodilatation.33 Given that H2O2 has potent vasodilator properties in
coronary resistance vessels, impaired endothelial H2O2 production, or
impaired H2O2-mediated vasodilatation may lead to CMD. Coronary
vascular resistance is predominantly determined by pre-arterioles
(>100mm in diameter) and arterioles (<100mm) where EDHF-mediated
responses become more prominent than NO-mediated relaxation.
Thus, for an adequate treatment of CAD, it would be essential to main-
tain a physiological balance between NO and EDHF. This notion is sup-
ported by the fact that significant negative interactions exist between
NO and several EDHF35–37 and that nitrates as NO donors are

Figure 2 Conceptual plot of the fractional flow reserve (FFR)–coro-
nary flow velocity reserve (CFR) relationship. Four main quadrants can
be identified by applying the clinically applicable cut-off values for FFR-
CFR indicated by the dotted lines. Patients in the upper right blue area
are characterized by concordantly normal FFR and CFR, and patients in
the red lower left area are characterized by concordantly abnormal
FFR and CFR. Patients in the upper left orange area and lower right light
green area are characterized by discordant results between FFR and
CFR where the combination of an abnormal FFR and a normal CFR
indicates predominant focal epicardial but non-flow-limiting coronary
artery disease and the combination of a normal fractional flow reserve
and an abnormal CFR indicates predominantly microvascular involve-
ment in coronary artery disease. The small dark green region in the
lower right is characterized by an FFR are near one and low CFR indi-
cating sole involvement of the coronary microvasculature. The FFR
grey zone indicates the equivocal 0.75–0.80 FFR range. Reproduced
with permission from van de Hoef et al.11
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ineffective for the chronic treatment of CMD.38,39 However, clinical
observations also suggest that intracoronary nitrate may quickly relieve
microvascular spasm elicited by acetylcholine (ACh) provocation in
some patients.

Recent studies have highlighted the association of CMD with ad-
vanced coronary plaque characteristics beyond conventional coronary
risk factors.40–42 For example, Siasos et al.41 demonstrated that
endothelium-dependent CMD is associated with low endothelial shear
stress and larger plaque burden in the epicardial coronary artery. Steady

laminar or pulsatile shear stress exerts antiatherogenic effects on the
vascular wall, whereas conversely, altered oscillatory or low shear stress
with disturbed flow promotes atherogenesis through endothelial and
VSMC proliferation, inflammation, lipoprotein uptake, and leucocyte ad-
hesion.43 Indeed, altered shear stress on the coronary artery wall has
been implicated in the local progression of atherosclerotic coronary pla-
que.44 Another possible explanation for the link between CMD and epi-
cardial coronary atherosclerosis comes from a novel mechanism of
CMD in human CAD, which has been proposed by the Gutterman’s

Figure 3 Representative cases of vessels with normal fractional flow reserve (FFR) and abnormal coronary flow reserve (CFR). These two tracings illus-
trate the separate contribution of diffuse atherosclerotic narrowing (DAN) or microcirculatory dysfunction (MCD) to abnormal coronary haemodynamics
in some vessels with normal FFR. (A) Vessel with normal FFR and reduced CFR located in the lower right green quadrant of Figure 1. The index of microvas-
cular resistance (IMR) is 17 mmHg� seconds which is normal. The theoretical explanation is that DAN is the dominant cause of abnormal haemodynamics.
(B) Another vessel with normal FFR and reduced CFR also located in the lower right green quadrant of Figure 1. FFR and CFR values are virtually identical to
the ones in A. However, IMR value is very high (70 mmHg� seconds) suggestive of CMD. Reproduced with permission from Echavarria-Pinto et al.17
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..laboratory.45,46 In brief, as stated above, the healthy human coronary cir-
culation is regulated by NO and low physiological levels of H2O2 as an
EDHF. However, various atherosclerotic risk factors (e.g. ageing, hyper-
tension, obesity, and smoking) can cause a switch from NO to H2O2 as
the mediator of endothelium-dependent vasodilatation in human
coronary arteries. The resultant impaired production of NO and
pathologically elevated levels of H2O2, both favour vasoconstrictor,
pro-inflammatory, pro-proliferative, and pro-thrombotic states, thus
contributing to the development of coronary atherosclerosis.45,46 Taken
together, these observations may provide insight into the underlying
mechanisms by which CMD contributes to the development of epicar-
dial coronary atherosclerosis, even though these focal lesions are lo-
cated upstream to the microcirculation.

3.2 Coronary microvascular spasm
CMD comprises both impaired coronary microvascular dilatation and
enhanced coronary microvascular constriction.47 Coronary artery

spasm at both epicardial and microvascular levels has been implicated in
a wide variety of IHD endotypes.24 Mechanistically, rho-kinase-induced
myosin light chain phosphorylation with resultant VSMC hypercontrac-
tion is a major mechanism in the pathogenesis of coronary artery spasm,
whereas the role of endothelial dysfunction may be minimal (Figure 4).24

Intracoronary administration of the rho-kinase inhibitor, fasudil, is indeed
effective not only for relieving coronary spasm resistant to nitrates or
calcium-channel blockers but also for suppressing CMS in most patients
with the disease.48 In addition, enhanced epicardial and CMSs are associ-
ated with increased production of vasoconstrictive mediators, such as
endothelin49 and serotonin50 in patients with CMD.

