
INVITED REVIEW

Endothelial dysfunction and vascular disease – a 30th

anniversary update

P. M. Vanhoutte,1 H. Shimokawa,2 M. Feletou3 and E. H. C. Tang1,4

1 State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of

Medicine, The University of Hong Kong, Hong Kong City, Hong Kong

2 Department of Cardiovascular Medicine, Tohoku University, Sendai, Japan

3 Department of Cardiovascular Research, Institut de Recherches Servier, Suresnes, France

4 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong City, Hong Kong

Received 8 September 2015,

revision requested 27 October

2015,

revision received 25 November

2015,

accepted 17 December 2015

Correspondence: E. H. C. Tang,

State Key Laboratory of

Pharmaceutical Biotechnology and

Department of Pharmacology and

Pharmacy, Li Ka Shing Faculty of

Medicine, The University of Hong

Kong, 21 Sassoon Road, Pokfulam

Hong Kong, HKSAR China.

E-mail: evatang1@hku.hk

Abstract

The endothelium can evoke relaxations of the underlying vascular smooth

muscle, by releasing vasodilator substances. The best-characterized

endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which

activates soluble guanylyl cyclase in the vascular smooth muscle cells, with

the production of cyclic guanosine monophosphate (cGMP) initiating

relaxation. The endothelial cells also evoke hyperpolarization of the cell

membrane of vascular smooth muscle (endothelium-dependent hyperpolar-

izations, EDH-mediated responses). As regards the latter, hydrogen

peroxide (H2O2) now appears to play a dominant role. Endothelium-

dependent relaxations involve both pertussis toxin-sensitive Gi (e.g.

responses to a2-adrenergic agonists, serotonin, and thrombin) and pertussis

toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling

proteins. New stimulators (e.g. insulin, adiponectin) of the release of

EDRFs have emerged. In recent years, evidence has also accumulated, con-

firming that the release of NO by the endothelial cell can chronically be

upregulated (e.g. by oestrogens, exercise and dietary factors) and downreg-

ulated (e.g. oxidative stress, smoking, pollution and oxidized low-density

lipoproteins) and that it is reduced with ageing and in the course of vascu-

lar disease (e.g. diabetes and hypertension). Arteries covered with regener-

ated endothelium (e.g. following angioplasty) selectively lose the pertussis

toxin-sensitive pathway for NO release which favours vasospasm, throm-

bosis, penetration of macrophages, cellular growth and the inflammatory

reaction leading to atherosclerosis. In addition to the release of NO (and

EDH, in particular those due to H2O2), endothelial cells also can evoke

contraction of the underlying vascular smooth muscle cells by releasing

endothelium-derived contracting factors. Recent evidence confirms that

most endothelium-dependent acute increases in contractile force are due to

the formation of vasoconstrictor prostanoids (endoperoxides and prostacy-

clin) which activate TP receptors of the vascular smooth muscle cells and

that prostacyclin plays a key role in such responses. Endothelium-depen-

dent contractions are exacerbated when the production of nitric oxide is

impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and

diabetes). They contribute to the blunting of endothelium-dependent
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vasodilatations in aged subjects and essential hypertensive and diabetic

patients. In addition, recent data confirm that the release of endothelin-1

can contribute to endothelial dysfunction and that the peptide appears to

be an important contributor to vascular dysfunction. Finally, it has

become clear that nitric oxide itself, under certain conditions (e.g. hypox-

ia), can cause biased activation of soluble guanylyl cyclase leading to the

production of cyclic inosine monophosphate (cIMP) rather than cGMP

and hence causes contraction rather than relaxation of the underlying vas-

cular smooth muscle.

Keywords cyclic guanosine monophosphate, cyclic inosine monophos-

phate, endothelin-1, hydrogen peroxide, nitric oxide, prostanoids.

The seminal observation of Robert Furchgott demon-

strated that the removal of the endothelial layer from

isolated arteries prevents the in vitro relaxing response

to acetylcholine (Furchgott & Zawadzki 1980). This

historical experiment has profoundly modified our

thinking about the local control of vascular tone and

has been reproduced in different arteries of different

species and extended to neurohumoral mediators

other than acetylcholine (e.g. De Mey & Vanhoutte

1982, De Mey et al. 1982). Bioassay studies convinc-

ingly demonstrated that the endothelial cells cause

arterial relaxation by releasing a powerful vasoactive

substance(s), termed endothelium-derived relaxing fac-

tor (EDRF) (Fig. 1). Robert Furchgott’s EDRF,

because it stimulates soluble guanylyl cyclase in the

vascular smooth muscle cells increasing the production

of cyclic guanosine monophosphate (cGMP) and is

destroyed by superoxide anions, has been identified

30 years ago as nitric oxide (NO) (Furchgott 1988,

Ignarro et al. 1988, Vanhoutte 2009a, Michel & Van-

houtte 2010, F�el�etou et al. 2012, Toda et al. 2012)

(Fig. 2). However, the release of NO is not the only

way to evoke endothelium-dependent vasomotor

changes. Thus, besides NO and, first but not least,

prostacyclin (Moncada & Vane 1978), a number of

other endothelial mediators and signals can cause

endothelium-dependent, NO-independent hyperpolar-

izations (EDH; F�el�etou & Vanhoutte 2013) and thus

relaxation of the underlying vascular smooth muscle

(Fig. 3) (F�el�etou & Vanhoutte 2009, Shimokawa

2014). Such NO-independent, EDH-mediated

responses are prominent in most, but not all smaller

arteries. In addition, endothelial cells can release

endothelium-derived contracting factors (EDCF),

including vasoconstrictor prostanoids (Vanhoutte &

Tang 2008, F�el�etou et al. 2010, 2011, Vanhoutte

2011) (Fig. 4), endothelin-1 (De Mey & Vanhoutte

2014), uridine adenosine tetraphosphate (Jankowski

et al. 2005) and NO itself (Gao & Vanhoutte 2014,

Gao et al. 2014). When the ability of the endothelial

cells to release NO (and to induce EDH) is reduced,

and in particular if the propensity to produce EDCF is

enhanced, endothelial dysfunction ensues, which

appears to be the first step in the chain of events that

leads to atherosclerosis and coronary disease. Thus,

endothelial dysfunction is the hallmark, and indeed a

predictor of cardiovascular disease. This article, at the

invitation of the Editor-in-Chief of Acta Physiologica,

revisits and updates a previous review (Vanhoutte

et al. 2009) focusing on the role in the genesis of vas-

cular disease of changes in vascular responsiveness

due to the imbalance between opposing endothelium-

derived mediators, particularly in large arteries. It

summarizes the major advances made in the last

7 years as regards the molecular events leading to

acute and chronic changes in NO production favour-

ing endothelial dysfunction and alerts the reader to

the possibility that NO itself can induce vasoconstric-

tion. This update also emphasizes the further substan-

tiated role of vasoconstrictor endothelium-derived

prostanoids, in particular prostacyclin, in such dys-

functions. It highlights the long ignored role of hydro-

gen peroxide (H2O2) as a potent endothelium-derived

hyperpolarizing factor. Finally, the review also makes

endothelin-1 a potentially important player in the

events leading to vascular dysfunction. The authors

are aware that whereas the evidence demonstrating

beyond doubt the endothelium-dependency of

responses discussed below is overwhelming in isolated

blood vessels, it is rather scarce in vivo (Holtz et al.

1984a,b) as the removal of the endothelium in the

intact organism is usually incompatible with proper

organ function. Hence, when referring to ‘endothe-

lium-dependency’ in vivo, for the sake of clarity, it is

implied that responses are meant to stimuli (e.g.

acetylcholine, bradykinin, shear stress) which are
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Figure 2 Possible mechanisms by which production of nitric oxide is regulated in endothelial cells. Nitric oxide is produced

through enzymatic conversion of L-arginine by nitric oxide synthase (endothelial or type III, eNOS). The transcription of this

enzyme is regulated genomically by hormones and growth factors. Stability of eNOS mRNA is modulated by statins and hormones.

The enzyme activity of eNOS requires calcium, calmodulin, nicotinamide adenine dinucleotide phosphate and 5, 6, 7, 8-tetrahydro-

biopterin (BH4). Enzyme activity is regulated by complexing of these proteins in microdomains of the endothelial cell. Association

with this complex of heat-shock protein 90 (HSP 90) increases enzyme activity. Stimulation of specific receptors on the endothelial

surface (R) complexed with guanine nucleotide regulatory proteins [which are sensitive (Gi) or insensitive (Gq) to pertussis toxin]

activates intracellular pathways that modulate eNOS activity post-translationally through heat-shock protein 90 or Akt-mediated

phosphorylation at Ser1177. Association of eNOS with caveolin-1, phosphorylation at Thr495 or glycosylation of the enzyme

reduces activity. A metabolite of L-arginine, asymmetric dimethyl arginine (ADMA) decreases NO production through competitive

binding to eNOS; +, indicates stimulation; �, indicates inhibition; ?, indicates those pathways in which the regulation is unknown.

Figure 1 Some of the neurohumoral mediators that cause the release of endothelium-derived relaxing factors (EDRF) through

the activation of specific endothelial receptors (circles). A, adrenaline (epinephrine); AA, arachidonic acid; ACh, acetylcholine;

ADP, adenosine diphosphate; a, alpha adrenergic receptor; AVP, arginine vasopressin; B, kinin receptor; ET, endothelin,

endothelin-receptor; H, histaminergic receptor; 5-HT, serotonin (5-hydroxytryptamine), serotoninergic receptor; M, muscarinic

receptor; NA, noradrenaline (norepinephrine); P, purinergic receptor; T, thrombin receptor; VEGF, vascular endothelial growth

factor; VP, vasopressin receptor. Several receptors (EP4, IP, Mas, MC1, SIP1, TRPV4 and VDR) are not shown but discussed in

the text.
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demonstrated unequivocally to evoke endothelium-

dependent relaxations or contractions in isolated

blood vessels.

