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The interaction between endothelial cells (ECs) and vas-
cular smooth muscle cells (VSMC) plays an important 

role in regulating cardiovascular homeostasis. ECs release 
vasoactive factors, such as prostacyclin, nitric oxide (NO), 
and endothelium-derived hyperpolarizing (EDH) factors, 
which participate in the regulation of vascular tone and re-
sistance.1–3 Twenty years ago, Rho-kinases (Rho-kinase  
α/ROKα/ROCK2 and Rho-kinase β/ROKβ/ROCK1) were 
identified as the effectors of the small GTP-binding protein, 
RhoA, independently by 3 research groups.4–6 Hereafter, 
both Rho-kinase α/ROKα/ROCK2 and Rho-kinase β/ROKβ/
ROCK1 are collectively referred to as Rho-kinase.7,8 Both 
endothelial NO production and NO-mediated signaling in 
VSMC are targets and effectors of the RhoA/Rho-kinase 
pathway. In EC, the RhoA/Rho-kinase pathway negatively 
regulates NO production. On the contrary, the pathway regu-
lates contraction in VSMC and promotes the development 
of vascular remodeling.9–12 In addition, we recently demon-
strated the Rho-kinase inhibition in the developing heart re-
sults in the development of arrhythmogenic right ventricular 
cardiomyopathy (ARVC).13 Herein, we will review the recent 
advances on the importance and regulation of Rho-kinase in 
the cardiovascular system.

Molecular Roles and Regulation of Rho-Kinase 
in the Cardiovascular System

During the past 20 years, significant progress has been made 
in understanding of the molecular mechanisms and therapeu-
tic importance of Rho-kinase in the cardiovascular system. 
The Rho family of small G proteins comprises 20 members of 
ubiquitously expressed proteins in mammals, including RhoA, 
Rac1, and Cdc42.2,14 Among them, RhoA acts as a molecular 
switch that cycles between an inactive GDP-bound and an ac-
tive GTP-bound conformation interacting with downstream 
targets (Figure 1).15 The activity of RhoA is controlled by the 
guanine nucleotide exchange factors (GEFs) that catalyze the 
exchange of GDP for GTP.16 In contrast, GTPase-activating 
proteins stimulate the intrinsic GTPase activity and inactivate 
RhoA.17 Guanine nucleotide dissociation inhibitors block 
spontaneous RhoA activation (Figure 1).18

Rho-kinase plays important roles in many intracellular 
signaling pathways.7,8 Agonists bind to G-protein–coupled re-
ceptors and induce contraction by increasing both cytosolic 
Ca2+ concentration and Rho-kinase activity19 through GEF 
activation.20 Rho-kinase activity is enhanced by binding to 
the active GTP-bound RhoA.4 The substrates of Rho-kinase 
include myosin light chain (MLC), myosin phosphatase target 

Review

© 2016 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org� DOI: 10.1161/CIRCRESAHA.115.306532

Abstract: Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-
binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the 
cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many 
cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces 
oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of 
Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion 
injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth 
muscle cells and inflammatory cells and activated platelets in a Rho-kinase–dependent manner, playing important 
roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under 
both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. 
Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically 
cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the 
functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, 
we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system.   
 (Circ Res. 2016;118:352-366. DOI: 10.1161/CIRCRESAHA.115.306532.)

Key Words: cardiovascular system ■ GTP-binding protein ■ inflammation  
■ oxidative stress ■ rho-associated kinases

RhoA/Rho-Kinase in the Cardiovascular System
Hiroaki Shimokawa, Shinichiro Sunamura, Kimio Satoh

Original received September 27, 2015; revision received December 16, 2015; accepted December 21, 2015.
From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
Correspondence to Hiroaki Shimokawa, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 

980-8574, Japan. E-mail shimo@cardio.med.tohoku.ac.jp

 at NANKODO CO LTD on January 21, 2016http://circres.ahajournals.org/Downloaded from 

mailto:shimo@cardio.med.tohoku.ac.jp
http://circres.ahajournals.org/


Shimokawa et al    Rho-Kinase in Cardiovascular System    353

subunit (MYPT)-1, ezrin/radixin/moesin family, adducin, 
phosphatase and tensin homolog, endothelial NO synthase 
(eNOS), Tau and LIM-kinase (Figure 1).21 MLC is crucial for 
VSMC contraction, which is phosphorylated by Ca2+/calmod-
ulin-activated MLC kinase (MLCK) and is dephosphorylated 
by MLC phosphatase (MLCP; Figure 2).22

Functional Differences Between ROCK1 and 
ROCK2
Rho-kinase is a serine/threonine kinase with a molecular 
weight of ≈160 kDa.7,8 Two isoforms of Rho-kinase encod-
ed by 2 different genes have been identified.4,23,24 In humans, 
ROCK1 and ROCK2 genes are located separately on chromo-
some 18 and chromosome 2, respectively. ROCKs consist of 
3 major domains, including a kinase domain in the N-terminal 
domain, a coiled-coil domain that includes a Rho-binding do-
main in its middle portion, and a putative pleckstrin homology 
domain in the C-terminal domain (Figure  3).25 To elucidate 
the functions of the ROCK isoforms in vivo, ROCK1- and 
ROCK2-deficient mice have been generated.26,27 Importantly, 
ROCK1-deficient mice are born with their eyelids opened,26 
whereas ROCK2-deficient mice present placental dysfunc-
tion and fetal death.27,28 Thus, the role of ROCK2, the main 
isoform in the cardiovascular system, remained to be fully 
elucidated in vivo. To address this point, we developed tis-
sue-specific knockout mice for ROCK1 and ROCK2. Using 
VSMC-specific ROCK2 knockout mice, we demonstrated 
that ROCK2 in VSMC plays a crucial role in the development 
of hypoxia-induced pulmonary hypertension (PH).29 In wild-
type mice, chronic hypoxia significantly increased ROCK2 
expression and ROCK activity in the lung tissues and caused 
PH and RV hypertrophy, all of which were suppressed in the 
VSMC-specific ROCK2 knockout mice.29