Intracoronary ACh provocation testing is useful in inducing coronary
artery spasm with high sensitivity and specificity in susceptible patients.
A high prevalence (around 33%) of ACh-induced CMS has been
reported in patients with stable chest pain and NOCAD.51,52 Recently,
the Coronary Vasomotion Disorders International Study Group
(COVADIS) proposed a consensus set of standardized diagnostic

Figure 4 Endothelial modulation of vascular tone and rho-kinase-mediated vascular smooth muscle hypercontraction. cGMP, cyclic guanosine mono-
phosphate; EDHF, endothelium-dependent hyperpolarization factor(s); NO, nitric oxide; PGs, prostaglandins; VSMC, vascular smooth muscle cells.
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criteria for microvascular angina, i.e. angina attributable to CMD, includ-
ing ACh-induced CMS.53 The diagnostic value of these criteria has been
demonstrated by a recent randomized clinical trial.18

3.3 Clinical implications: CMD as a
manifestation of systemic small artery
disease
CMD may be a cardiac manifestation of systemic small artery disease54

which supports the concept of ‘primary coronary microcirculatory dys-
function’55 and provides important implications for practice and re-
search. Identifying CMD in patients with stable IHD may provide
physicians with useful information for decision-making and risk stratifica-
tion beyond conventional coronary risk factors. A comprehensive and
invasive assessment of coronary physiology is feasible and may have both
prognostic and therapeutic implications.18 Further research is warranted
to address how to modulate CMD to improve clinical outcomes of
patients with this condition.

4. CMD in patients with stable IHD

In the absence of coronary obstruction, CFR, the ratio of coronary flow
achieved at maximal coronary vasodilation to flow under baseline condi-
tions, reflects coronary microvascular function such that a reduced CFR
indicates CMD.56 CFR may be measured invasively as an adjunct to coro-
nary angiography, or non-invasively, using positron emission tomography
(PET) cardiac magnetic resonance (CMR) imaging or transthoracic
Doppler echocardiography of the left anterior descending coronary ar-
tery.57 Thus, the assessment of CMD requires technology and skills that
are not widely available.

CMD may exist in two varieties: first, impaired microvascular conduc-
tance (‘classical’ CMD) and second, arteriolar dysregulation (microvascu-
lar spasm). Procedural details of how these two entities can be
diagnosed is nicely described in the new European Society of Cardiology
(ESC) guidelines for the diagnosis and management of chronic coronary
syndromes.58 It is important to think of the possibility that the patient
may have microvascular angina in order to avoid a useless invasive exclu-
sion of epicardial stenoses without concomitant comprehensive invasive
coronary function testing.18,58 If microvascular angina is clinically consid-
ered it makes sense to send the patient to a catheterization laboratory
where the recommendation given by the ESC new guidelines can and
will be put into practice. Unfortunately, CMD in the presence of OCAD
or following revascularization is almost never assessed outside of re-
search protocols. For these reasons, data regarding the outcomes and
prognosis of patients with CMD come from clinical trials and registries
based in referral centres and therefore may not be generalizable to the
population at large. Nevertheless, the currently available data suggest
that a fundamental paradigm shift in the understanding of stable IHD is
indicated.59

IHD has long been the leading cause of death in the developed
world60 but the nature of IHD is changing. Although angina remains a
common presenting symptom, unlike in previous eras, angiography now
frequently fails to detect OCAD.20,61,62 Furthermore, contrary to the re-
assurance that these patients have been historically offered that their
condition is not serious, the prognosis of some subgroups of these indi-
viduals may not be benign.20,61 The increasing numbers of patients pre-
senting with ischaemic symptoms but without OCAD has led to the
gradual recognition that abnormalities of the entire coronary circulation,
including the microcirculation, should be considered in the assessment

of the symptoms and treatment of patients with angina. In 2007, Camici
and Crea56 proposed four categories of CMD: Type 1—CMD in the ab-
sence of myocardial disease and OCAD; Type 2—CMD in myocardial
disease; Type 3—CMD in OCAD; and Type 4—iatrogenic CMD.
However, there is growing evidence that many of these conditions over-
lap in their clinical manifestations and pathogenesis. For example, Types
1 and 3 CMD exist on a spectrum defined by an arbitrary and imprecise
definition of the extent of ‘obstructive’ atherosclerosis. Furthermore,
Type 1 patients may develop myocardial disease and Type 4 CMD that is
caused by distal embolization during PCI may be influenced by the pres-
ence of pre-existing CMD. There also appears to be a relationship be-
tween the extent and severity of epicardial CAD and CMD and the
clinical risk of major adverse cardiac events, where coronary atheroscle-
rosis interacts with CMD to influence outcomes. It is conceivable that
the diffuse morphologic alterations of the vessel wall observed in severe
CAD may extend into the arterioles as depicted in Figure 1. Taqueti and
Di Carli62 recently proposed a simplified classification of CMD in which
the clinical spectrum of CMD is conceptualized as a function of the de-
gree of atherosclerosis (none, non-obstructive, or obstructive), the se-
verity of CMD, and factors that amplify clinical risk such as metabolic
syndrome, obesity, diabetes, female sex, and chronic kidney disease
(CKD). Only well-designed and prospective studies, however, may clar-
ify the clinical implications of CMD in this complex clinical scenario.