Nitric oxide

Protector of the vascular wall

As such, the endothelium-dependent relaxation to

acetylcholine, mediated by activation of M3-muscari-

nic receptors (Furchgott & Zawadzki 1980, Boulanger

et al. 1994), is more of pharmacological than of phys-

iological interest. Indeed, few peripheral blood vessels

are innervated by cholinergic nerves, the most likely

source of acetylcholine. When present, the cholinergic

neurones are located in the adventitia, making the

access to the endothelial cells rather unlikely. How-

ever, leucocytes may provide a physiological source of

acetylcholine. In addition, not all isolated blood ves-

sels exhibit endothelium-dependent relaxations in

response to acetylcholine, possibly because of the

absence of NO synthase traffic inducer (NOSTRIN),

which modulates trafficking of M3-receptors and their

colocalization with eNOS in endothelial cells (Kovace-

vic et al. 2015); this is the case, for example, in por-

cine and human coronary arteries in which other

stimuli must be employed to evoke such responses

(Shimokawa et al. 1987, 1991).

Indeed, a number of more physiological stimuli

[physical forces, circulating hormones (catecholami-

nes, melanocortin, vasopressin), platelet products

(serotonin, adenosine diphosphate), autacoids (his-

tamine, bradykinin, prostacyclin, prostaglandin E4)

and thrombin] share with acetylcholine the ability to

elicit endothelium-dependent changes in the tone of

the underlying smooth muscle (Fig. 1) (Vanhoutte

et al. 1986, Shimokawa et al. 1988a,b,c, L€uscher &

Vanhoutte 1990, Pearson & Vanhoutte 1993, Tang

et al. 2005b, Ray and Marshall 2006, St€ahli et al.

2006, Hristovska et al. 2007, Levine et al. 2007,

Figure 3 Multiplicity of mechanisms leading to endothelium-dependent hyperpolarization. Substances such as acetylcholine

(Ach), bradykinin (BK) and substance P (SP), through the activation of M3-muscarinic, B2-bradykinin and NK1-neurokinin

receptor subtypes, respectively, and agents that increase intracellular calcium, such as the calcium ionophore A23187, release

endothelium-derived hyperpolarizing factors. CaM, calmodulin; COX, cyclooxygenase; EET, epoxyeicosatrienoic acid; IP3, inos-

itol trisphosphate; GC, guanylate cyclase; NAPE, N-acylphosphatidylethanolamine; NOS, NO synthase; O�
2 , superoxide anions;

PGI2, prostacyclin; P450, cytochrome P450 monooxygenase; R, receptor; X, putative EDHF synthase. SR141716 is an

antagonist of the cannabinoid CB, receptor subtype (CB1). Glibenclamide (Glib) is a selective inhibitor of ATP-sensitive

potassium-channels (K+ ATP). Tetraethylammonium (TEA) and tetrabutylammonium (TBA) are non-specific inhibitors of

potassium-channels when used at high concentrations (>5 mm), while at lower concentrations (1–3 mm) these drugs are selec-

tive for calcium-activated potassium- channels (K+Ca2+). Iberiotoxin (IBX) is a specific inhibitor of large conductance K+Ca2+.

Charybdotoxin (CTX) is an inhibitor of large conductance K+Ca2+ as well as of intermediate conductance K+Ca2+(IK+Ca2+) and

voltage-dependent potassium channels. Apamin is a specific inhibitor of small conductance K+Ca2+ (SK+Ca2+). Barium (Ba2+), in

the micromolar range, is a specific inhibitor of the inward rectifier potassium channel (Kir). GAP 27 (an 11-amino acid peptide

possessing conserved sequence homology to a portion of the second extracellular loop of connexins), 18a-glycyrrhetinic acid

(aGA) and heptanol are gap junction uncouplers.
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Touyz 2007, Rinne et al. 2013, Van Langen et al.

2013). NO plays a key role in the protection exerted

by the endothelium against abnormal constrictions

and atherosclerosis of large coronary arteries.

Although NO can originate from other sources (Zhao

et al. 2013), it is produced mainly by the constitutive

isoform of NO synthase (eNOS, NOS III), which can

be activated (phosphorylated) in both Ca2+-dependent

and Ca2+-independent ways (Fig. 2) (Marletta 1989,

Schini-Kerth & Vanhoutte 1995, Moncada 1997, Li

et al. 2002a, Dudzinski et al. 2006, Feron &

Balligand 2006, O’Rourke et al. 2006, Bauer and

Sotn�ıkov�a 2010, Michel & Vanhoutte 2010, Maron

& Michel 2012, Toda et al. 2012). NO not only pre-

vents abnormal constriction (vasospasm) of the coro-

nary arteries, which favours intraluminal clot

formation, but also inhibits the aggregation of

platelets, the expression of adhesion molecules at the

surface of the endothelial cells, and hence the adhe-

sion and penetration of white blood cells (macro-

phages), and the release and action of the

vasoconstrictor and mitogenic peptide endothelin-1

(ET-1) (Fig. 5). The protective release of NO is trig-

gered by the local presence of thrombin and sub-

stances released by aggregating platelets. When this

protective role of NO is curtailed, the inflammatory

response (Ross 1999) that leads to atherosclerosis is

initiated (Vanhoutte 1988, 1996, 1997, 2000, 2002,

2009b, L€uescher et al. 1993, Li et al. 2002b, Vallance

2003, Cooke 2004, Voetsch et al. 2004, F�el�etou &

Vanhoutte 2006b, Vanhoutte et al. 2009).

The role played by the endothelial cells to protect

against thrombin and platelet products by increasing

the activity of eNOS has been demonstrated both

in vitro (De Mey et al. 1982, Cohen et al. 1983,

1984, Houston et al. 1985, 1986, Shimokawa et al.

1988a, Derkach et al. 2000, Motley et al. 2007,

Touyz 2007) and in vivo (Shimokawa & Vanhoutte

1991). Serotonin (5-hydroxytryptamine, 5HT) and

adenosine diphosphate (ADP) are the two mediators

released by aggregating platelets that can activate

eNOS and thus augment the production of NO. Sero-

tonin is the most important and stimulates 5-HT1D

serotonergic receptors of the endothelial cell membrane.

ADP is a relatively minor contributor that acts on P2y
purinoceptors (Fig. 5). The serotonergic receptors and

those for thrombin are coupled to the activation of

eNOS through pertussis toxin-sensitive Gi proteins,

while the P2y purinoceptors are linked to the enzyme

Figure 4 Under certain conditions, the endothelial cells,

when activated by neurohumoral mediators, subjected to sud-

den stretch or exposed to the Ca2+ ionophore A23187,

release vasoconstrictor substances, termed endothelium-

derived contracting factor(s) (EDCFs), which diffuse to the

underlying vascular smooth muscle and initiates its contrac-

tion. AA, arachidonic acid; ACh, acetylcholine; ADP,

adenosine diphosphate; ET, endothelin; 5-HT, 5-hydroxy-

tryptamine; M, muscarinic receptor; P, purinoceptor; O,

membrane receptors.

Figure 5 G-protein-mediated signal

transduction processes in a normal,

native endothelial cell. Activation of the

cell causes the release of nitric oxide

(NO), which has important protective

effects in the vascular wall. 5-HT, sero-

tonin receptor; B, bradykinin receptor; P,

purinoceptor; G, coupling proteins.
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by Gq proteins (Flavahan et al. 1989, Shimokawa

et al. 1991, Flavahan & Vanhoutte 1995). If the

endothelium is absent or dysfunctional, such relax-

ations are no longer observed, and aggregating plate-

lets induce constrictions (vasospasm), because they

release the powerful vasoconstrictors thromboxane A2

and serotonin.

The physiological importance of the endothelium-

dependent relaxations to platelet products is obvious

(Vanhoutte 1988, 1996, 1997, 2002, 2009b, F�el�etou &

Vanhoutte 2006b, Vanhoutte et al. 2009). Thus, if pla-

telet aggregation occurs in a coronary artery with a

healthy endothelium, the release of serotonin (and ADP)

by the platelets and the local production of thrombin

will stimulate the endothelial cells to release NO. The

endothelial mediator will cause the underlying smooth

muscle to relax, thus increasing blood flow and mechan-

ically impeding the progression of the coagulation

process. NO also exerts in synergy with prostacyclin an

immediate feedback inhibition on the platelets

(Radomski et al. 1987). When the endothelial barrier is

damaged by injury, the aggregating platelets can reach

the vascular smooth muscle cells, and cause their con-

traction by releasing thromboxane A2 and serotonin,

initiating the vascular phase of hemostasis. The

endothelium-dependent response to aggregating

platelets is not present to the same extent in all arteries,

but is most prominent in the coronary and cerebral

circulations.

NO, the gate keeper. Besides its direct role as a

vasodilator, NO also modulates the release of other

endothelium-derived mediators. Thus, in a number of

larger arteries, EDH-mediated relaxations/dilatations

become prominent only when the synthesis of NO is

inhibited (Olmos et al. 1995), illustrating the gate-

keeping role of the latter (F�el�etou et al. 2011). Hence,

EDH is able to take over, at least temporarily, in the

case of ‘classical’ endothelial dysfunction associated

with a loss of NO synthesis [e.g. in arteries with

regenerated endothelium (Thollon et al. 2002) or in

eNOS-deficient mice (Brandes et al. 2000)], demon-

strating strong compensatory efficiency of EDH-

mediated responses. Intriguingly, exogenous NO

attenuates EDH-mediated responses in porcine coro-

nary arteries in vitro (Bauersachs et al. 1996) and in

the canine coronary circulation in vivo (Nishikawa

et al. 2000) and NO has a negative feedback effect on

endothelium-dependent relaxation through cGMP-

mediated desensitization in isolated canine coronary

arteries (Olmos et al. 1995). Indeed, clinical studies

show that chronic therapy with nitrate, used as a NO

donor, in patients with ischaemic heart disease does

not yield a benefit on mortality (Kojima et al. 2007,

Ambrosio et al. 2010), confirming the importance of

the physiological balance between NO and EDH in

the coronary circulation. Likewise, the amount of NO

formed in the endothelial cells controls the release of

vasoconstrictor prostanoids (see section The major

villains: endothelium-derived vasoconstrictor prosta-

noids) and ET-1 (see section Endothelin-1).

Modulation of the protective role of nitric oxide

The ability of the endothelium to release NO can be

upregulated or downregulated in the intact organism

by a number of chronic factors.