Both ROCK1 and ROCK2 are upregulated by angiotensin 
II (AngII) via AT

1
 receptor stimulation and by interleukin-

1β.30 Functional differences between ROCK1 and ROCK2 
have been reported. ROCK1 is specifically cleaved by cas-
pase-3, whereas granzyme B cleaves ROCK2 (Figure 3).31,32 
During the development of erythroblasts, ROCK1 is activated 
by caspase-3–mediated cleavage, allowing terminal matura-
tion through phosphorylation of the light chain of myosin 
II.33 Granzyme B is a serine protease expressed in the gran-
ules of cytotoxic lymphocytes, basophils, mast cells, and 
VSMC.34 Granzyme B induces inflammation by cytokine 
release and contributes to the extracellular matrix remodel-
ing. Thus, granzyme B–mediated activation of ROCK2 may 
be involved in cardiovascular homeostasis and diseases. Rnd 
proteins negatively regulate the RhoA/Rho-kinase signaling 
to the cytoskeleton.35,36 Specifically, RhoE (Rnd3) can bind 
to and block the function of ROCK1 but not that of ROCK2 
(Figure  1).37,38 The small G-protein RhoE specifically binds 
to the N-terminal region of ROCK1 at the kinase domain, 
whereas the MYPT-1 binds to ROCK2.39,40 RhoE binding to 
ROCK1 inhibits its activity and prevents RhoA binding to the 
Rho-binding domain.37 For active cell movement, ROCK1 
must be catalytically active and localized to the plasma mem-
brane. RhoA is critical for the recruitment of ROCK1 to the 
plasma membrane.41 In addition, Pinner et al42 demonstrated 
that phosphoinositide-dependent protein kinase 1 is required 
for the function of ROCK1. Phosphoinositide-dependent pro-
tein kinase 1 binds to and competes with the negative regula-
tor, RhoE, for the same region in ROCK1. Thus, when RhoE 
is present and phosphoinositide-dependent protein kinase 
1 is absent, RhoA-GTP does not induce prolonged activa-
tion of ROCK1 at the plasma membrane.42 Many Rho-kinase 
substrates have been identified,43 and Rho-kinase–mediated 
substrate phosphorylation causes actin filament formation, 
organization, and cytoskeleton rearrangement (Figure  1).44 
The N-terminal regions, upstream of the kinase domains of 
ROCKs, may play a role in determining substrate specificity 
of the 2 Rho-kinase isoforms (Figure 3).44

Opposing Effects of NO and Rho-Kinase in EC 
Function
In EC, the RhoA/Rho-kinase pathway negatively regulates 
NO production, whereas in VSMC, the pathway enhances 
MLC phosphorylation through inhibition of MYPT-1 of 
MLCP and promotes VSMC contraction (Figures  2 and 4). 
The RhoA/Rho-kinase pathway is critically involved in actin 
dynamics.45 Cyclic strain stimulates RhoA activation and en-
hances cell contractility. Mechanical activation of the RhoA/
Rho-kinase system renders cells more sensitive to external 
stimuli.46 Thus, RhoA/Rho-kinase–mediated actin contractil-
ity may contribute to vascular function as a mechanosensor. 
Rho-kinase has opposing activities in the regulation of the 
endothelial barrier function at the cell margins and contrac-
tile F-actin stress fibers.47 On the contrary, disruption of the 
endothelial barrier could lead to increased endothelial perme-
ability,48 promoting organ damage in various diseases.49,50 The 
quantity of pinocytotic vesicles and permeability in EC are 
regulated by the expression and phosphorylation of caveo-
lin-1 and caveolin-2 in EC, as well as the levels of p-Src and 

Nonstandard Abbreviations and Acronyms

AngII	 angiotensin II

ARVC	 arrhythmogenic right ventricular cardiomyopathy

CyPA	 cyclophilin A

EC	 endothelial cells

EDH	 endothelium-dependent hyperpolarization

GEFs	 guanine nucleotide exchange factors

H2O2	 hydrogen peroxide

LV	 left ventricle

MLC	 myosin light chain

MLCK	 myosin light chain kinase

MLCP	 myosin light chain phosphatase

MMPs	 matrix metalloproteinases

MYPT	 myosin phosphatase target subunit

NO	 nitric oxide

PAC	 pulmonary artery constriction

PAH	 pulmonary arterial hypertension
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ROS	 reactive oxygen species
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VSMC	 vascular smooth muscle cells
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the activity of RhoA/Rho-kinase signaling.48 Thus, the RhoA/
Rho-kinase signaling pathway is involved in the mechano-
transduction mechanism involved in the adherence junction 
strengthening at EC–EC contacts (Figure 4).48 This endothe-
lial mechanosensing is required for EC alignment along the 
flow direction, which contributes to vascular homeostasis. 

Indeed, a disturbed flow promotes EC dysfunction and the de-
velopment of atherosclerosis.51–54

Several reports demonstrated that NO and Rho-kinase 
have opposing effects.55,56 Rho-kinase–deficient mice re-
vealed preserved EC function in a diabetic model.56 Moreover, 
a Rho-kinase inhibitor, fasudil, significantly enhanced the 
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Figure 1. Rho-kinase activation and multiple 
targets. Rho GTPases, including RhoA, is 
activated by the guanine nucleotide exchange 
factors (GEFs) that catalyze exchange of 
GDP for GTP and inactivated by the GTPase-
activating proteins (GAPs). Rho-kinase is 
an effector of the active form of Rho. Many 
substrates of Rho-kinase have been identified, 
including myosin light chain (MLC), MLC 
phosphatase (MLCP), ezrin/radixin/moesin 
(ERM) family, adducin, and LIM kinases. 
5-HT indicates 5-hydroxytryptamine; AC, 
adenylyl cyclase; CRMP2, collapsin response 
mediator protein 2; eNOS, endothelial NO 
synthase; Epac, exchange protein directly 
activated by cAMP; ET-1, endothelin; GDI, 
guanine nucleotide dissociation inhibitor; 
GPCR, G-protein–coupled receptor; NE, 
norepinephrine; and PDGF-BB, platelet-derived 
growth factor-BB.