4.1 CMD without atherosclerosis
CMD is prevalent in a number of clinical conditions where atherosclero-
sis plays little or no role in its pathogenesis including hypertension,63–65

aortic stenosis,57 and non-ischaemic cardiomyopathies including idio-
pathic,66,67 hypertrophic,68,69 infiltrative,70 and stress71,72 cardiomyopa-
thies. It is unknown if CMD in non-ischaemic cardiomyopathies is a
cause or effect of the underlying myopathic process.62 However, in all of
these conditions, severe CMD has been implicated in the pathophysiol-
ogy of subendocardial ischaemia, subclinical myocardial injury, and diffuse
interstitial fibrosis73; worsening systolic and diastolic function, heart fail-
ure, and arrhythmias,74 which may result in adverse cardiac
events.62,66,67,69–72

4.2 CMD with NOCAD
As many as 80% of patients with chest pain and NOCAD have evidence
of diffuse atherosclerosis by intravascular ultrasound.75,76 The presence
of CMD appears to be associated with more extensive atherosclerosis.77

CMD in combination with NOCAD represents the largest cohort of
CMD patients with CAD.78

The association of non-obstructive atherosclerosis with CMD has im-
portant clinical and prognostic implications. First, diffuse atherosclerosis
may generate a longitudinal pressure gradient in more than half of ath-
erosclerotic coronary arteries without focal obstructive lesions79 reduc-
ing coronary blood flow and myocardial perfusion79 that can result in
myocardial ischaemia and symptoms.62 Second, since coronary plaque
rupture and thrombosis commonly occur at sites of NOCAD, CMD
with NOCAD is a more ominous condition than CMD with normal cor-
onary arteries because of the coexistence of CMD and extensive sub-
strate for plaque rupture.

The subgroup of patients with the combination of CMD and
NOCAD includes patients with obesity, diabetes, metabolic syndrome,
CKD, and heart failure with preserved ejection fraction (HFpEF), and a
predominance of females.62 In obese patients, CMD is frequently pre-
sent,80,81 increases in severity with increasing body mass index, and may
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serve as a better predictor of adverse clinical events than body mass in-
dex or traditional risk factors.82 Although patients with diabetes and
metabolic syndrome are at a markedly increased risk of future athero-
sclerotic and heart failure adverse events, this excess risk is incompletely
explained by OCAD or left ventricular dysfunction and is significantly
higher in women with diabetes than in men.62,83

Mounting evidence suggests that diabetes and prediabetic states con-
tribute to important alterations in the regulation of coronary vascular
tone before they present with OCAD.62,84,85 Patients with diabetes
show a range of structural and functional microvascular abnormalities
which vary in extent and severity across cardiometabolic states.
Symptomatic patients with diabetes, even without known CAD, demon-
strate a variable risk of events when stratified by the severity of coronary
vasomotor dysfunction,86 and those with metabolic syndrome and dia-
betes, respectively, demonstrate a stepwise increase in rates of CMD
and cardiac events.87

IHD is highly prevalent in patients with CKD, is responsible for more
than one-half of their associated mortality, and is not fully explained by
the presence of OCAD.62 The severity of CMD increases with decreas-
ing glomerular filtration rate88,89 beginning in the early stages of CKD
and is associated with increased cardiovascular mortality across the
spectrum of kidney function.88

Recent evidence suggests that CMD likely plays an important role in
the pathophysiology of HFpEF that is mediated through cardiomyocyte
injury.62,90,91 Chronic elevation in high-sensitivity troponin levels is com-
mon in patients with left ventricular hypertrophy, diabetes, and CKD
and is associated with an increased risk of cardiovascular death and heart
failure.92 In otherwise low-risk patients with ischaemic symptoms and
minimally elevated troponin, only those with CMD have a significantly in-
creased risk of major adverse cardiac events.90 Moreover, CMD is inde-
pendently associated with worsening diastolic dysfunction and, only in
the presence of CMD, is a mild troponin elevation associated with
diastolic dysfunction.91 Strikingly, patients with CMD and diastolic dys-
function experience a >5-fold risk of HFpEF hospitalization.91

With increased oxygen demand, factors tipping the balance towards
cardiomyocyte injury in patients with existing CMD may worsen myo-
cardial mechanics and increase the risk of HFpEF, even without
OCAD.62,91,93–95