Upregulation. Shear stress—Both acute and chronic

increases in flow, and the resulting increase in shearing

force (shear stress) of the blood on the endothelial

cells, augment the expression and the activity (in a

Ca2+-independent way) of eNOS, and thus the release

of EDRF/NO (Fig. 2), although EDH-mediated

responses can contribute (Rubanyi et al. 1986, Miller

& Vanhoutte 1988, Davis et al. 2001, Stepp et al.

2001, Bellien et al. 2006, Yan et al. 2007). The imme-

diate effect of an increase in shear stress on the release

of NO explains flow-mediated dilatation (FMD), a

phenomenon often used to estimate the functional state

of the endothelium in humans. However, there are

several limitations when equating flow-mediated

vasodilatation with the release of NO, particularly in

humans. First, special care must be taken to limit vari-

ability and insure reproducibility (Charakida et al.

2013). Second, in patients, products of cyclooxygenase

(Nohria et al. 2014), hydrogen peroxide (H2O2; Kang

et al. 2011b, Freed et al. 2014) or other EDH-media-

tors (Nohria et al. 2014) may contribute to the

response to increases in shear stress. Third, one should

always consider the possibility that reductions in

responses to shear stress or endothelium-dependent

vasodilator agents can be due to the concomitant

release of endothelium-derived vasoconstrictors (see

sections The major villains: endothelium-derived vaso-

constrictor prostanoids and Endothelin-1), or to a

reduced (e.g. Kim et al. 1992, Schjerning et al. 2013)

or abnormal (see section Hypoxia: when NO turns

bad) responsiveness of the vascular smooth muscle cells

to NO. Thus, when observing changes in flow-

mediated vasodilatation, appropriate pharmacological

experiments (in particular using inhibitors of cyclooxy-

genases and NO synthases) must be performed before

attributing the observed differences to altered NO

bioavailability.

The acute effect of shear stress in increasing NO

release involves several mechanisms (Davies 1995,

Busse & Fleming 2003, Chiu & Chien 2011, Liu et al.

2013, Fleming 2015, Sun & Feinberg 2015): (i) In the

porcine and human coronary circulations, the local

© 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd, doi: 10.1111/apha.12646 27
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production of bradykinin that stimulates the release of

NO through a Gq-dependent mechanism (Fig. 6)

(Flavahan et al. 1989, Mombouli & Vanhoutte 1991,

1995, Shimokawa et al. 1991, Roves et al. 1995). In

rat carotid arteries, the flow-mediated increase in local

bradykinin production requires first the activation of

angiotensin II AT2 receptors (Bergaya et al. 2004),

possibly stimulating prolylcarboxypeptidase plasma

prekallikrein activator (Zhu et al. 2012); (ii) lectin–
oligosaccharide interactions resulting in sensitization

of G protein-coupled receptors of the endothelial cell

membrane (Perez-Aguilar et al. 2014); (iii) Immediate

activation of a K+ current through KCa channels,

inducing an increased NO release (Olesen et al. 1988,

Ohno et al. 1993). This is followed short-term by

upregulation of endothelial calcium-activated potas-

sium channels (KCa2.3 and KCa3.1) via a calcium-/cal-

modulin-dependent protein kinase (Takai et al. 2013);

(iv) activation of endothelial transient receptor poten-

tial (TRP) receptors leading to increased calcium

influx and stimulation of eNOS (as well as initiation

of EDH-mediated relaxation) (Olesen et al. 1988,

Mendoza et al. 2010, Bubolz et al. 2012); and (v)

caveolae-dependent modulation of endothelial sig-

nal transduction from shear stress to NO production

and release (Chai et al. 2013). However, the shear

stress-induced increase in NO release can be blunted

by the simultaneous release of hydrogen sulphide

(H2S) (Chai et al. 2015).

The chronic effect of shear stress is due to the

upregulation of eNOS, whereby tyrosine kinase c-Src

accelerates both the transcription and activation

(phosphorylation) of the enzyme, leading to a larger

release of NO for each given stimulation, explaining

the beneficial effects of regular exercise on endothelial

function (Miller & Vanhoutte 1988, Mombouli et al.

1996, Davis et al. 2001, Hambrecht et al. 2003,

Suvorava et al. 2004, Watts et al. 2004, Lauer et al.

2005, Gertz et al. 2006, Rakobowchuk et al. 2008,

Tarhouni et al. 2013, 2014, Bender & Laughlin

2015). The chronic impact of shear stress on eNOS

involves transforming growth factor-b (TGF-b) and

the subsequent activation of Kr€uppel-like factor 2

(KLF2) (Davies et al. 2013, Walshe et al. 2013,

Doddaballapur et al. 2015). It is modulated by the

endothelial level of bactericidal permeability increas-

ing fold containing family B member 4 (BPIFB4) (Villa

et al. 2015).

Temperature—Moderate cooling acutely causes relax-

ations of isolated arteries (canine coronary, femoral

and renal; rat aorta and superior mesenteric) which

are endothelium-dependent and involve the activation

of eNOS with the subsequent production of NO

(Evora et al. 2007, Zou et al. 2015). Logically, this

response is due to stimulation by cold of TRP chan-

nels, well known to react to changes in temperature

(Venkatachalam & Montell 2007). In arteries of

normotensive rats, the TRP channel involved appears

to be the transient receptor potential cation channel

subfamily A member 1 (TRPA1) subtype; however, in

those of spontaneously hypertensive rats (SHR), the

TRPA1-mediated response is absent and is compen-

sated by the activation of transient receptor potential

Figure 6 Model of endothelial dysfunction in the hypercholesterolemic mouse. Left, In the normal mouse aortic endothelium,

L-arginine (L-Arg) is transformed by eNOS to NO, which exerts its well-documented beneficial effects (most are not shown for the

sake of clarity), including inhibition of the oxidation of LDLs to OxyLDL. The by-product of the reaction, L-citrulline (L-Cit), inhi-

bits arginase II (AaII), which is constrained to the microtubules (MT). Right, in the aortic endothelium of the ApoE�/� and the

wild-type hypercholesterolaemic mice, the accumulation of OxyLDL dislocates arginase II from the microtubules and augments its

activity. Arginase II competes with endothelial NO synthase for the common substrate L-arginine, leading to uncoupling of NO syn-

thase and the production of superoxide anions (O�
2 ), which further enhance the production of OxyLDL. The latter also facilitates

dissociation of eNOS from the caveolae and reduces the genomic expression of the enzyme, leading to further reduction in the pro-

duction of NO. This model does not account for the biological effects, if any, of L-ornithine (L-Om) and urea produced by arginase

II. It also does not account for endothelium-derived relaxing signals other than NO, or for the generation of endothelium-derived

contracting substances. CM indicates cell membrane; +, facilitation; �, inhibition.
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vanilloid type 4 (TRPV4) channels (Zou et al. 2015).

Activation of the latter channels also contributes to

flow-mediated dilatations (Mendoza et al. 2010,

Bubolz et al. 2012). Surprisingly, the cold-induced,

endothelium-dependent relaxations of canine and SHR

arteries are prevented by the muscarinic antagonist

atropine (Evora et al. 2007, Zou et al. 2015),

implying a role for locally produced acetylcholine, the

prototypical inducer of endothelium-dependent

relaxations mediated by activation of M3-muscarinic

receptors (Furchgott & Zawadzki 1980, Boulanger

et al. 1994, Kovacevic et al. 2015). It has long be

suspected and even demonstrated that endothelial

cells, also of human origin, contain all the ingredients

necessary to produce and metabolize acetylcholine

(Parnavelas et al. 1985, Olesen et al. 1988, Milner

et al. 1989, 1990, Lan et al. 1996, Haberberger et al.

2002, Kirkpatrick et al. 2003, Lips et al. 2003,

Sandow et al. 2012). The activation of an endothelial

non-neuronal cholinergic system acting in an autocrine

manner to induce endothelium-dependent relaxation

as seen with moderate cooling (Evora et al. 2007,

Zou et al. 2015) finally may provide a physiological

role for the endothelial muscarinic receptor discovered

early by Robert Furchgott, but long thought to be a

pharmacological curiosity.

Arginine—In the human, the NO precursor L-arginine

(Figs 2 and 6) is a semi-essential amino acid as it can

be synthesized de novo from L-citrulline. Therefore,

although decreased availability of L-arginine and

L-citrulline can contribute to NO deficiency (Getz &

Reardon 2006, El-Hattab et al. 2012) and the acute

administration of L-arginine can favour endothelium-

dependent responses in humans (Bode-B}oger et al.

1996, Taddei et al. 1997a, Perticone et al. 2005), its

chronic supplementation offers little therapeutic bene-

fit in patients with vascular disease (Wilson et al.

2007), reinforcing the early suspicion (Schini &

Vanhoutte 1991a) that the semi-essential amino acid

is rarely a limiting factor for the endothelial produc-

tion of NO. Exceptions may be when the endothelial

arginases, which compete with eNOS for this sub-

strate, are more active (Fig. 6) (Ming et al. 2004,

Johnson et al. 2005, Brandes 2006, Ryoo et al. 2006,

2008, Holowatz & Kenney 2007, Katusic 2007,

Santhanam et al. 2007, Romero et al. 2008, Van-

houtte 2008, Chandra et al. 2012, El-Bassossy et al.

2012, Yao et al. 2013) or when the L-arginine

transporter (cationic amino acid transporter 1, CAT-

1) is deficient (Martens et al. 2014), although the

extra- rather than the intracellular concentration of

the precursor may be critical for a sufficient supply to

eNOS (Shin et al. 2011). To judge from cell culture

studies, pronounced exposure to arginine may even

accelerate endothelial senescence (Scalera et al.

2009a).

Tetrahydrobiopterin—The biosynthesis of tetrahydro-

biopterin (BH4), an essential cofactor for NO forma-

tion by eNOS (Fig. 2), from sepiapterin is catalysed

by GTP-cyclohydrolase I (GTPCH I; Kang et al.

2011a, Meininger & Wu, 2011, Zhang et al. 2011b).

Chronically low circulating levels of BH4 are accom-

panied by reduced endothelium-dependent relaxations

(Moreau et al. 2012, Zhang et al. 2012c). Likewise,

BH4 deficiency, caused by mutation or deletion of this

enzyme, results in reduced NO-mediated and endothe-

lium-dependent relaxations which can be reversed by

the administration of sepiapterin (Chuaiphichai et al.