Figure 2. Input from endothelial cells (ECs) to vascular smooth muscle cells (VSMCs) through endothelium-derived relaxing 
factors. Rho-kinase is a downstream effector of the active form of RhoA. Phosphorylation of myosin light chain (MLC) is a key event in 
the regulation of VSMC contraction. MLC is phosphorylated by Ca2+-calmodulin-activated MLC kinase (MLCK) and dephosphorylated 
by MLC phosphatase (MLCP). Rho-kinase mediates agonist-induced VSMC contraction. H2O2 rapidly reaches VSMC, stimulates the 1-α 
isoform of cGMP-dependent protein kinase (PKG1α) to form the disulfide form, and opens Ca-activated K channels (KCa) with subsequent 
VSMC hyperpolarization and relaxation. CRMP2 indicates collapsin response mediator protein 2; DAG, diacylglycerol; GEF, guanine 
nucleotide exchange factor; GAP, GTPase-activating protein; IP3, 1,4,5-triphosphate; MCP, monocyte chemoattractant protein; PAI-1, 
plasminogen activator inhibitor type 1; PDE, phosphodiesterase; PGI2, prostacyclin; PKC, protein kinase C; PLC, phospholipase C; and 
PTEN, phosphatase and tensin homolog.
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phosphorylation of AMP-activated protein kinase and changed 
lipid metabolism.57,58 Statins upregulate eNOS by cholesterol-
independent mechanisms, involving the inhibition of Rho ge-
ranyl-geranylation.59 In addition, small GTP-binding protein 
dissociation stimulator plays a central role in the pleiotropic 
effects of statins, independently of the Rho-kinase pathway.60 
On the basis of these recent findings, we need to consider the 

complex interactions between Rho-kinase and NO signaling 
for endothelial homeostasis in vivo (Figure 4).

Role of Rho-Kinase on Vascular Reactive  
Oxygen Species
The balance between oxidants and antioxidants maintains 
redox status equilibrium in the cardiovascular system.61 We 
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Figure 3. Molecular structure of Rho-kinase isoforms. There are 2 isoforms of Rho-kinase, ROCK1 and ROCK2, which consist of 3 
major domains, including a kinase domain in its N-terminal domain, a coiled-coil domain with Rho-binding domain in its middle portion, 
and a putative pleckstrin homology (PH) domain in its C-terminal domain. ROCK1 and ROCK2 are highly homologous with an overall 
amino acid sequence identity of 65%. There are 2 types of activation; Rho-dependent and Rho-independent activation. ROCK1 is 
specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. GAP indicates GTPase-activating protein; and GEF, guanine 
nucleotide exchange factor.

PGH2

H2O2

O2 NOL-Arg

O2
−

P eNOS

Cav-1

VSMC

NO

ONOO−

PGI2

Adenylate 
cyclase

Soluble 
Guanylate 

cyclase

Vesicle

Extracellular
space Agonists

Vesicles

VAMP2

Rho-kinase

GTP
RhoA

Basigin (CD147, EMMPRIN)

Cyclophilin A

RelaxationContraction

Ca2+

Mechanosensors
Blood flow

EC

AMPKα1
P

Gq

IP3

PLC

CaMKKβ

IRS

ACh M3 receptor

Calmodulin
Ca2+

Akt

PI3K

Insulin Insulin receptor

Insulin signaling

Rho-kinase SOD

PKG1α

Rho-kinase

Kca channel 

Figure 4. Interactions between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Intracellular signaling pathways 
for Rho-kinase activation, ROS production, and cyclophilin A (CyPA) secretion are closely linked through VAMP2 vesicle formation. 
H2O2 has been reported to cause vasodilatation through several mechanisms. H2O2 rapidly reaches VSMC with subsequent VSMC 
hyperpolarization and relaxation. Oxidative stress promotes CyPA secretion from VSMC. Secreted CyPA promotes ROS production, 
contributing to the augmentation of oxidative stress. AMPK indicates AMP-activated protein kinase; CaMKK, Ca2+/calmodulin-dependent 
protein kinase kinase; EMMPRIN, extracellular matrix metalloproteinases inducer protein; IP3, 1,4,5-triphosphate; IRS, insulin receptor 
substrate; PGH2, prostaglandin H2; PGI2, prostacyclin; PI3K, phosphoinositide-3-kinase; PKG1α, protein kinase G, subunit 1α; PLC, 
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previously demonstrated that endothelium-derived hydrogen 
peroxide (H

2
O

2
) is an EDH factor in animals and humans 

(Figures 2 and 4).62–64 In contrast, excessive reactive oxygen 
species (ROS; oxidative stress) damage mitochondrial pro-
teins and further increase intracellular ROS, thus forming a 
vicious cycle of ROS augmentation. In addition to ROS gener-
ation in mitochondria, several enzymes generate intracellular 
ROS, including nicotinamide adenine dinucleotide phosphate 
oxidases (Nox) that produce O

2
− and H

2
O

2
. Importantly, the 

production of endothelial H
2
O

2
 for EDH responses largely 

depends on eNOS functions.64,65 Enhanced Rho-kinase activ-
ity downregulates eNOS, resulting in impaired endothelial re-
sponses to NO and EDH (Figure 4).2,3,14 eNOS produces NO 
with the resultant production of cyclic GMP (cGMP). NO can 
react with O

2
− to produce peroxynitrite (ONOO−).66 Among 

ROS, H
2
O

2
 can easily penetrate the cell membrane and act as 

a second messenger. Peroxiredoxin is regenerated by the an-
tioxidant protein thioredoxin 1 and reduces H

2
O

2
 levels, thus 

balancing the intracellular redox state.67 Thioredoxin 1 also 
functions as a signaling intermediate that can sense redox state 
imbalances.61 Here, fluid shear stress plays a crucial role in the 
regulation of EC stress fiber formation with decreased stress 
fibers in areas of disturbed flow when compared with steady 
flow areas.68 Importantly, stress fibers are critical for several 
EC functions, including cell shape, mechanosignal transduc-
tion, EC–EC junction integrity,69 and inflammation.70,71 A key 
mediator of steady flow–induced stress fiber formation is Src, 
which regulates downstream signaling mediators such as focal 
adhesion kinase72 and small GTPases.68,73

The dual roles of ROS, particularly H
2
O

2
, as both protec-

tive and pathological agents, are important in vascular homeo-
stasis.74 At low concentrations, H

2
O

2
 plays an important role in 

endothelial functions and vascular relaxation. Endothelium-
dependent relaxation is mediated primarily by prostacyclin, 
NO, and EDH factor (Figures 2 and 4).2,50,75–77 The contribu-
tion of H

2
O

2
 to EDH-dependent vasodilation of resistance ves-

sels62–64 can be attributed to the oxidation of protein kinase 
G, subunit 1α in VSMCs (Figures 2 and 4).78 EDH responses 
are more prevalent in resistance than in conduit blood ves-
sels.2,50,76,79 Burgoyne et al80 demonstrated that PKG activation 
depends on the oxidation mechanism, where the homodimer 
complex forms an interprotein disulfide bond. In EC, PKG ac-
tivity is also regulated by intracellular cGMP levels, which 
can be modified by NO produced by shear stress and agonists 
such as bradykinin, acetylcholine, and adenosine.81 The mech-
anism of H

2
O

2
-induced hyperpolarization is complex and var-

ies depending on the type of blood vessels. For example, Ca2+/
calmodulin-dependent protein kinase kinase β and caveolin-1 
in EC and protein kinase G, subunit 1α in VSMC play sub-
stantial roles for the enhanced EDHF-mediated responses in 
murine microvessels (Figure 4).82 Bone marrow and adiponec-
tin derived from adipose tissues also contribute to the modula-
tion of microvascular EDH responses.83 The role of H

2
O

2
 as 

an EDH factor has led to extensive research on the importance 
and complexity of endothelium-derived relaxing factors.