The pathophysiology of stable IHD in women is different from that in
men.22,62,96–99 Women present with a higher burden of symptoms and
comorbidities compared with men and experience similar or worse out-
comes60 but are less likely to manifest OCAD, regardless of whether
they present with stable IHD99 or acute coronary syndromes.98 A major
contributor to this apparent paradox is CMD, which often coexists with
diffuse, non-obstructive atherosclerosis.21,22,99 CMD increases cardio-
vascular risk in both women and men,21 but may constitute an especially
malignant phenotype in a subset of severely affected women.99 Sex-
specific factors may promote the development of CAD in a diffuse pat-
tern with a greater propensity for CMD than focal obstruction.100

Although not a uniquely female disorder, this pattern of abnormalities
may be more prognostically important in women.101

4.3 CMD with obstructive atherosclerosis
Although underdiagnosed, CMD also occurs in patients with OCAD.
This finding is not surprising because endothelial and coronary vasomo-
tor dysfunction represent early manifestations of atherosclerosis, which
may long precede the development of obstructive stenosis. In patients
with stable CAD, reductions in microcirculatory reserve exacerbate the
functional significance of upstream coronary stenosis and may magnify

the severity of inducible myocardial ischaemia. From a clinical perspec-
tive, the presence of CMD in patients with stable OCAD has several im-
portant prognostic implications.

First, depending on its severity, CMD may have a significant effect on
the evaluation of the physiological significance of a coronary stenosis us-
ing trans-stenosis pressure gradients or non-invasive imaging for ischae-
mia. In the presence of CMD, values of FFR measured for any given
stenosis are higher (and potentially pseudonormal) than when coronary
microvascular function is normal, which can lead to underestimation of
the severity of a stenosis.102 This may help, in part, to explain discrepan-
cies observed between obstructive lesion severity as defined by FFR and
the extent and severity of myocardial ischaemia. Second, some studies
suggest that reduced CFR as determined by PET, reflecting the combined
haemodynamic effects of obstructive stenosis, diffuse atherosclerosis,
and CMD, may identify patients at higher risk of adverse events, indepen-
dent of the severity of angiographic disease.6,103–105 Third, in OCAD
patients the severity of CMD may have prognostic implications. For ex-
ample, patients with normal FFR but abnormal CFR who have revascu-
larization deferred on the basis of FFR have been reported to
experience an increase in adverse events, suggesting a significant role for
CMD in their outcomes.106 The prevalence of severe CMD in patients
who have revascularization deferred based on FFR, however, is un-
known. Some studies have estimated that this phenomenon may affect
up to one-third of patients with normal FFR.106,107 This suggests that in-
terrogation of CMD in patients with OCAD could potentially identify
circumstances in which mixed abnormalities from upstream stenoses
and the microcirculation synergize to alter the apparent functional signifi-
cance of a focal stenosis. A recent study found that measurement of
global CFR modified the effect of revascularization such that only
patients with severely reduced global CFR appeared to benefit from re-
vascularization, and only if the revascularization was with coronary ar-
tery bypass graft surgery.6 This finding suggests that sensitive measures
of diffuse atherosclerosis and downstream CMD may be able to deter-
mine if greater therapeutic benefit will result from more complete revas-
cularization with coronary artery bypass grafting. Furthermore, residual
CMD may account for the high frequency of persistent angina following
successful PCI in patients with stable IHD108,109 even in those with nor-
malization of previously abnormal stress tests.3

Thus, CMD represents a combination of structural and functional ab-
normalities in the coronary microcirculation, is prevalent across a broad
spectrum of cardiovascular risk factors and diseases and may be associ-
ated with increased risk of adverse outcomes. Contemporary evidence
indicates that most patients with CMD have coexisting obstructive or
non-obstructive atherosclerosis that has important implications for their
prognosis.

4.4 Patients with angina post-PCI—role
of CMD
While the exact contribution to myocardial ischaemia and angina of
CMD in OCAD patients is difficult to demonstrate due to the presence
of flow-limiting stenosis, the clinical relevance of CMD can become evi-
dent after the removal of the epicardial obstruction by PCI. CMD is in-
deed a major cause of angina and myocardial ischaemia on non-invasive
stress tests after successful PCI.110

The persistence/recurrence of angina after PCI has been reported in
20–40% of patients and is independent of the type of procedure applied.5

The mechanisms of chest pain in these patients are, in fact, heteroge-
neous, and include restenosis, the development of new critical coronary
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lesions, diffuse non-critical atherosclerosis, coronary dissection, throm-
boembolism and, possibly, myocardial bridging. Moreover, among
patients in whom no cause of chest pain can immediately be identified at
angiography, a significant epicardial constriction or spasm at the level of
or distal to the treated stenosis is a further possible cause of angina.
Induction of epicardial spasm by provocative tests, resulting in myocar-
dial ischaemia and angina, has indeed been reported in up to about 50%
of these patients.111,112 In addition, CMD may be resent in these patients
and potentially explain ongoing or recurrent symptoms.112 Li et al.113

found a reduced CFR (2.62 ± 0.98 vs. 3.01 ± 1.13 in a control group with-
out angina, P = 0.029) and a higher IMR (29.3 ± 11.7 vs. 24.9± 9.7,
P = 0.008) in response to adenosine in patients with recurrent angina but
no restenosis after 6–12 months from PCI; of note, CMD was associated
with evidence of myocardial ischaemia on exercise stress testing. More
recently, Hokimoto et al.114 found evidence of CMD in 59% (62/105) of
patients with and without angina who had undergone PCI with drug-elut-
ing stents 9 months previously. Of those, 37% showed an impaired coro-
nary blood flow response to both adenosine and ACh, thus suggesting
an impairment of both endothelium-independent and endothelium-
dependent coronary microvascular dilatation.