2014, d’Uscio et al. 2014). The decreased production

of NO is compensated in part by the generation of

H2O2 by the uncoupled eNOS (Chuaiphichai et al.

2014; see section Endothelium-derived hydrogen

peroxide). Supplementation with BH4 improves

endothelial function in hypertensive animals as well as

in post-menopausal women (Kang et al. 2011a,

Moreau et al. 2012).

Gender and sex hormones—Sex hormones chronically

affect the function of endothelial cells. Thus, endothe-

lium-dependent relaxations are more pronounced in

arteries from pre-menopausal female than male ani-

mals (Kauser & Rubanyi 1995, K€ah€onen et al. 1998,

Dantas et al. 2004, Levy et al. 2009, Zuloaga et al.

2014). Likewise, to judge from the reduced flow-

mediated vasodilatation, endothelial responsiveness is

blunted in post-menopausal women, a condition

which is due in part to BH4 deficiency (Moreau et al.

2012), and the development of endothelial dysfunction

is less prominent in pre-menopausal women than in

age-matched men and post-menopausal women, high-

lighting the protective effect of oestrogens (Taddei

et al. 1996, Perregaux et al. 1999, Harris et al. 2012,

Moreau et al. 2012). In the animal, ovariectomy per

se does not alter or even increases the mRNA expres-

sion and the presence of eNOS (Wassmann et al.

2001, Okano et al. 2006). The chronic reintroduction

of physiological levels of oestrogens, and the resulting

activation of endothelial estrogen receptor a (ERa) in

ovariectomized animals augments endothelium-depen-

dent relaxations (Gisclard et al. 1988, Wassmann

et al. 2001, Sakuma et al. 2002, Santos et al. 2004,

Nawate et al. 2005, Scott et al. 2007, Kang et al.

2011b, Chan et al. 2012, Tarhouni et al. 2013, 2014,

Costa et al. 2015), favours blood flow-mediated

remodelling of resistance arteries (Tarhouni et al.

2013) and accelerates endothelial healing after injury

(Filipe et al. 2008). Although the endothelial effects

of oestrogen involves mainly activation of eNOS
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(Fig. 2) and a greater production of NO, ERa stimu-

lation also can augment the production of prostacy-

clin (Jobe et al. 2013) and EDH-mediated responses

(Liu et al. 2001, 2002, Sakuma et al. 2002, Nawate

et al. 2005, Luksha et al. 2006, Chan et al. 2012,

Wong et al. 2014, Yap et al. 2014, Kong et al. 2015).

The acute and chronic potentiating effect of oestro-

gens on endothelium-dependent relaxations involve

both genomic (Fig. 2) and non-genomic effects (Tostes

et al. 2003, Keung et al. 2005, Miller & Duckles

2008). It depends presumably on both a reduction in

oxidative stress leading to an increased bioavailability

of endothelium-derived NO and an increased respon-

siveness of the vascular smooth muscle cells to

vasodilator stimuli (Wassmann et al. 2001, Han et al.

2007, Li et al. 2007a, Scott et al. 2007, Costa et al.

2015, Mazzuca et al. 2015). In the intact organism, a

reduced production of the endogenous inhibitor of

eNOS, asymmetric dimethyl arginine (ADMA), can

contribute to the improvement to the improvement of

endothelial function by estrogens (Monsalve et al.

2007). The chronic improvement of endothelium-

dependent relaxation by oestrogens involves silent

information regulation 2 homologue (SIRT1) and

AMP-activated protein kinase (AMPK) (Schulz et al.

2005, Liao et al. 2011, Bendale et al. 2013, Yang &

Wang 2015). Phytoestrogens and selective estrogen

receptor modulators (SERMs) also acutely potentiate

endothelium-dependent relaxations/vasodilatations

(Lee & Man 2003, Sbarouni et al. 2003, Wong et al.

2006, Chan et al. 2007, Leung et al. 2007). In coro-

nary arteries, the potentiating effect of chronic treat-

ment with oestrogens is observed only with stimuli

that activate Gi-coupled receptors on the endothelial

cells. Although EDH-mediated dilatations also are

more pronounced in females than in males (Liu et al.

2001, 2002, Sakuma et al. 2002, Nawate et al. 2005,

Luksha et al. 2006, Morton et al. 2007, Sun et al.

2011, Chan et al. 2012, Wong et al. 2014, Yap et al.

2014), it is likely that the potentiating effect of

oestrogens on NO release (presumably resulting from

lower oxidative stress) helps to explain why endothe-

lium-dependent relaxations are more pronounced in

arteries from female than male animals and thus why

women are protected against coronary disease, at least

until the age of menopause.

Insulin—Insulin acutely facilitates and even causes

NO-dependent vasodilatations in vivo and in vitro

(Steinberg et al. 1994, Taddei et al. 1995b, Lembo

et al. 1997a, Potenza et al. 2006, Subramaniam et al.

2009, Genders et al. 2011, Nemoto et al. 2011, Mei-

jer et al. 2013, Jang et al. 2013, Osto et al. 2015). In

isolated blood vessels, it selectively enhances Gi pro-

tein-mediated responses (Lembo et al. 1997b). Insulin

enhances the expression of eNOS in native endothelial

cells in vitro (Fisslthaler et al. 2003) and stimulates

the phosphorylation of the enzyme (Jang et al. 2013,

Tassone et al. 2013).

Angiotensin (1–7)—The heptapeptide angiotensin

(1–7) is formed from angiotensin II by angiotensin-

converting enzyme 2 (ACE2) and activates Mas

receptors (Ferreira & Santos 2005, Carey 2013, Raf-

fai et al. 2014). In humans, flow-mediated vasodi-

latation correlates positively with the circulating

levels of angiotensin (1–7) (Sullivan et al. 2015). In

mice, deletion of ACE2 results in blunted flow-

mediated dilatations (Patel et al. 2012). In isolated

arteries, both stimulation of ACE2 (using a small

molecule activator of the enzyme in vitro) and

exogenous angiotensin (1–7) acutely potentiate

endothelium-dependent relaxations, in particular

those evoked by bradykinin [because the heptapep-

tide inhibits angiotensin-converting enzyme (ACE1)

which is the major contributor to the degradation of

the kinin] (Tom et al. 2001, Raffai et al. 2011,

2014, Fraga-Silva et al. 2013). However, no potenti-

ation of vasodilator responses to bradykinin is

observed in the human forearm (Wilsdorf et al.

2001). Chronic administration of angiotensin (1–7)
restores NO-mediated, endothelium-dependent dila-

tions to acetylcholine in arteries of animals fed on a

high-salt diet, an effect attributable to Mas receptor

activation and reduced oxidative stress (Durand

et al. 2010, Raffai et al. 2011, Shenoy et al. 2014).

Likewise, chronic administration of a small molecule

activator of ACE2 reduces the endothelial dysfunc-

tion in hypertensive and diabetic animals (Fraga-

Silva et al. 2013, Shenoy et al. 2013, 2014).

Vascular endothelial growth factor—Vascular

endothelial growth factor (VEGF) can stimulate/upreg-

ulate eNOS (Fig. 1) and the major chronic side effect

of its inhibitors is the occurrence of hypertension, sug-

gesting a physiological role for the growth factor in

maintaining normal endothelial control of vasomotor

tone (Facemire et al. 2009, Zhang et al. 2011a, Hou

et al. 2012, Skinner et al. 2014). In humans, the effect

of VEGF inhibitors is complex as they do not affect

flow-mediated dilatations but reduce the response to

acetylcholine (Mayer et al. 2011, Thijs et al. 2013). In

pigs and humans, the hypertensive response to VEGF

inhibitors may involve increased production of ET-1

(see section Endothelin-1) rather than modulation of

NO release (Kappers et al. 2012, Lankhorst et al.

2014).

Vitamin D—Chronic vitamin D insufficiency is associ-

ated with reduced flow-mediated vasodilatation in
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humans (Al Mheid et al. 2011, Jablonski et al. 2011,

Sokol et al. 2012). Likewise, endothelium-specific

deletion of the vitamin D receptor (VDR) blunts

endothelium-dependent relaxations in the mouse (Ni

et al. 2014). Conversely, vitamin D supplementation

improves endothelial function in patients with kidney

disease (Zoccali et al. 2014). The improvement of

endothelial function is attributable to increased

expression/activity of eNOS and a greater production

of NO together with inhibition of the increase in

oxidative stress caused by endogenous angiotensin II

(Mart�ınez-Miguel et al. 2014, Ni et al. 2014, Schulz

et al. 2014). In addition, both acute and chronic

administration of vitamin D reduce prostanoid-

mediated, endothelium-dependent contractions ex vivo

(Wong et al. 2008, 2010b; see section The major

villains: endothelium-derived vasoconstrictor prosta-

noids). However, the positive effect of vitamin D

on endothelial function can be offset by upregulation

of the production or action of ET-1 (Absi & Ward

2013, Mart�ınez-Miguel et al. 2014; see section

Endothelin-1).

Adiponectin—Most blood vessels are surrounded by a

variable amount of peri-vascular adipose tissue

(PVAT), originally thought to provide mechanical sup-

port for the blood vessel and serve as an energy

reserve. PVAT has been routinely removed in tradi-

tional studies on isolated blood vessels. However, it

can modulate vascular function (Gu & Xu 2013,

Brown et al. 2014b, Withers et al. 2014, Oriowo

2015). Upon stimulation by a variety of agonists or

electrical stimulation, PVAT can acutely alter the tone

of the vascular smooth muscle that it surrounds by

releasing adipocyte-derived relaxing factor(s) (ADRF)

(Meyer et al. 2013, Withers et al. 2014, Oriowo

2015). These adipocyte-derived factors, referred to as

adipokines (modulating proteins acting locally in an

autocrine/paracrine fashion or systemically as hor-

mones), are transferable in various arterial prepara-

tions and also in veins (Lu et al. 2011a, Gollasch

2012). The candidates proposed as ADRF include

adiponectin, angiotensin 1–7, H2S, leptin, methyl

palmitate, NO, omentin, prostacyclin and visfatin

(Gollasch 2012, Gu & Xu 2013, Oriowo 2015). The

exact chemical nature of ADRF varies depending on

the vascular bed and animal of interest. Of those, adi-

ponectin has received the most attention (Lynch et al.