Roles of Rho-Kinase in VSMC Function
When agonists bind to their receptors, phospholipase C is ac-
tivated, leading to the formation of inositol 1,4,5-triphosphate 

and diacylglycerol by the hydrolysis of phosphatidyl-inosi-
tol 4,5-bis-phosphate (Figure  2).84 1,4,5-triphosphate then 
binds to an 1,4,5-triphosphate receptor on the membrane of 
the sarcoplasmic reticulum to mobilize the stored calcium 
ions (Ca2+) from the sarcoplasmic reticulum into the cytosol. 
Diacylglycerol activates protein kinase C, which causes va-
soconstriction and augments the Ca2+ sensitivity of contrac-
tile proteins.85 Several mechanisms are involved in the Ca2+ 
sensitivity of myosin filaments, including myosin phospha-
tase22 and the small GTPase Rho and its target, Rho-kinase 
(Figure 2).7,19

Phosphorylation of the regulatory MLC activates myo-
sin Mg2+-ATPase and permits cross-bridge cycling, which 
leads to force generation and contraction.22 The level of MLC 
phosphorylation is determined by a balance between MLC 
phosphorylation by MLCK and dephosphorylation by MLCP 
(Figure  2).22 Phosphorylation of the second site of MLC is 
known to further increase the actin-activated Mg2+-ATPase 
activity of myosin in vitro.86,87 These results indicate that en-
hanced MLC phosphorylation plays a central role in the aug-
mentation of vascular tone. The phosphorylated site of MLC is 
MLCK-dependent Ser19 for MLC monophosphorylation and 
MLCK-dependent Ser19/Thr18 for MLC diphosphorylation.88

Phenotype modulation of VSMC (from contractile type 
to synthetic type) has been demonstrated in the neointimal 
regions of the atherosclerotic artery.89–91 In cultured VSMC, 
MLC diphosphorylation is higher in actively growing cells 
than in growth-arrested cells.87 Thus, phenotype changes of 
arterial VSMC may be an important mechanism of cardio-
vascular diseases. The generation of diphosphorylated MLC 
is caused, in part, by MLCP inhibition in VSMC.92 In vitro 
studies demonstrated that a GTP-binding protein regulates the 
receptor-mediated sensitization of MLC phosphorylation,93 
and that small GTPase Rho is involved in GTP-enhanced Ca2+ 
sensitivity of VSMC contraction.19,86,94 Recent studies fur-
ther demonstrated that Rho regulates MLC phosphorylation 
through its target, Rho-kinase, and the MYPT-1 of MLCP.7,8 
Smooth muscle MLCP consists of a 38-kDa catalytic sub-
unit, 130-kDa MYPT-1, and a 20-kDa subunit.95,96 Activated 
Rho-kinase subsequently phosphorylates MYPT-1, thereby 
inactivating MLCP (Figure 2).7 Rho-kinase itself might also 
phosphorylate MLC at the site phosphorylated by MLCK 
and activate myosin ATPase in vitro.8 The activated form of 
Rho-kinase enhances the transcriptional regulation of serum 
response factor97 and induces VSMC contraction98 and stress 
fiber formation.99 Some studies suggest that both inhibition 
of MLCP and direct phosphorylation of MLC contribute to 
the increase in MLC phosphorylation.98 Rho-kinase has been 
implicated in the pathogenesis of cardiovascular diseases, in 
part, by promoting VSMC proliferation.100–102 Changes in the 
vascular redox state are a common pathway involved in the 
pathogenesis of atherosclerosis, aortic aneurysm, and vascular 
stenosis. Vascular ROS formation can be stimulated by me-
chanical stretch, pressure, shear stress, environmental factors 
(eg, hypoxia), and growth factors (eg, AngII).103 Importantly, 
Rho-kinase is substantially involved in the vascular effects of 
various vasoactive factors, including AngII,104 thrombin,105 
platelet-derived growth factor,106 extracellular nucleotides,107 
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and urotensin108 (Figure 1). It has previously been shown that 
statins enhance eNOS mRNA by cholesterol-independent 
mechanisms, involving the inhibition of Rho geranyl-gera-
nylation.59 We also demonstrated that statins and Rho-kinase 
inhibitors completely block the secretion of cyclophilin A 
(CyPA) from VSMC.109,110 Rho-kinase plays an important role 
in mediating various cellular functions, not only VSMC con-
traction111,112 but also actin cytoskeleton organization,113 adhe-
sion, and cytokinesis.14 Thus, Rho-kinase plays a crucial role 
in the development of cardiovascular disease through ROS 
production, inflammation, EC damage, and VSMC contrac-
tion and proliferation (Figure 1). Rho-kinase inhibitors have 
excellent vasodilator activity and can induce vasodilation, 
especially when the vasoconstrictor tone is increased by a va-
riety of mechanisms, including enhanced Ca2+ entry through 
activation of G-protein–coupled receptors, ventilatory hypox-
ia, and NOS inhibition.114

Physiological and Pathological Roles of Rho-
Kinase in the Cardiovascular System

Cardiovascular diseases often result from imbalances in the 
levels of intracellular ROS.74,115 The O

2
−-producing oxidases 

in the vascular system, including eNOS, cyclooxygenase, 
lipoxygenase, P-450 monooxygenase, and nicotinamide ad-
enine dinucleotide phosphate oxidases,116 can be stimulated to 
produce excessive ROS (oxidative stress) by external stimuli, 
such as mechanical stretch, pressure, shear stress, and hypox-
ia, and by humoral factors, such as AngII.117 In this process, 
transient receptor potential (TRP) channels also substantially 
contribute to the ROS augmentation in response to external 
stimuli.118 A class of TRP channels works as sensors of ROS 
and gaseous messenger molecules, including oxygen (O