There is conflicting evidence on whether the prevalence of CMD is
higher in patients with OCAD as compared to those with NOCAD.
One reason for this is that data on angiographic or intracoronary imaging
features of the arterial wall regarding the presence of plaques is often
not reported in patients without epicardial obstruction who underwent
intracoronary function testing. In Japanese patients, the prevalence of
CMD was significantly higher (P < 0.001) in those who had undergone
PCI due to significant epicardial disease (59%) compared to those who
were initially suspected to have functional coronary disease (29.5%).114

In contrast, the prevalence of epicardial spasm was similar in the two
groups. The prevalence of smooth coronary arteries in the group with
suspected functional coronary disease is not available from this re-
port.114 Corcoran et al.,115 in a British cohort of patients, observed a sim-
ilar prevalence of CMD in patients with suspected CAD who had
NOCAD (17/25 patients = 68%) and in patients with OCAD (23/
28 = 61%). Again, the prevalence of patients with smooth coronary ar-
teries in the NOCAD group has not been reported.

An impaired coronary microvascular dilatation in post-PCI patients
has also been demonstrated using non-invasive methods. Thus, Milo
et al.116 found reduced dilator responses to both adenosine and cold
pressor test (representing endothelium-independent and endothelium-
dependent vasodilatation) by transthoracic Doppler echocardiography
of the left anterior descending in patients who had undergone PCI of this
vessel 1 day before. Of note, these alterations persisted at 3- and 6-
month follow-up and correlated with persistence of exercise-induced
myocardial ischaemia [by exercise electrocardiogram (ECG) testing].
Importantly, a greater impairment of CFR was associated with restenosis
during 3-year follow-up.117

The studies listed above clearly show that obstructive epicardial coro-
nary disease and microvascular dysfunction may coexist. However, sev-
eral groups have also observed that reversible microvascular
abnormalities may be associated with the haemodynamic situation of a
proximal epicardial stenosis.118,119 These observations are consistent
with the hypothesis that the microvasculature distal to a tight stenosis
may not be able to immediately adjust its tone to the level required to
maintain normal resting flow. This inability to return to normal autoregu-
lation may be related to anatomic remodelling or functional readjust-
ment in response to the haemodynamic effects of the stenosis.120 The
findings by Verhoeff et al.119 suggest that a functional contraction of the

microvasculature seems to exist distal to a tight stenosis. They observed
an increased HMR which dropped impressively once the stenosis was re-
moved by PCI. HMR in the intervened vessel dropped to values lower
than those measured before PCI in a reference vessel.119 However,
baseline microvascular resistance was also reduced in the intervened
vessel resulting in an increase of basal myocardial blood flow (MBF)
post-PCI. Such an increase of basal MBF was also found non-invasively in
the perfusion bed of the intervened vessel using PET at 1 and 7 days fol-
lowing PCI.118 The increased basal MBF coupled with a still reduced
hyperaemic MBF led to a persistently reduced dipyridamole-CFR in the
PCI region of patients at 1 and 7 days after the procedure. However,
CFR was normalized in these patients when PET was repeated after
3 months118 indicating the potential reversibility of the microvascular ab-
normalities developing distal to a tight proximal coronary stenosis.

The inability of the microvasculature in the first days following PCI to
fully relax may also explain the persistence of pathologic exercise stress
test in some patients shortly after PCI. el-Tamimi et al.121 found that 50%
of patients successfully treated by balloon angioplasty continued to have
a pathologic exercise stress test 1 week after the procedure.
Interestingly, the test became normal after sublingual nitrates administra-
tion suggesting nitrate-induced improved relaxation of the microvascula-
ture during exercise. Spastic involvement of the epicardial coronary
vessel was excluded by a normal intracoronary ergonovine test. Thus,
exercise-induced ischaemia persisting early after coronary intervention
seems to be related to microvascular rather than epicardial constriction
and may have the potential to be reversible in some patients.

Microvascular dysfunction may come in two varieties: firstly, there
may be an inability to appropriately relax when stimulated by adenosine
and secondly, there may be an inappropriate spastic reaction of the mi-
crovasculature when stimulated by ACh. The latter mechanism may also
explain some of the persistent anginal symptoms in patients after PCI.
Ong et al.112 found evidence of ACh-induced CMS in 18 (17%) of 104
patients with angina and previous PCI but no restenosis. Moreover, 28 of
the 51 patients who showed ACh-induced epicardial spasm developed
symptoms and ischaemic ECG changes before the angiographic appear-
ance of epicardial spasm. This observation suggests that CMS develops
first and is initially responsible for myocardial ischaemia followed by epi-
cardial spasm with subsequent intensification of symptoms and signs of
ischaemia. Overall, 46/104 (45%) patients in this study had at least parts
of their symptoms potentially related to CMS.112