2013b, Margaritis et al. 2013, Weston et al. 2013).

Peroxidation products formed in the vascular wall

upregulate adiponectin gene expression in PVAT via a

peroxisome proliferator-activated receptor-c (PPARc)-

dependent mechanism (Margaritis et al. 2013). The

release of adiponectin can become disturbed in ani-

mals and patients with hypertension, obesity and/or

metabolic syndrome (Potenza et al. 2006, Gollasch

2012, Gu & Xu 2013, Meyer et al. 2013, Oriowo

2015). In addition, adiponectin has long been identi-

fied as a chronic insulin sensitizer influencing glucose

and fat metabolism, but the adipokine also acutely

exerts direct actions on the blood vessel wall (Hui

et al. 2012, Xu & Vanhoutte 2012, Meijer et al.

2013). It associates with T-cadherin and binds to adi-

ponectin receptors 1 and 2 to moderate endothelial

dysfunction (Xu & Vanhoutte 2012, Parker-Buffen

et al. 2013). The adipokine does so by inhibiting

inflammatory kinase Jun NH2-terminal kinase and

reducing the production of reactive oxygen species

(ROS), promoting the coupling and activity of eNOS,

increasing the bioavailability of both BH4 and NO,

suppressing endothelial cell activation and apoptosis

and promoting endothelial repair (Chen et al. 2003,

Hattori et al. 2003, Tan et al. 2004, Cheng et al.

2007, Li et al. 2007b, Wang & Scherer 2008, Zhu

et al. 2008, Margaritis et al. 2013, Meijer et al. 2013,

Liu et al. 2014c, Zhi et al. 2014). Epidemiological

studies in different ethnic groups have identified

chronic adiponectin deficiency (hypo-adiponectinae-

mia) as an independent risk factor for endothelial dys-

function, hypertension, coronary heart disease,

myocardial infarction and other cardiovascular com-

plications (Zhu et al. 2008, Azuma et al. 2015).

Hypo-adiponectinaemia per se (independent of dia-

betes) is associated with impaired NO-mediated,

endothelium-dependent vasodilatations (Zhu et al.

2008). Conversely, elevations of the circulating levels

of adiponectin (hyperadiponectinaemia) by genetic,

dietary or pharmacological approaches alleviate vari-

ous vascular dysfunctions (Zhu et al. 2008, Liu et al.

2014c).

Other hormones—Erythropoietin (EPO) reduces

oxidative stress and facilitates NO production (and

also that of H2O2; see section Endothelium-derived

hydrogen peroxide) and thus prevents endothelial dys-

function resulting from eNOS uncoupling both in vivo

and in vitro (Yada et al. 2010, Kuriyama et al. 2014,

d’Uscio et al. 2014). Glucagon-like peptide-1 (GLP-1)

not only enhances the vasodilator response to acetyl-

choline (Basu et al. 2007) but also acutely evokes

endothelium-dependent hyperpolarizations and

relaxations (Osto et al. 2015, Salheen et al. 2015) and

augments microvascular recruitment in a NO-depen-

dent fashion (Dong et al. 2013). The peptide improves

endothelium-dependent, NO-mediated relaxations

(Osto et al. 2015) and upregulates the activity and

protein expression of eNOS in human endothelial cells

(Ding & Zhang 2012). Chronic inhibition of the

enzyme responsible for its breakdown, dipeptidyl

peptidase-4 (DPP4), corrects endothelial dysfunction
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(Liu et al. 2012b, Matsubara et al. 2012, Salheen

et al. 2015). In cultured human endothelial cells,

melanocortin (a-melanocyte-stimulating hormone,

MSH) activates melanocortin 1 (MC1) receptors lead-

ing to the increased expression and phosphorylation

of eNOS. In mice, in vivo treatment with a stable

MSH analog ameliorates the endothelial dysfunction

associated with ageing and diet-induced obesity (Rinne

et al. 2013). In the aorta of recessive yellow mice defi-

cient in MC1 signalling, contractile capacity and NO-

dependent relaxations are impaired and arterial stiff-

ness is increased (Rinne et al. 2015). In addition,

humans with weak MC1 function exhibit reduced

flow-mediated dilatations and increased arterial stiff-

ness (Rinne et al. 2015). These observations suggest a

chronic physiological endothelial protective role of the

hormone. Thyroid hormone upregulates eNOS and

augments the endothelial production of NO in the

animal (Spooner et al. 2004). Hyperthyroidism in the

rat is accompanied by augmented relaxations to

acetylcholine (Deng et al. 2010), but as the contrac-

tions to phenylephrine are reduced and relaxations to

sodium nitroprusside are potentiated, it is uncertain

whether or not this reflects true facilitation of

endothelium-dependent relaxations. However, condi-

tional selective overexpression of thyroid hormone

receptors (TRa1) in endothelial cells of the mouse acti-

vates the eNOS pathway and protects the heart

against injury after an ischaemic insult (Suarez et al.

2014). In arteries of young, but not aged rodents,

relaxin, which plays a physiological role mainly dur-

ing pregnancy, augments NO bioavailability in virtue

of its antioxidant properties and by reducing the levels

of ADMA (van Drongelen et al. 2011, Sasser et al.

2011, 2014). ROS production and NO-mediated

relaxations are impaired in arteries of young, but not

aged relaxin-deficient mice (Ng et al. 2015).

Exercise—Both acute and chronic exercise profoundly

affect vascular reactivity in the coronary and skeletal

muscle circulations, through upregulation of NO

release and EDH-mediated responses resulting from

increases in blood flow and thus shear stress (Whyte

& Laughlin 2010, Padilla et al. 2011, Bender &

Laughlin 2015, Bond et al. 2015). For example, exer-

cise training prevents acute endothelial dysfunction

whether due to the intake of a high-fat-containing meal

(Bond et al. 2015) or induced by mental stress (Sales

et al. 2014). Likewise, a single bout of lower limb

interval exercise prevents endothelial dysfunction due

to ischaemia–reperfusion injury (Seeger et al. 2015).

Cardiac patients with lower physical activity levels

exhibit endothelial dysfunction, to judge from reduced

flow-mediated vasodilatations (Luk et al. 2012). In the

rat, exercise training improves vasodilator responses to

acetylcholine and ADP, as well as flow-mediated

vasodilatation in aged animals, in part through

increased release of NO (Spier et al. 2007, Mayhan

et al. 2011, Xu et al. 2011, Jendzjowsky & DeLorey

2012), but this may not be the case in older humans

(Kitzman et al. 2013). However, exercise training aug-

ments the NO contribution to cutaneous vasomotor

responses to temperature changes in humans with non-

alcoholic liver disease (Pugh et al. 2013).

Lipids—Normal high-density lipoproteins (HDL) asso-

ciate with sphingosine 1-phosphate (S1P) and bind to

S1P receptors of the endothelial cells, promoting/caus-

ing activation of eNOS and inducing the antioxidant

enzyme heme oxygenase-1 (HO-1) (Tatematsu et al.

2013, Wu et al. 2013). Hence, the consensus is that

high levels of normal HDL are protective against

endothelial dysfunction and vascular disease. How-

ever, HDL of patients with coronary artery disease

lose their protective properties and rather become

inhibitors of eNOS (Besler et al. 2011, Gomaraschi

et al. 2013, Tran-Dinh et al. 2013, Kratzer et al.

2014, Luscher et al. 2014). The chronic intake of x3-

unsaturated fatty acids potentiates endothelium-depen-

dent relaxations of coronary arteries to aggregating

platelets and other stimuli and is anti-atherogenic

(Shimokawa et al. 1987, 1988a, Shimokawa & Van-

houtte 1989a, Shepherd & Vanhoutte 1991, Von

Schacky & Harris 2007, Sekikawa et al. 2008, Sena

et al. 2008).

Natural products—Intake of a number of natural

products favours endothelium-dependent relaxations.

This holds true for the intake of flavonoids (Machha

& Mustafa 2005, Machha et al. 2007, Xu et al.

2007, 2015, Liu et al. 2015b) and other polyphenols

(in particular resveratrol), whether present in red wine

(Stockley 1998, Leikert et al. 2002, Wallerath et al.

2002, Dell’Agli et al. 2004, da Luz & Coimbra 2004,

Soares de Moura et al. 2004, Coimbra et al. 2005,

Boban et al. 2006, Sarr et al. 2006, Das et al. 2007,

Lef�evre et al. 2007, Aubin et al. 2008, Chan et al.

2008a,b, Csiszar et al. 2008, Lopez-Sepulveda et al.

2008, Scalera et al. 2009b, Dal-Ros et al. 2011, Idris

Khodja et al. 2012, Li and Forstermann 2012), in

green tea (Kuriyama et al. 2006, Alexopoulos et al.

2008, Jang et al. 2013), in grape juice (Anselm et al.

2007), in pomegranate juice (Nigris et al. 2006,

2007a,b) or in dark chocolate (Fisher et al. 2003,

Engler et al. 2004, Grassi et al. 2005, Schroeter et al.

2006, Flammer et al. 2007, Taubert et al. 2007,

Grassi et al. 2012). The protective effects of

polyphenols against endothelial dysfunction, besides

potentiation of EDH-mediated responses (Anselm

et al. 2007, Idris Khodja et al. 2012, Xu et al. 2015),
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involve mainly augmented production/bioavailability

of NO in response to endothelium-dependent

vasodilators (in particular insulin; Jang et al. 2013)

resulting from: (i) antioxidant properties preventing

the uncoupling of eNOS (Akar et al. 2011, Arrick

et al. 2011, Dal-Ros et al. 2011, Lee et al. 2011a,

Gordish & Beierwaltes 2014, Wang et al. 2014c); (ii)

increased levels of BH4 (Carrizzo et al. 2013); (iii)

calcium-independent phosphorylation of eNOS

(Ramirez-Sanchez et al. 2011); (iv) activation of estro-

gen receptors (Yurdagul et al. 2014); (v) upregulation

of AMPK and SIRT1 (Scalera et al. 2009b, Xu et al.