2
), hy-

drogen sulfide (H
2
S), and carbon dioxide (CO

2
).119 H

2
O

2
 trig-

gers the production of ADP-ribose, which activates TRPM2. 
TRPC5, TRPV1, and TRPA1 are also activated by H

2
O

2
. NO 

regulates TRP channels via cGMP/PKG-dependent phos-
phorylation.119 Excessive ROS target multiple biomolecules, 
causing numerous cellular complications, including lipid 
peroxidation, protein oxidation/inactivation, and DNA dam-
age/mutations.117 Furthermore, increased O

2
− levels attenu-

ate endothelium-dependent relaxation and enhance VSMC 
contraction through the formation of hydroxyl radicals.120,121 
Although H

2
O

2
 is important for vascular homeostasis at physi-

ological low concentrations,62,64 excessive ROS are hazardous 
to the cells, leading to endothelial dysfunction and VSMC 
proliferation.74,115,122

Recent evidence suggests that many other stimuli that 
modulate VSMC functions, including ROS, promote VSMC 
growth by inducing autocrine/paracrine growth mecha-
nisms.12,122 Among the autocrine/paracrine factors, CyPA 
has been identified as an ROS responsive protein that is se-
creted by VSMC on activation of the RhoA/Rho-kinase sys-
tem (Figure 4).109,123 The extracellular CyPA decreases eNOS 
expression,124 suggesting the indirect role of the RhoA/Rho-
kinase pathway for the negative regulation of endothelial NO 
production. Accumulating evidence indicates that Rho-kinase 
plays important roles in the pathogenesis of a wide range of 
cardiovascular diseases.14,125,126 Indeed, the RhoA/Rho-kinase 

pathway not only mediates VSMC hypercontraction through 
inhibition of MLCP but also promotes cardiovascular diseases 
by enhancing ROS production.2,3,14,125,126 The beneficial effects 
of long-term inhibition of Rho-kinase for the treatment of car-
diovascular disease have been demonstrated in various animal 
models, such as coronary artery spasm, arteriosclerosis, reste-
nosis, ischemia/reperfusion injury, hypertension, PH, stroke, 
and cardiac hypertrophy/heart failure.2,14,112,125 Gene transfer 
of dominant-negative Rho-kinase reduced neointimal forma-
tion of the coronary artery in pigs.127 Long-term treatment 
with a Rho-kinase inhibitor suppressed neointimal formation 
after vascular injury in vivo,128,129 monocyte chemoattractant 
protein-1–induced vascular lesion formation,130 constrictive 
remodeling,131,132 in-stent restenosis,133 and development of 
cardiac allograft vasculopathy.134

Rho-Kinase–Mediated Development of 
Cardiovascular Diseases
Growth factors secreted from VSMC play an important role 
in mediating various cellular responses in the development 
of cardiovascular diseases.9–11 Recent evidence suggests that 
many other stimuli that modulate VSMC functions, includ-
ing ROS, promote VSMC proliferation by inducing autocrine/
paracrine growth mechanisms.12 Rho-kinase augments inflam-
mation by inducing proinflammatory molecules, including 
interleukin-6,135 monocyte chemoattractant protein-1,136 mac-
rophage migration inhibitory factor,134,137 and sphingosine-
1-phosphate.138 In EC, Rho-kinase downregulates eNOS139 and 
substantially activates proinflammatory pathways, including 
enhanced expression of adhesion molecules. The expression 
of Rho-kinase is accelerated by inflammatory stimuli, such as 
AngII and interleukin-1β,30 and by remnant lipoproteins in hu-
man coronary VSMC.140 Rho-kinase also upregulates NAD(P)
H oxidases (Nox1, Nox4, gp91phox, and p22phox) and aug-
ments AngII-induced ROS production.74,104,115

Several growth factors are secreted by VSMC in response 
to oxidative stress. Among them, CyPA has been identified 
as a protein that is secreted by VSMC, inflammatory cells, 
and activated platelets in a Rho-kinase–dependent manner 
(Figure  4).141–143 ROS activate a pathway containing vesicles, 
resulting in CyPA secretion.109,141 Secreted extracellular CyPA 
stimulates extracellular signal-regulated kinase 1/2, Akt, and 
JAK in VSMC, contributing to ROS production and creat-
ing a vicious cycle of ROS augmentation.144,145 CyPA is se-
creted by VSMC via a highly regulated pathway that involves 
vesicle transport and plasma membrane binding (Figure 4).109 
Rho GTPases, including RhoA, are key regulators in signaling 
pathways linked to actin cytoskeletal rearrangement.146 RhoA 
plays a central role in vesicular trafficking pathways by con-
trolling the organization of the actin cytoskeleton. The active 
participation of Rho GTPases is required for secretion. Myosin 
II is involved in secretory mechanisms as a motor for vesicle 
transport.147 Rho-kinase mediates myosin II activation via phos-
phorylation and inactivation of myosin II light chain phospha-
tase.7 These results suggest that myosin II–mediated vesicle 
transport is required for CyPA secretion from VSMC in a Rho-
kinase–dependent manner. CyPA is transported to the plasma 
membrane and colocalizes with VAMP2 (vesicle-associated 
membrane protein) in response to ROS stimulation (Figure 4).
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In addition to the effects on vascular cells, CyPA has been 
shown to be a direct chemoattractant for inflammatory cells,148 
promoting matrix metalloproteinases (MMPs) activation.149 
All of these roles of CyPA can also be explained by the acti-
vation of Rho-kinase in the cardiovascular system (Figure 4). 
CyPA plays an important role as a Ca2+ regulator in platelets.150 
Moreover, extracellular CyPA activates platelets via basigin 
(CD147)–mediated phosphoinositide-3-kinase/Akt signaling, 
leading to enhanced adhesion and thrombus formation.151,152 
Moreover, thrombin suppresses eNOS in EC via Rho-kinase 
pathway.153 Thus, CyPA and Rho-kinase function in concert, 
leading to the development of vascular diseases. Indeed, CyPA 
may be a key mediator of Rho-kinase that generates a vicious 
cycle of ROS augmentation, affecting EC, VSMC, and inflam-
matory cells (Figure 4).143

Importantly, CyPA plays a crucial role in the translocation 
of Nox enzymes, such as p47phox,154 contributing to VSMC 
proliferation and vascular diseases.117 Because ROS produc-
tion by Nox enzymes activates other oxidase systems, CyPA 
and Nox enzymes amplify ROS formation in a synergistic 
manner, leading to augmentation of oxidative stress. In ad-
dition, CyPA secretion from VSMC requires ROS produc-
tion, RhoA/Rho-kinase activation, and vesicle formation.126 
Thus, both intracellular and extracellular CyPA contribute to 
ROS production in a 3-legged race with Rho-kinase activa-
tion. Furthermore, basigin has been identified as an extracel-
lular receptor for CyPA in inflammatory cells155 and VSMC.156 
Further knowledge of the extracellular CyPA receptors on vas-
cular cells will contribute to the development of novel thera-
pies for cardiovascular diseases.