The mechanisms responsible for post-PCI CMD are poorly known
but are likely multiple and heterogeneous. Microvascular changes in re-
sponse to the reduced perfusion pressure distal to a critical stenosis120

might negatively affect coronary microvascular dilatation, with microvas-
cular dysfunction persisting for a variable time after restoration of a nor-
mal epicardial flow.118,119,122,123 CMD, however, might be present
together with, but independently of, coronary stenosis in some patients
and become the sole source of persisting angina after removal of the epi-
cardial stenosis. Furthermore, at least in some patients, CMD might de-
pend on mechanisms related to PCI itself, including microvascular
damage by coronary microembolization of debris material and reactive
inflammation consequent to the procedure,124 and, in patients with
drug-eluting stent, negative effects on both endothelial and smooth mus-
cle cell function of the active stent drugs released downstream.125–127

In clinical practice, the diagnosis of a microvascular origin of angina in
post-PCI patients is difficult to achieve on the basis of clinical features
and results of non-invasive stress tests, as they usually do not allow a dis-
tinction between the various mechanisms of myocardial ischaemia.
However, similar to patients with primary microvascular angina,55 some
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findings may suggest a microvascular origin of symptoms, including: (i) a
slow or delayed response of angina pain to short-acting nitrates; (ii) lack
of regional wall motion abnormalities during echocardiographic stress
test, despite the induction of angina and ischaemic ECG changes128; (iii)
absence of OCAD at coronary computed tomography (CT) angiogra-
phy in patients with evidence of myocardial ischaemia or abnormal CFR
on non-invasive testing129; (iv) a diffuse, rather than regional, impairment
of MBF on PET130 or CMR stress tests131; and (v) failure of calcium-
antagonists therapy to prevent angina attacks, which makes epicardial
spasm an unlikely cause of symptoms.

While clinical findings and non-invasive assessment of patients may
give important clues to the origin of symptoms, a full invasive assessment
may still be required in many patients in order to make the exact diagno-
sis and direct appropriate management of these patients. The COVADIS
group has recently proposed an algorithm to distinguish between the
various causes of chest pain in patients post-PCI (Figure 5).5 Thus, CMD
is present in most patients with obstructed coronary arteries and is re-
sponsible for persistent angina in several patients treated by successful
PCI. Further research, however, is required to determine whether rou-
tine assessment of CMD may lead to improved clinical management of
these patients.

5. Non-invasive diagnosis of CMD in
patients suspected to have OCAD

Up to 50–60% of patients undergoing elective coronary angiography for
suspected CAD have NOCAD.132 These patients are often reassured
regarding the test result and no further diagnostic or therapeutic steps
are undertaken. However, the prognosis of these patients depends on
the extent of plaque formation as seen by coronary angiography61 or
coronary CT angiography.133,134 Retrospective analysis of all US veterans
undergoing elective coronary angiography for CAD over a period of 5
years showed that 45% of patients had no OCAD. Half of those had en-
tirely normal coronary arteries by coronary angiography, whereas the
other half showed plaque (NOCAD in the definition of this review pa-
per).61 The prognosis of patients with entirely normal coronary arteries
was good with an annual incidence of death or myocardial infarction of
around 1.2%.61 In another study, patients without plaque by coronary
CT angiography have an even lower annual event rate of only 0.4%.134

Depending on the number of angiographically affected vessels with pla-
que, this annual incidence increases gradually.61 Patients with plaque in
all three major coronary vessels experience events at a rate of approxi-
mately 2.9% annually which closely approximates the event rate of
patients with obstructive single-vessel disease (3.0%).61 Similar data
were obtained based on the information from coronary CT angiography
when patients were followed for a median of 3.6 years.134 Extensive dif-
fuse non-obstructive coronary atherosclerosis involving >4 of 18 coro-
nary segments on coronary CT angiography carried a similar prognosis
with respect to death (annual death rate of 2.3%) as the same extent of
affected segments with obstructive disease.134

Although the population of patients with chest pain is heterogeneous,
many may have CMD.135 In order to avoid invasive coronary angiogra-
phy done for the sole purpose of excluding epicardial stenoses patients
should be investigated for evidence of myocardial ischaemia prior to cor-
onary angiography.136 This is in keeping with current clinical ESC guide-
lines for the diagnosis and management of patients with chronic
coronary syndromes.58 Patients with a low clinical likelihood of OCAD

may also undergo coronary CT angiography in order to exclude ob-
structive plaque. Patients without ischaemia are recommended to un-
dergo carotid ultrasound to exclude arterial plaque, whereas the
presence of plaque is simultaneously revealed in those undergoing only
CT angiography. The consequence of finding plaque is to initiate second-
ary preventive measures. Depending on the type of chest pain antianginal
treatment may be justified. Coronary angiography is recommended for
patients with a high clinical likelihood of obstructive disease and symp-
toms refractory to medical therapy.58