2011, Carrizzo et al. 2013, Warboys et al. 2014); and

(vi) facilitation of the effects of endothelium-derived

NO on the vascular smooth muscle cells (Xu et al.

2015). Vanilloid molecules, besides acting on TRPV1

expressed by perivascular nerves and releasing calci-

tonin gene-related peptide (CGRP), which act as a

physiological antagonist of ET-1 (F�el�etou and

Vanhoutte 2006c, Meens et al. 2009, see section

Regulation of production and action of endothelin-1),

also cause relaxations which are partly endothelium-

dependent (with both NO and EDH contributing) and

are due to the opening of endothelial TRPV4 channels

(Peixoto-Neves et al. 2015), while their endothelium-

independent vasodilator properties result from

inhibition of L-type Ca2+ channels in vascular smooth

muscle (Raffai et al. 2015).

Therapeutic agents—A number of available therapeu-

tic agents can improve endothelium-dependent

relaxations and alleviate endothelial dysfunction. For

example: (i) adenosine triphosphate (ATP)-sensitive

potassium (KATP) channel openers (Wang et al. 2011);

(ii) a-glucosidase inhibitors (Sawada et al. 2014a,b);

(iii) angiotensin-converting enzyme (ACE1) inhibitors

(Tian et al. 2014); (iv) antihypertensive therapy

(L€uscher et al. 1987c, Kang et al. 2011a); (v) DDP4

inhibitors (Liu et al. 2012b, Matsubara et al. 2012,

Liu et al. 2014a, Salheen et al. 2015); (vi) fibrates

(Glineur et al. 2013); (vii) AMPK activators (Rath

et al. 2009, Sena et al. 2011); (viii) mineralocorticoid

receptor (MR) antagonists (Sch€afer et al. 2013); (ix)

b3-adrenoceptor antagonists (Khan et al. 2012,

Zepeda et al. 2012); (x) renin inhibitors (Virdis et al.

2012); (xi) Rho-kinase inhibitors (Yao et al. 2013); or

(xii) statins (Fig. 2) (Subramani et al. 2009, Datar

et al. 2010, Fiore et al. 2011, Ghaffari et al. 2011,

Zhang et al. 2012c, Kassan et al. 2013, Lee et al.

2013). In addition, the shortage of endogenous NO

can obviously be bypassed by exogenous NO donors

such as nitrite, by activators/stimulators of soluble

guanylyl cyclase (sGC) or by phosphodiesterase inhibi-

tors (Chester et al. 2011, Brown et al. 2014a, Goulo-

poulou et al. 2015).

Downregulation. Perturbed blood flow and high pres-

sure—Abnormal blood flow patterns cause epige-

nomic DNA methylation and RNA processing

changes which alter gene expressions, increase oxida-

tive stress and precipitate senescence of the endothe-

lial cells, thus blunting endothelium-dependent

responsiveness and accelerating atherosclerosis devel-

opment (Chiu & Chien 2011, Heo et al. 2011, De

Verse et al. 2012, Davies et al. 2013, Dolan et al.

2013, Cybulsky & Marsden 2014, Warboys et al.

2014, Dunn et al. 2015, Stone et al. 2015 Wu et al.

2015). For example, senescence-associated b-galacto-
sidase activity and the endothelial expression of p53

and of receptors for advanced glycation endproducts

(RAGE) is elevated at sites of flow disturbance (De

Verse et al. 2012, Warboys et al. 2014), while that

of phosphatidic acid phosphatase type 2B (PPAP2B,

an integral membrane protein that inactivates

lysophosphatidic acid) is reduced (Wu et al. 2015).

The accelerated senescence caused by perturbed flow

can be alleviated by stimulation of SIRT1 (e.g. by

the administration of resveratrol; Warboys et al.

2014). Prolonged exposure to high intraluminal pres-

sures causes endothelial dysfunction (Huang et al.

1998, Millgard & Lind 1998, Paniagua et al. 2000,

Vecchione et al. 2009), in part by increasing local

angiotensin signalling and thus oxidative stress (Zhao

et al. 2015).

MicroRNAs—A number of small, non-coding RNAs

(miRs) affect vascular homeostasis (Bauersachs and

Thum 2011, Shi & Fleming 2012, Zampetaki &

Mayr 2012, Thum 2013, Boon & Dimmeler 2014, De

Winther & Lutgens 2014, Frangogiannis 2014,

Arunachalam et al. 2015). Of those, miR-155 appears

to negatively modulate the expression/activity of

eNOS and thus blunt endothelium-dependent

relaxations (Sun et al. 2012).

Oxygen-derived free radicals—Several enzymes in the

endothelial cells can produce superoxide anions

(Fig. 7). They include nicotinamide adenine dinu-

cleotide phosphate oxidase (NOX), xanthine oxidase,

cyclooxygenases (COX) and eNOS itself, when it is

uncoupled by lack of substrate (L-arginine) or shortage

of BH4 (Kojda & Harrison 1999, Stuehr et al. 2001,

Fleming et al. 2005, Tang et al. 2007, Zhang et al.

2011b, Virdis et al. 2013, Wu et al. 2014). However,

physiological amounts of oxygen-derived free radicals,

presumably of mitochondrial origin, can activate

eNOS, increasing the production of NO and initiat-

ing/facilitating endothelium-dependent relaxations

(Anselm et al. 2007, Feng et al. 2010, Rowlands et al.

2011, Bubolz et al. 2012). In addition, superoxide

anions can be dismutated by superoxide dismutase
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(SOD) to H2O2 which can act as an EDH factor and

contribute to endothelium-dependent relaxations

(Fig. 2; see section Endothelium-derived hydrogen

peroxide). However, under pathophysiological condi-

tions, superoxide anions scavenge NO avidly with the

resulting formation of peroxynitrite (Gryglewski et al.

1986, Rubanyi & Vanhoutte 1986, Auch-Schwelk

et al. 1992, Cosentino et al. 1994, Tschudi et al.

1996a, DeLano et al. 2006, Kagota et al. 2007,

Miyagawa et al. 2007, Macarthur et al. 2008). This

reduces considerably the bioavailability of NO (Kojda

& Harrison 1999, Kietadisorn et al. 2012, Maron &

Michel 2012, Montezano and Touyz 2012, Spescha

et al. 2014). In addition, ROS cause S-glutathionyla-

tion of eNOS causing inactivity of the enzyme (Chen

et al. 2010a, Dulce et al. 2011, Zhang et al. 2011b).

Hence, increases in oxidative stress [initiated, e.g. by

angiotensin II (Lee et al. 2011a, Yung et al. 2011,

Sasser et al. 2014, Wang et al. 2014a,b), arsenic

(Ellinsworth 2015), mercury (Furieri et al. 2011), 20-

hydroxyeicosatetraenoic acid (20-HETE; Cheng et al.

2012), b-sitosterol (Yang et al. 2013), fibroblast

growth factor 23 (Silswal et al. 2014), testosterone

(Costa et al. 2015) or pollution (Wauters et al. 2013)]

have been consistently associated with reduced

endothelium-dependent relaxations. Such dysfunction

can be curtailed by induction or overexpression of

HO-1 (Cao et al. 2008, 2012, George et al. 2011).

Likewise, antioxidants acutely improve endothelium-

dependent relaxations in vitro and in vivo both in ani-

mals (Aubin et al. 2006, Liu et al. 2007, Costa et al.

2009, Dal-Ros et al. 2011, Idris Khodja et al. 2012,

Lee et al. 2011b, Raffai et al. 2011, Yung et al. 2011,

Wilcox 2012, Yang et al. 2013, Zhang et al. 2013,

Gordish and Beierwaltes 2014, Wang et al. 2014a,c)

and humans (Kanani et al. 1999, Taddei et al. 2001,

Holowatz & Kenney 2007, Perampaladas et al. 2012,

Schinzari et al. 2012, Virdis et al. 2012, Walker et al.

2012, Wray et al. 2012, Limberg et al. 2013, Fujii

et al. 2014). Part of the improvement of endothelium-

dependent-relaxations caused by HO-1 induction or

exogenous antioxidants can be due to facilitation of

EDH-mediated responses (Li et al. 2013a) or to the

prevention of endothelium-dependent contractions

(Tang et al. 2007, Tang & Vanhoutte 2009, Li et al.

2011; see section The major villains: endothelium-

derived vasoconstrictor prostanoids). However, the

therapeutic relevance of these findings in the animal is

questionable as chronic treatment with antioxidants

usually fails to improve endothelial function in people

(Duffy et al. 2001, Pellegrini et al. 2004, Bjelakovic

et al. 2007), with maybe the exception of the chronic

administration of low doses of folic acid (Moat et al.

2006).

Asymmetric dimethylarginine—Asymmetric dimethyl

arginine is an endogenous inhibitor of eNOS (Fig. 2);

its production is accelerated by oxidative stress

(Vallance and Leiper 2004, Wilcox 2012, Sasser et al.

2014) and proton pump inhibitors (Ghebremariam

et al. 2013). Increased levels of ADMA result in

blunted endothelium-dependent vasodilatations

(Vallance and Leiper 2004, Antoniades et al. 2011,

Wilcox 2012) and predispose to hypertension and car-

Figure 7 Two major contributors of reactive oxygen species in the vascular wall. Left: L-arginine-endothelial NOS (eNOS)

pathway. The synthetic pathway of tetrahydrobiopterin (BH4), an essential cofactor, is also shown and some of the most com-

mon inhibitors of NOS, analogues of L-arginine, are indicated. FMN, flavin mononucleotide; GTP, guanosine 50-triphosphate.
Right: activation of the NAD(P)H oxidase (NOX). Endothelial cells express NOX1, NOX2 (gp91phox), NOX4 and NOX5 iso-

forms, whereas vascular smooth muscle cells express the NOX1, NOX4 and NOX5 and in resistance arteries NOX2 isoforms.