Furthermore, the identification of CyPA as a mediator of 
oxidative stress-induced tissue damage provided some addi-
tional insight into the mechanisms of several therapies. For 
example, Rho-kinase inhibitor and simvastatin significantly 
reduce CyPA secretion from VSMC.109,123 Indeed, Rho-kinase 
is an important therapeutic target in cardiovascular diseas-
es.2,3,14 On the basis of role of extracellular CyPA, we think 
that it is logical to consider that agents that prevent CyPA re-
ceptor binding and reduce circulating CyPA may have thera-
peutic potentials. Blocking the vicious cycle that increases 
ROS production through autocrine/paracrine CyPA signaling 
pathway mediated by Rho-kinase could be a novel therapeutic 
tool for controlling cardiovascular diseases (Figure 4).157

Rho-Kinase in Systemic and PH
Rho-kinase–mediated Ca2+ sensitization is involved in the 
pathophysiology of hypertension.158 Short-term administra-
tion of Y-27632, another Rho-kinase inhibitor, preferentially 
reduces systemic blood pressure in a dose-dependent man-
ner in a rat model of systemic hypertension, suggesting an 
involvement of Rho-kinase in the pathogenesis of increased 
systemic vascular resistance in hypertension.158,159 The ex-
pression of Rho-kinase is significantly increased in resistance 
vessels of spontaneously hypertensive rats.160 Rho-kinase is 
also involved in the central mechanisms of sympathetic nerve 
activity.161,162

Rho-kinase may also be involved in the pathogenesis of 
PH as it is associated with hypoxic exposure, endothelial dys-
function, VSMC proliferation, enhanced ROS production, and 

inflammatory cell migration.163–169 Chronic exposure to hypox-
ia induces vascular remodeling in mice.170 We demonstrated 
that pulmonary vascular dysfunction plays a crucial role in 
the development of hypoxia-induced PH,123,171 for which Rho-
kinase plays a crucial role.29,172,173 Rho-kinase promotes CyPA 
secretion from VSMC, and extracellular CyPA stimulates 
VSMC proliferation in vitro141,142 and in vivo110 (Figure  4). 
Extracellular CyPA induces EC adhesion molecule expres-
sion174 and apoptosis124 and is a chemoattractant for inflam-
matory cells.110,175 Thus, extracellular CyPA may contribute 
to hypoxia-induced PH. Long-term treatment with fasudil 
suppresses the development of monocrotaline-induced PH in 
rats176 and hypoxia-induced PH in mice.177 On the contrary, 
statins and Rho-kinase inhibitor reduce the secretion of CyPA 
from VSMCs,109,123 and pravastatin ameliorates hypoxia-in-
duced PH in mice.123 Thus, the inhibition of CyPA secretion 
by statins or Rho-kinase inhibitors may be involved in the 
therapeutic effects of these medications on PH. Furthermore, 
we recently demonstrated the crucial role of ROCK2 in the 
development of hypoxia-induced PH using VSMC-specific 
ROCK2 knockout mice.29 Consistently, we observed Rho-
kinase activation in patients with pulmonary arterial hyper-
tension (PAH).178 Furthermore, fasudil significantly reduced 
pulmonary vascular resistance in patients with PAH.179,180

Chronic hypoxia significantly increased ROCK2 expres-
sion and ROCK activity in the lung tissues from wild-type 
mice. The development of PH and RV hypertrophy caused by 
chronic hypoxia in vivo was evident in wild-type mice, but 
was suppressed in VSMC-specific ROCK2 knockout mice.29 
Because CyPA secretion is regulated by Rho-kinase,109,144 we 
further determined whether CyPA contributes to the develop-
ment of PH in mice and humans.156 Importantly, we demon-
strated that extracellular CyPA and its receptor, basigin (Bsg, 
CD147), are crucial for hypoxia-induced PH.156 In addition, 
PH severity was exacerbated in Bsg+/+ versus Bsg+/– mice. 
Mechanistic studies demonstrated that Bsg+/– VSMCs secreted 
less cytokines/chemokines and growth factors (eg, platelet-
derived growth factor-BB). On the basis of these findings, 
we proposed a novel mechanism for hypoxia-induced PH in 
which hypoxia induces growth-promoting genes in VSMCs 
through a CyPA/Bsg-dependent pathway (Figure 4).156

These results suggest that extracellular CyPA and vascular 
Bsg are crucial for PH development and could be potential 
therapeutic targets. Intravenous injection of many different 
Rho-kinase inhibitors reduces systemic and pulmonary arte-
rial pressure even under resting conditions.181 Furthermore, 
we demonstrated that the combination therapy using fasudil 
and sildenafil showed synergistic effects through inhibition of 
Rho-kinase activity for the treatment of PH in rats.172 Indeed, 
we obtained direct evidence of Rho-kinase activation in pa-
tients with PAH.178 Finally, both intravenous infusion and oral 
administration of fasudil significantly reduced pulmonary 
vascular resistance in patients with PAH, indicating an in-
volvement of Rho-kinase and its downstream signaling in the 
pathogenesis of PAH in humans.179,180

Rho-Kinase in Vascular Diseases
Rho-kinase plays a crucial role in ROS augmentation and 
vascular inflammation.3 ROS are involved in the pathogenesis 
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of neointima formation, in part, by promoting VSMC growth 
and stimulating proinflammatory events.102,182 Arteriosclerosis 
is a slowly progressing process of inflammation of the arte-
rial wall that involves the intima, media, and adventitia.14,112 
Accumulating evidence indicates that Rho-kinase–mediated 
pathway is substantially involved in EC dysfunction,105,139 
VSMC hypercontraction,183 VSMC proliferation and migra-
tion in the media,184 and accumulation of inflammatory cells 
in the adventitia.130 These Rho-kinase–mediated cellular re-
sponses lead to the development of vascular disease.185 In fact, 
mRNA expression of ROCKs is enhanced in the inflamma-
tory and arteriosclerotic arterial lesions in animals183 and hu-
mans.186 In the context of atherosclerosis, Rho-kinase should 
be regarded as a proinflammatory and proatherogenic mole-
cule.45 Indeed, recent studies demonstrated that ROCK inhibi-
tion by statins could lead to improved endothelial function and 
decreased atherosclerosis.187