In a patient with chest pain, the diagnosis of definitive microvascular
angina (i.e. angina caused by microvascular disease) can be made if the
following criteria are met: (i) symptoms consistent with angina, (ii) ab-
sence of OCAD, (iii) objective evidence of myocardial ischaemia, and
(iv) evidence of abnormal coronary microvascular function (defined as
abnormal CFR, abnormal IMR, microvascular spasm, or coronary slow
flow phenomenon).53 Thus, the diagnosis can be made non-invasively
based on a careful clinical history, a coronary CT angiogram demonstrat-
ing absence of stenoses, pathologic exercise stress ECG, and an abnor-
mally low CFR measured by transthoracic Doppler echocardiography.
Alternatively, one can rely on the invasive coronary angiogram enriched
by invasive coronary function testing.18 However, the invasive path to
the diagnosis of microvascular angina requires that ischaemia should be
demonstrated beforehand.

5.1 Absence of OCAD demonstrated by
anatomical imaging
As outlined above, the diagnosis of CMD requires, firstly, the exclusion
of OCAD as a cause of the anginal symptoms. With recent guide-
lines58,137 placing emphasis on CT coronary angiography (CTCA) as a
first-line investigation for patients presenting with suspected angina,
fewer patients can be expected to undergo invasive coronary angiogra-
phy for excluding OCAD. In patients in whom CTCA has excluded
OCAD, symptoms suggestive of angina should prompt clinicians to con-
sider CMD as a potential mechanism for ischaemia and proceed to func-
tional testing in the first instance. Combining an exercise stress ECG
(demonstration of ischaemia) with transthoracic Doppler echocardiog-
raphy of the left anterior descending coronary artery before and after in-
travenous adenosine (measurement of CFR) would be a good approach
to rule in or rule out the diagnosis of CMD.

5.2 Functional tests to prove the presence
of ischaemia and an abnormal CFR
Most stress tests are widely available in the clinical setting and should be
utilized when assessing a patient with suspected angina. There are also
several other modalities that are specific to CMD, with the caveat that
OCAD has been excluded prior to functional testing.

The treadmill stress test remains the most accessible form of func-
tional testing. However, no specific features diagnostic of CMD have
been identified. Many women with ‘false positive’ stress ECGs (because
of the absence of epicardial stenoses at subsequent coronary angiogra-
phy) will have CMD as the underlying abnormality causing symptoms.138

However, a negative treadmill stress test does not exclude the possibility
of CMD which only involves non-exercise dependent abnormal vaso-
constrictor activity of the microvasculature (microvascular spasm).

CMD will usually not produce echocardiographically detectable dys-
function despite the occurrence of symptoms, ECG changes, and perfu-
sion abnormalities.128 This contrasts to the good sensitivity of stress
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..contrast echocardiography if perfusion in a sizeable territory of an epi-
cardial artery or a major branch is significantly decreased.139 Patchy in-
volvement, which is common in CMD, is likely to be missed.

Diffuse mild involvement across the myocardium may also fail to pro-
duce an area of localized reduction in stress contrast echocardiography.
However, in patients with intermediate coronary stenoses with normal

FFR values stress contrast echocardiography may demonstrate ischae-
mia. This may be related to an inability to increase flow sufficiently
through the stenosis due to associated severe CMD.140

Transthoracic Doppler echocardiography has been used to evaluate
flow in the left anterior descending artery. Coronary flow velocity is
measured at baseline and at maximal hyperaemia in response to

Figure 5 Possible combinations of epicardial coronary anatomy and microvascular abnormalities. For the purpose of clarity, functional epicardial abnor-
malities which may be present in addition to the conditions shown were left out. The comb-like structures shown in the three illustrations on the left are
schematic representations of the microvasculature. The drawing of the arteriolar-venous shunt (shown in red in the centre of the seven illustrations) is
reproduced with permission from Pries and Reglin.23 The two images of a normal arteriole and a diffusely diseased arteriole from a patient with OCAD
shown in the left and middle panel under MV anatomy were kindly provided by Professor Karin Klingel, MD, Director of Cardiac Pathology, Institute of
General and Molecular Pathology and Pathologic Anatomy, University of Tübingen, Germany. The image shown in the right panel demonstrates diffuse rare-
faction of capillaries (yellow), precapillary arterioles (orange), and larger intramyocardial arteries (red) in a patient with heart failure with preserved ejection
fraction. This image was reproduced with permission from Mohammed et al.8 *Any combination of these conditions.
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.adenosine, and the ratio between the latter and the former is taken as
representative of CFR.141 This test requires a high-frequency transducer
and highly sensitive and dedicated equipment and is significantly depen-
dent on an appropriate acoustic window. Interpretation of a negative
test in a patient with typical anginal symptoms and a pathologic exercise
stress ECG in the absence of an epicardial coronary stenosis is challeng-
ing. Such a patient would not fulfil the current diagnostic requirements
for making a diagnosis of CMD.53 Nevertheless, if the patient suffers
from intense symptoms especially at rest, proceeding to invasive diagno-
sis including an ACh provocation test may be appropriate.