Apocynin inhibits NOX by preventing translocation of cytosolic subunits and their association with the membrane located sub-

units, whereas diphenyleneiodonium (DPI), a flavoprotein inhibitor, is a non-specific inhibitor of NOX.
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diovascular diseases (Knipp 2006, Palm et al. 2007,

Teerlink et al. 2009, Antoniades et al. 2011, Wilcox

2012, Ghebremariam et al. 2013). The production of

ADMA can be reduced by the induction of SIRT1

(Scalera et al. 2009b) and by serelaxin, possibly due

to its antioxidant effects (Sasser et al. 2014). As

regards the breakdown of ADMA, specific endothelial

deletion of its major metabolizing enzyme dimethy-

larginine dimethylaminohydrolase (DDAH) does not

affect responses to acetylcholine but impairs the

angiogenic properties of the endothelial cells (Dowsett

et al. 2015).

Salt intake—High-salt intake results in blunted

endothelium-dependent relaxations (L€uscher et al.

1987b, Fiore et al. 2011, Hao et al. 2011, Pojoga

et al. 2011, Beyer et al. 2014). This endothelial

dysfunction can be prevented by antihypertensive ther-

apy (L€uscher et al. 1987d), administration of statins

(Fiore et al. 2011), missense mutation of extracellular

SOD (Beyer et al. 2014), or by chronic activation of

transient receptor potential vanilloid type 1 (TRPV1)

channels with capsaicin (Hao et al. 2011). It can

be exacerbated by striatin deficiency (Garza et al.

2015).

Aldosterone and epithelial sodium channels—The

acute direct effects of aldosterone on isolated vascu-

lar cells are variable and concentration dependent. It

can acutely augment NO-dependent relaxations

through non-genomic processes (Uhrenholt et al.

2003, 2004, Skøtt et al. 2006, Nietlispach et al.

2007, Gros et al. 2013), although in cultured

endothelial cells the hormone reduces NO release

(Kirsch et al. 2013). The acute effects of aldosterone

are complicated by its action on other cells in the

vascular wall, for example the release of histamine

from macrophages (Schjerning et al. 2013) or its

interaction with estrogen receptors on the vascular

smooth muscle cells (Gros et al. 2013). Chronic

exposure to aldosterone has a detrimental effect on

NO-dependent relaxations (Toda et al. 2013, Bauer-

sachs et al. 2015), presumably by reducing the pro-

duction of BH4 and increasing oxidative stress

(Mitchell et al. 2004, Hashikabe et al. 2006, Nagata

et al. 2006, Skøtt et al. 2006, Nietlispach et al.

2007, Sartorio et al. 2007) and thus augmenting the

release of vasoconstrictor prostaglandins (Sch€afer

et al. 2013; see section The major villains: endothe-

lium-derived vasoconstrictor prostanoids). In the

pulmonary circulation, the reduced NO release may

be due to the inactivation of ETB receptors on the

endothelial cells (Maron et al. 2012; see sec-

tion Endothelin-1). One of the effects of aldos-

terone, presumably following intracellular sodium

accumulation, is to augment the expression/presence

of amiloride-sensitive epithelial sodium channels

(ENaC) which results in greater ‘stiffness’ of the

endothelial cells and a reduced NO release (Oberlei-

thner 2005. Fels et al. 2010, Lang 2011, Jeggle et al.

2013, Paar et al. 2014). Potassium, by contrast, ‘soft-

ens’ endothelial cells and increases the release of NO

(Rubanyi & Vanhoutte 1988, Oberleithner et al.

2009). The increased endothelial stiffness (and pre-

sumably the resulting reduced NO release) caused by

aldosterone may help to understand the salutatory

response to amiloride in adolescents with Liddle syn-

drome (Warnock 2013). However, vasodilator

responses to amiloride may also reflect inhibition of

the Na+/H+ exchanger (NHE). Thus, in animal arter-

ies, amiloride acutely reduces contractions to

phenylephrine and serotonin, in an eNOS- and flow-

mediated manner (Cocks et al. 1988, P�erez et al.

2009). In rat and mice aortae, it causes endothelium-

dependent relaxations, which are eNOS dependent,

prevented by calmidazolium [a well established inhi-

bitor of calcium-activated release of NO (Illiano

et al. 1992, Nagao et al. 1992b)] and attributable to

changes in intracellular pH modulating the cytosolic

concentration of the eNOS-activating ion calcium

(Sasahara et al. 2013).

Other hormones—Endothelium-dependent reactivity is

reduced in Cushing patients with high cortisol levels

(Chandran et al. 2011), while adrenalectomy aug-

ments the expression of eNOS (Li et al. 2007a). Mela-

tonin inhibits the endothelial formation of NO (Silva

et al. 2007). The beneficial effect of oestrogen therapy

on Gi-dependent, endothelium-dependent relaxations

is counteracted in animals and humans by the chronic

administration of progesterone (Miller & Vanhoutte

1991, Miner et al. 2011). The opposing effects of

oestrogens and progesterone could explain why

delayed hormone replacement therapy has not always

had the expected beneficial effect on the occurrence of

cardiovascular events. Although testosterone can

acutely cause dilatation in vitro [mediated by perox-

ynitrite (Puttabyatappa et al. 2013)] and appears to

potentiate endothelium-dependent vasodilatation in

post-menopausal women (Montalcini et al. 2007),

chronic administration of the androgen hormone

counteracts the improvement of endothelial function

caused by oestrogen treatment in ovariectomized rats

(Costa et al. 2015). Conversely, castration of male

animals augments the vasodilator response to

acetylcholine (Ajayi et al. 2004).

Ageing—Both in animals and in humans, increasing

age reduces the ability of the endothelium to elicit

endothelium-dependent vasodilatations in vitro and
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in vivo (Moritoki et al. 1986, Hongo et al. 1988, Koga

et al. 1988, Charpie et al. 1994, Kung & L€uscher

1995, Taddei et al. 1995a, 2001, Davidge et al. 1996,

Cernadas et al. 1998, Yasuro et al. 1999, Heymes

et al. 2000, Csiszar et al. 2002, 2007, Vanhoutte

2002, Subramanian & MacLeod 2003, Spier et al.

2007, Bulckaen et al. 2008, van Drongelen et al.

2011, Lesniewski et al. 2011, Wray et al. 2012, Chen-

nupati et al. 2013, Feher et al. 2014, Gano et al.

2014, Trinity et al. 2014, Care et al. 2015, Ng et al.

2015). Besides diminished EDH-mediated relaxations

(Chennupati et al. 2013, Care et al. 2015, Kong et al.

2015), reduced production of NO can contribute to

the endothelial dysfunction associated with ageing.

Such reductions in NO production have been attribu-

ted to: (i) increased activity of arginase, competing

with eNOS for the common substrate arginine (Katusic

2007, Santhanam et al. 2007), (ii) augmented produc-

tion of oxygen-derived free radicals reducing the

bioavailability of NO (Tschudi et al. 1996a, Taddei

et al. 2001, Csiszar et al. 2002, 2007, Ng et al.

2015) and (iii) reduced expression/presence of eNOS

and reduced activity of the enzyme, possibly resulting

from induction of nuclear factor kappa B (NFjB)
(Challah et al. 1997, Cernadas et al. 1998, Chou

et al. 1998, Csiszar et al. 2002, Lesniewski et al.

2011). Ageing also decreases the release of endothe-

lium-derived vasodilator prostanoids, a deleterious

effect which can be attenuated by the stimulation of

SIRT1 with its activator SRT1720 (Gano et al.

2014). In addition, the expression of soluble guanylyl

cyclase is reduced in aged vascular smooth muscle

(Kl€oss et al. 2000). However, an important part of

the endothelial dysfunction with ageing is due to the

endothelial release of vasoconstrictor prostaglandins

(see section Endothelin-1).

Smoking and environment—Active and passive smok-

ing blunt endothelium-dependent vasodilatations.

Besides a reduction in the release of endothelium-

derived vasodilator prostanoids (Fujii et al. 2013), this

appears to be due mainly to an action of nicotine

causing a greater formation of ADMA and to an

increased ROS production, both resulting in a lesser

availability of NO (De Sousa et al. 2005, Michaud

et al. 2006, Gamboa et al. 2007, Argacha et al. 2008,

Celermajer & Ng 2008, Csiszar et al. 2008, Heiss

et al. 2008, Lang et al. 2008, Frey et al. 2012, Fujii

et al. 2013, 2014). Antenatal exposure to nicotine also

results in blunting of endothelium-dependent relax-

ations after birth (Xiao et al. 2011). Acute and in par-

ticular chronic exposure to air pollution augment

ROS production and decrease endothelium-dependent

vasodilatations (Briet et al. 2007, Krishnan et al.

2012, Wauters et al. 2013).

Hypercholesterolaemia—Both in animals and in

humans, hypercholesterolaemia in general and high

levels of low-density lipoprotein cholesterol (LDL) in

particular are accompanied by reduced endothelium-

dependent relaxations/dilatations and the normaliza-

tion of the cholesterol level with treatment restores the

response (Shimokawa & Vanhoutte 1989a,b, Van-

houtte 1991, Trochu et al. 2003, Kaul et al. 2004,

Landmesser et al. 2005, August et al. 2006,

Fichtlscherer et al. 2006, Inoue & Node 2007, Aubin

et al. 2008, Knight et al. 2008, Sena et al. 2008). Both

the oxidized (oxyLDL; see section The weak link:

regenerated endothelium) and the carbamylated forms

of LDL are deleterious for NO-mediated responses

(Boulanger et al. 1985, Cox & Cohen 1996, Speer

et al. 2014). This is explained best by an increased

oxidative stress leading to a reduced bioavailability of

NO, an impairment of the turnover rate of eNOS,

uncoupling of the enzyme, and an increased presence

of ADMA (Bode-B}oger et al. 1996, B€oger and Bode-

B€oger 2001, B€oger et al. 2004, August et al. 2006,

Palm et al. 2007, Speer et al. 2014).

Obesity—With few exceptions (Howitt et al. 2012),

obese animals and humans exhibit reduced NO-

mediated, endothelium-dependent relaxations/dilata-

tions because of augmented ROS production and

lesser phosphorylation of eNOS (Karagiannis et al.

2003, Van Guilder et al. 2006, 2008, Bouvet

et al. 2007, Kagota et al. 2007, 2011, Mendiz�abal

et al. 2011, Virdis et al. 2011, Beyer et al. 2012, Cao

et al. 2012, Du et al. 2013, Liang et al. 2013, Lim-

berg et al. 2013, Lynch et al. 2013a, Rinne et al.