Rho-kinase plays a crucial role in the pathogenesis of cor-
onary artery spasm.2 Coronary spasm plays an important role 
in variant angina, myocardial infarction, and sudden death.2,188 
Long-term treatment with cortisol, one of the important stress 
hormones, causes coronary hyper-reactivity through the acti-
vation of Rho-kinase in pigs in vivo.189 The activity and the 
expression of Rho-kinase are enhanced at the inflammatory/
arteriosclerotic coronary lesions.190 Intracoronary adminis-
tration of fasudil191 and hydroxyfasudil88 inhibits coronary 
spasm in a porcine model.131 To further elucidate the molecu-
lar mechanism of coronary spasm in our porcine model, ex-
periments were performed to examine whether Rho-kinase 
is upregulated at the spastic site and how it induces VSMC 
hypercontraction if it is upregulated.190 Reverse transcriptase 
polymerase chain reaction analysis demonstrated that the ex-
pression of Rho-kinase mRNA and, to a lesser extent, that of 
RhoA mRNA was upregulated in the spastic site than the con-
trol coronary site.190 Western blot analysis showed that, dur-
ing the serotonin-induced contractions, the extent of MYPT-1 
phosphorylation was significantly greater in the spastic site 
than in the control site.190,191 Furthermore, another Rho-kinase 
inhibitor, Y-27632,158 also inhibited not only serotonin-in-
duced contractions in vivo and in vitro but also the increase in 
MYPT-1 phosphorylation.190 Importantly, there was a highly 
significant positive correlation between the extent of MYPT-1 
phosphorylation and that of contractions in the spastic site, but 
not in the control site.190 These results indicate that Rho-kinase 
is upregulated at the spastic site and plays a key role in in-
ducing VSMC hypercontraction by inhibiting MLCP through 
MYPT-1 phosphorylation (Figure  1).111,190 Hydroxyfasudil 
causes dose-dependent inhibition of serotonin-induced cor-
onary spasm both in vitro and in vivo in the porcine model 
through suppression of serotonin-induced increases in MLC 
mono- and diphosphorylation.88,192 Thus, the hydroxyfasudil-
sensitive Rho-kinase–mediated pathway plays an important 
role in the enhanced MLC phosphorylation in the spastic coro-
nary artery (Figures 1 and 2).

Aortic aneurysm is formed by chronic inflammation 
of the aortic wall, associated with medial VSMC loss and 
progressive destruction of structural components, particu-
larly the elastic lamina.193 Key mechanisms include VSMC 

senescence,194 oxidative stress,12,195 increased local produc-
tion of proinflammatory cytokines, and increased MMPs 
activities that degrade the extracellular matrix.196 Chronic 
AngII infusion into apolipoprotein E knockout mice pro-
motes aortic aneurysm formation.197,198 In animal models of 
aortic aneurysm, genetic and pharmacological inhibition of 
ROS production199,200 and MMPs201,202 suppressed the devel-
opment of aneurysm. Chronic inhibition of Rho-kinase by 
fasudil reduces AngII-induced aortic aneurysm formation 
in mice.203 Rho-kinase activation promotes CyPA secre-
tion from VSMC, and extracellular CyPA stimulates VSMC 
migration and proliferation and MMP activation.141,142 
Extracellular CyPA is also a chemoattractant for inflamma-
tory cells109,141,175 and further activates vascular Rho-kinase 
(Figure  4). We demonstrated that Rho-kinase–mediated 
CyPA augments AngII-induced ROS production, MMP ac-
tivation, and inflammatory cell recruitment into the aortic 
VSMC, contributing to the aortic aneurysm formation in 
these animal models.204 Our findings suggest that the Rho-
kinase/CyPA signaling pathway is a novel therapeutic target 
for aortic aneurysm. AngII induces Rho-kinase activation 
and promotes CyPA secretion. Secreted extracellular CyPA 
augments Rho-kinase activity in a synergistic manner.144 
Thus, secreted CyPA, acting as a proinflammatory cytokine, 
synergistically augments AngII-mediated ROS production, 
contributing to the onset of vascular inflammatory cell mi-
gration and aortic aneurysm formation.157,199

Rho-Kinase in Cardiac Hypertrophy and Failure
AngII plays a key role in many physiological and patho-
logical processes in cardiac cells, including cardiac hy-
pertrophy.205 Understanding the molecular mechanisms of 
AngII-induced myocardial disorders is important to de-
velop new therapies for cardiac dysfunction and failure.206 
ROS production is one important mechanism now recog-
nized to be involved in AngII-induced cardiac hypertrophy 
is ROS production.207,208 Cardiac troponin is a substrate of 
Rho-kinase (Figure  1).209 Rho-kinase phosphorylates tro-
ponin and inhibits tension generation in cardiac myocytes. 
Indeed, Rho-kinase inhibition suppresses the development 
of cardiac hypertrophy and diastolic heart failure in Dahl 
salt-sensitive rats.210 Because ROS stimulates myocardial 
hypertrophy, matrix remodeling, and cellular dysfunction,211 
Rho-kinase and CyPA may function together to promote 
ROS production and AngII-induced cardiac hypertrophy 
(Figure  4). In fact, CyPA is required for AngII-mediated 
cardiac hypertrophy as it directly potentiates ROS pro-
duction, stimulates proliferation and migration of cardiac 
fibroblasts, and promotes cardiac myocyte hypertrophy in 
mice.212 ROS production and Rho-kinase activation play 
crucial roles in myocardial damage after ischemia/reperfu-
sion. We demonstrated that pretreatment with fasudil before 
reperfusion prevents endothelial dysfunction and reduces 
the extent of myocardial infarction in dogs in vivo.213 The 
beneficial effect of fasudil has also been demonstrated in 
a rabbit model of myocardial ischemia induced by intrave-
nous administration of endothelin-1,214 a canine model of 
pacing-induced myocardial ischemia,215 and a rat model of 
vasopressin-induced chronic myocardial ischemia.216
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Different Roles and Regulation of ROCKs in 
Cardiac Hypertrophy
The fundamental functional difference between RV and left 
ventricular (LV) failure remains unclear.217 Thus, our knowl-
edge and strategies for the treatment of RV failure are still 
limited.218 We recently addressed this fundamental issue by 
comparing the responses of both ventricles to chronic pres-
sure overload in mice.173 Interestingly, there were significant 
differences in the induction pattern and localization of oxi-
dative stress after pressure overload. Pulmonary artery con-
striction rapidly induced oxidative stress in the RV without 
significant changes in the LV, whereas transverse aortic con-
striction slowly induced oxidative stress in the LV without 
significant changes in the RV.173 Furthermore, ROCK2 was 
promptly upregulated in the RV after PAC and was colocal-
ized with ROS induction.173 Thus, it is conceivable that the 
increased ROCK2 expression in the RV after PAC contrib-
utes, at least in part, to the vulnerability of the RV to pres-
sure overload and constitutes the characteristic difference 
between the 2 ventricles. Currently, the roles of ROCK1 and 
ROCK2 in the pathogenesis of RV and LV failure remain 
unclear. Mechanical stretch stimulates integrins, which ac-
tivates the RhoA/Rho-kinase pathway through Rho-GEFs.219 
Mechanotransduction through integrins leads to the activa-
tion of the RhoA/Rho-kinase pathway, which induces hyper-
trophic gene activation.220,221 In contrast, mechanosensing by 
actin filaments causes actin cytoskeleton remodeling through 
small GTPases of the Rho/Rac/Cdc42 family.220,221 However, 
the detailed mechanisms about mechanoresponses and the 
link between integrins, Rho-GEFs, and the downstream tar-
gets of the RhoA/Rho-kinase pathway are not fully eluci-
dated. In mechanotransduction through integrin-β induced by 
pressure overload, adhesion of α-actinin, talin, and vinculin 
to actin filaments may potentially contribute to the activation 
of FGD2 (Rho-GEF) preferentially in the RV after PAC.173 
Our microarray analysis suggested that there is a special sig-
naling cascade in the RV that connects the FGD2 and RhoA/
ROCK2 signaling downstream of integrin-β, which may be 
the difference between the RV and the LV in response to me-
chanical stretch.173