Single-photon-emission computed tomography (SPECT) nuclear per-
fusion scans may show relative overall reduction in technetium uptake
and reduced washout in CMD. SPECT may also show regional ischaemia
in patients with severe, regionally accentuated CMD.142 However, re-
cent systematic studies studying SPECT in patients with invasively proven
CMD do not exist. In the past, overall sensitivity of demonstrating ischae-
mia in CMD (formerly called syndrome X) was shown to be low.143,144

PET has been shown to be a reliable tool to quantify MBF,145 which
has good correlation with invasively measured CFR (see above). It
remains the current reference standard for non-invasive quantification of

Figure 6 Flowchart for diagnostic assessment and management of patients with persistent or recurrent angina after percutaneous coronary intervention.
ACh, acetylcholine; CFR, coronary flow reserve; Ergo, ergonovine maleate; FFR, fractional flow reserve; IMR, index of microvascular resistance; NHPR, non-
hyperaemic pressure ratio; RWMA, regional wall motion abnormalities. Reproduced with permission from Crea et al.5
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.
myocardial ischaemia, with or without OCAD. Unfortunately, cardiac
PET is not widely available and reimbursement may be difficult in some
countries.

Stress CMR is an alternative to PET and can also be used to measure
MBF and myocardial perfusion reserve, both of which correlate with
CFR. Liu et al.131 recently showed that patients with NOCAD and IMR
invasively measured to be <25 U also had normal values for the myocar-
dial perfusion reserve index (MPRI) which is a non-invasive correlate of
CFR. In contrast, patients with IMR >_25 U had significantly reduced MPRI
values similar to ischaemic myocardium downstream of OCAD. Highly
selected patients with severe CMD (typical exertional angina, pathologic
exercise ECG, completely normal coronary arteries by invasive coro-
nary angiography, and absence of inducible spasm by ergonovine-
provocation testing) may demonstrate circumferential subendocardial is-
chaemia on CMR perfusion imaging which is associated with provocation
of intense chest pain.146 This is in contrast to the pattern seen in patients
with epicardial disease, where the transmural and segmental perfusion
defects would correspond with the distribution of an epicardial coronary
artery.

A new CMR technique, gadolinium-free CMR stress T1-mapping
seems to be able to distinguish epicardial from microvascular disease
non-invasively.147 This technique makes use of the fact that the water
content of ischaemic myocardium will not increase in response to aden-
osine, whereas that of non-ischaemic myocardium does. The higher wa-
ter content leads to a higher T1 relaxation time. Therefore, T1 during
adenosine is approximately 4–6% higher in normal myocardium com-
pared to the measurement of T1 at rest. In contrast, T1 only increases
up to 1.5% in ischaemic myocardium distal to a high-grade epicardial cor-
onary stenosis. Patients with CMD exhibit differences between rest and
stress T1 of 1.5–4%. Although these differences are rather small correla-
tion with invasive indices of CMD seems to be excellent.147 In this first
prospective validation of the technique with invasive confirmation, the
authors did not look at patients who had epicardial disease and CMD.
Moreover, these results await confirmation by other groups.

Although combinations of non-invasive tests can be used efficiently to
identify patients with symptoms commonly ascribed to stenosing CAD
yet without epicardial stenosis, it will need a major change of mainstream
thinking to apply them broadly instead of resorting to coronary angiogra-
phy as a panacea for the patients with angina. The combination of epicar-
dial plaque formation resulting in various degrees of luminal narrowing
with CMD will be a continuing clinical challenge. In these patients, con-
ventional thinking will always strive to see whether it is not a stenosis in
disguise causing the symptoms. Moreover, coronary CT angiography
with its tendency to overestimate the degree of narrowing caused by
plaques may be instrumental in perpetuating the enamoured fixation on
epicardial stenoses as the sole cause of anginal symptoms. A sharp clini-
cal eye will be helpful to look beyond the visible and the obvious and
consider CMD as the main or additional substrate of the patient’s prob-
lems. A masterful command of non-invasive testing will also be necessary
to come to the right diagnosis of CMD with having to resort to addi-
tional invasive support of that diagnosis.

6. Summary

CMD is a complicating factor in many patients with NOCAD and
OCAD. The microvasculature may be affected by anatomic and func-
tional derangements and combinations of those. Diagnosing the addi-
tional presence of CMD is difficult and often requires invasive diagnostic

testing. However, establishing a diagnosis of CMD has important conse-
quences for therapy and prognosis. CMD may explain why angina per-
sists in a substantial portion of patients after successful revascularization.
Non-invasive diagnosis of CMD is also possible. Ideally, the absence of
OCAD should be established using coronary CT angiography, whereas
the presence of CMD can be ascertained using imaging methods such as
PET, CMR, or Doppler echocardiography to demonstrate a reduced
myocardial perfusion or CFR. However, CMD may also manifest itself as
an abnormal tendency for vasoconstriction (vasospasm) which can only
be proven by invasive provocation testing.

Conflict of interest: none declared.
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C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss H-P, Laney CA, Rajan L, Michels
G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck K-H, Jacobshagen C,
Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC,
Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KEJ, Fijalkowski M,
Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C,
Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C,
Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF. Clinical features
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