AngII plays a key role in many physiological and 
pathological processes in cardiac cells, including cardiac 
hypertrophy.205 Understanding the molecular mechanisms 
involved in AngII-induced myocardial disorders is impor-
tant to develop new therapies for cardiac dysfunction.206 
ROS production is involved in AngII-induced cardiac hy-
pertrophy.207,208 However, the precise mechanism by which 
ROS cause myocardial hypertrophy and dysfunction still re-
mains to be fully elucidated.222 In addition, our recent study 
demonstrated a synergy between CyPA and Rho-kinase 
to increase ROS generation.126,143 Because ROS stimulate 
myocardial hypertrophy, matrix remodeling, and cellular 
dysfunction,211 Rho-kinase and CyPA may promote ROS 
production and AngII-induced cardiac hypertrophy in a syn-
ergistic manner.

Role of Rho-Kinase in ARVC
ARVC is a genetically determined myocardial disease char-
acterized by fibrofatty replacement, predominantly affecting 

the RV, resulting in ventricular arrhythmias and an increased 
risk of sudden death, particularly in young people and ath-
letes.223 Thus, ARVC has been recognized as a disease of 
the desmosome.224–226 We recently demonstrated that Rho-
kinase inhibition during cardiac development causes ARVC 
in mice.13 Rho-kinase regulates a wide range of cellular 
functions, including actin cytoskeleton assembly, cell con-
tractility, proliferation, and differentiation, as well as gene 
expression.44,227 In addition, the RhoA/Rho-kinase path-
way plays an important role in the regulation of adipogen-
esis.228 Indeed, the RhoA/Rho-kinase pathway negatively 
regulates adipogenesis through interacting with Wnt signal-
ing.229 Activation of the canonical Wnt/β-catenin signaling 
pathway is known to inhibit adipogenesis.228 The less well-
characterized noncanonical β-catenin–independent pathway, 
which involves the activation of small G proteins and their 
downstream effectors, including the RhoA/Rho-kinase sys-
tem, may play a more complex role.230 Interestingly, Wnt 
signaling downregulation has been recently implicated in 
the development of ARVC in mice.231–233 Finally, we demon-
strated that these Rho-kinase–deficient mice spontaneously 
developed unique phenotypes fulfilling the criteria of ARVC 
in humans,234 including cardiac dilatation and dysfunction, 
myocardial fibrofatty changes, ventricular arrhythmias, and 
sudden death.13

Rho-Kinase as a Therapeutic Target
Fasudil235 and Y-27632,158 Rho-kinase inhibitors, have been 
shown to inhibit Rho-kinase activity by competing with ATP 
at the Rho-binding site.236 Hydroxyfasudil, a major active 
metabolite of fasudil, exerts a more specific inhibitory effect 
on Rho-kinase.88,104 The role of the Rho-kinase pathway has 
been emerging, and the indications of Rho-kinase inhibitors 
have been expanding in cardiovascular medicine.2,3,14,125,126 
Indeed, the secretion of a variety of cytokines/chemokines 
and growth factors was significantly reduced by fasudil treat-
ment. The identification of CyPA as a novel mediator of Rho-
kinase associated with inflammation provides insight into the 
mechanisms of several therapies. Currently, many pharma-
ceutical companies and manufacturers have strong interests 
in the RhoA/Rho-kinase signaling and the development of its 
inhibitors.3,112,125,237 Among them, Akama et al238 performed a 
kinome-wide screen to investigate the members of the ben-
zoxaborole family and identified Rho-kinase as a target. They 
observed a competitive behavior, with respect to ATP, and de-
termined the ROCK2-drug cocrystal structure.238 On the ba-
sis of the role of Rho-kinase in disease processes, we found 
that the target and therapeutic applications for Rho-kinase 
inhibitors are mainly in the field of cardiovascular diseases. 
However, our recent study demonstrated a crucial role for 
Rho-kinase in cardiac development,13 which may warn against 
the use of Rho-kinase inhibitors during pregnancy as in the 
case of inhibitors of the renin–angiotensin system.239 To date, 
we demonstrated that several medications, including statins, 
calcium channel blockers, and eicosapentaenoic acid, have 
an indirect inhibitory effect on Rho-kinase.14,126 Thus, higher 
doses of these drugs during pregnancy might potentially cause 
the development of congenital heart diseases.240
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Conclusions
Rho-kinase is substantially involved in the pathogenesis of a 
wide range of cardiovascular diseases, and Rho-kinase inhibi-
tors may be useful for the treatment of these cardiovascular 
diseases.
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