2013, Sch€afer et al. 2013, da Cunha et al. 2014,

Azuma et al. 2015, Bradley et al. 2015). Deletion of

Toll-like receptor 4 (TLR4) or adipocyte-specific over-

expression of HO-1 attenuates the endothelial dys-

function induced by a high-fat diet (Cao et al. 2012,

Liang et al. 2013). Contributing to the endothelial

dysfunction, EDH-mediated relaxations are also

impaired by diet-induced obesity (Haddock et al.

2011, Howitt et al. 2012), while the release of

endothelium-derived vasoconstrictor prostanoids (see

section The major villains: endothelium-derived vaso-

constrictor prostanoids) is augmented (Sanchez et al.

2010, Mendiz�abal et al. 2011, Sch€afer et al. 2013)

and the ET-1 (see section Endothelin-1) system is

upregulated (Weil et al. 2011, Virdis et al. 2013).

Weight loss alone or exercise training improve

endothelium-dependent responses (Watts et al. 2004,

Focardi et al. 2007, Pierce et al. 2008, Ungvari et al.

2008). The favourable effect of caloric restriction on

endothelium-dependent, NO-mediated relaxations can

be attributed to the deacetylation and activation of

eNOS by SIRT1 (Mattagajasingh et al. 2007).
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Adipokines—Certain adipokines, when released in

exaggeration from inflamed adipose tissue, in particu-

lar PVAT, can curtail endothelium-dependent

relaxations. Chemerin at low concentrations acutely

induces endothelium-dependent relaxations but at high

concentrations increases ROS production (and thus

reduces NO bioavailability). It can also induce con-

traction of the vascular smooth muscle cells by

directly increasing intracellular calcium levels, a

response that is amplified by obesity (Watts et al.

2013, Neves et al. 2015). Likewise, although under

physiological conditions, leptin acutely can induce

endothelium-dependent relaxations ex vivo by enhanc-

ing NO (and EDH) production (Schinzari et al. 2013,

Jamroz-Wi�sniewska et al. 2014), but this effect is lost

in patients with metabolic syndrome (Schinzari et al.

2013). While chronic exposure to leptin decreases NO

bioavailability presumably by increasing oxidative

stress which leads to depletion of endothelial NO and

increases the levels of peroxynitrite (Korda et al.

2008). In vivo administration of exogenous lipocalin-

2 reduces endothelium-dependent relaxations to

insulin ex vivo (Liu et al. 2012a; see section Endothe-

lin-1). Resistin can also contribute to endothelial

dysfunction by increasing oxidative stress and by

activating the p38 and c-Jun NH2-terminal mitogen-

activated protein kinase resulting in reduced eNOS

expression and NO production (Chen et al. 2010b,

Jamaluddin et al. 2012). Visfatin inhibits endothe-

lium-dependent relaxations by stimulating the NOX

and enhances ROS production (Vallejo et al. 2011,

Xia et al. 2011). Besides interference with endothelial

function, adipokines released from PVAT also reduce

the ability of vascular smooth muscle to relax to ade-

nosine (Noblet et al. 2015). A better understanding of

the action of adipose tissue-derived factors in modu-

lating vascular function may reveal a role for these

molecules as potential diagnostic and prognostic

cardiovascular markers as well as potential therapeutic

target to reduce endothelial dysfunction.

Insulin resistance and metabolic syndrome—In obese

animals and humans, the ensuing metabolic syndrome

is characterized by insulin resistance resulting in

blunted endothelium-dependent, NO-mediated relax-

ations due to reduced eNOS phosphorylation (Karki

et al. 2015, Osto et al. 2015). The endothelial dys-

function and/or insulin resistance accompanying obe-

sity, metabolic syndrome and diabetes has been

attributed to: (i) increased ROS production by NOX

leading to damages of the insulin receptors (Du et al.

2013); (ii) increased insulin receptor substrate (IRS)-1

phosphorylation at Ser307 (Nemoto et al. 2011); (iii)

reduced production of epoxyeicosatrienoic acids

(EETs) by cytochrome P450 (CYP 450) and

augmented degradation of epoxy fatty acids by soluble

epoxide hydrolase (sHE) (Abraham et al. 2014, Roche

et al. 2015); (iv) upregulation of G protein-coupled

receptor kinase 2 (GRK2) (Taguchi et al. 2014); (v)

overexpression of protein kinase C-b (PKCb) and

induction of ET-1 expression in the endothelium (Lu

et al. 2011b, Li et al. 2013b, Tabit et al. 2013); (vi)

upregulation of transcription factor forkhead box O-1

(FOXO-1) (Karki et al. 2015); (vii) exaggerated acti-

vation of endothelial mineralocorticoid receptors

(MR) by aldosterone (Sch€afer et al. 2013); (viii) hypo-

adiponectinaemia resulting in downregulation of the

adaptor protein that mediates adiponectin signalling

(APPL1) (Xing et al. 2013); (ix) increased activity of

ACE1 (Feher et al. 2013); (x) increased production of

tumour necrosis factor-a (TNF-a) by PVAT(Virdis

et al. 2011); (xi) exaggerated TLR4 activation (Liang

et al. 2013); and (xii) downregulation in vascular

smooth muscle cells of vasodilatory-stimulated phos-

phoprotein (VASP) (Cheng et al. 2014).

Homocysteinaemia—Increased levels of homocysteine

impair eNOS-dependent relaxations/vasodilatations

both in vitro and in vivo, presumably by upregulating

sEH and increasing oxidative stress (Bellamy et al.

1998, Chambers et al. 1999, Kanani et al. 1999, Lang

et al. 2000, Hanratty et al. 2001, Heil et al. 2004.

Liu et al. 2007, Looft-Wilson et al. 2008, Sen et al.

2012, Zhang et al. 2012a). They also blunt EDH-

mediated relaxations (Heil et al. 2004).

Uric acid—Depletion of uric acid, due to dysfunction

of uric acid transporter 1 (URAT1), causes endothelial

dysfunction in hypo-uricaemic patients, to judge from

a reduced flow-mediated vasodilatation (Sugihara

et al. 2015).

Hallmark of disease

Hypertension. Endothelium-dependent relaxations are

reduced in isolated arteries from different animal

models of hypertension (De Mey & Gray 1985, Lock-

ette et al. 1986, L€uscher et al. 1987b,d, Hongo et al.

1988, Kung & L€uscher 1995, Vanhoutte & Boulanger

1995, Tschudi et al. 1996b, Vanhoutte 1996, Shimo-

kawa & Vanhoutte 1997, Zhou et al. 1999, Johnson

et al. 2005, Stec et al. 2008, Costa et al. 2009, Dur-

and et al. 2010, Fiore et al. 2011, George et al. 2011,

Hao et al. 2011, Lu et al. 2011b, Wang et al. 2011,

El-Bassossy et al. 2012, Liu et al. 2012b, Zhang et al.

2013, 2014, Carrizo et al. 2013, Garcia et al. 2015,

Hernanz et al. 2015). Likewise, the response to

endothelium-dependent vasodilators is blunted in

hypertensive humans (Taddei et al. 1995a,b, 1997b,

2001, Perticone et al. 2005, Levy et al. 2009, Virdis
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et al. 2013). This blunting can be corrected by

antihypertensive treatment both in animals and in

people (L€uscher et al. 1987d, Hutri-Kahonen et al.

1997, Taddei et al. 1998, Benndorf et al. 2007, Naya

et al. 2007, Kang et al. 2011a, Khan et al. 2012, Liu

et al. 2012b, Zepeda et al. 2012) and probably

reflects the premature ageing of the vasculature

exposed chronically to the increased arterial blood

pressure (Taddei et al. 1997b, 2001). In both hyper-

tensive animals and humans, the reduced NO

bioavailability in response to endothelium-dependent

stimuli has been attributed to higher circulating levels

of ADMA (Perticone et al. 2005, Sasser et al. 2014).

The occurrence of dysfunction of the NO pathway

accompanying an increased arterial pressure can be

prevented/alleviated by a number of manoeuvres

including: (i) activating NAD(P)H:quinone oxidore-

ductase (Kim et al. 2011); (ii) increasing the levels of

BH4 (Kang et al. 2011b); (iii) inhibition of arginase

(Johnson et al. 2005, El-Bassossy et al. 2012); (iv)

activation of TRPV1 channels (Hao et al. 2011); (v)

reduction in TLR4 signalling (Sollinger et al. 2014,

Hernanz et al. 2015); (vi) missense mutation of extra-

cellular SOD (Beyer et al. 2014); (vii) heterogenous

deletion of GRK2 (Avendano et al. 2014); (viii) dele-

tion of caveolin-1 (Rath et al. 2009, Pojoga et al.

2014); (ix) activation of ACE2 (Fraga-Silva et al.

2013); or (x) gene transfer of longevity-associated

variant-BPIFB4 (Villa et al. 2015). Conversely, occur-

rence of endothelial dysfunction associated with

hypertension can be precipitated by: (i) histone

demethylase deficiency (Pojoga et al. 2011); (ii)

deletion of peptidyl prolyl cis-trans isomerase (Pin1;

Chiasson et al. 2011); (iii) deletion of collectrin (ho-

molog of ACE2; Cechova et al. 2013); (iv) increase in

the Rho-kinase activator RhoA (by administration of

interleukin-17A; Nguyen et al. 2013); (v) deletion of

a-CGRP (Smillie et al. 2014); (vi) deletion of small

GTPase Ras-related protein 1 (Rap1b; Lakshmikan-

than et al. 2014); (vii) endothelium-specific deletion of

liver kinase B1 (LKB1); or (viii) administration of

pentraxin 3 (PTX3; Carrizo et al. 2013).

Beyond NO—In the SHR, despite a lower expression

of eNOS and soluble guanylyl cyclase in the arterial

wall (Chou et al. 1998, Kl€oss et al. 2000, Michel

et al. 2007), the blunting of endothelium-dependent

relaxations/vasodilatations is due mainly to the con-

comitant release of endothelium-derived vasoconstric-

tor prostanoids (see section The major villains:

endothelium-derived vasoconstrictor prostanoids)

rather than to a reduced release of NO (L€uscher &

Vanhoutte 1986, L€uscher et al. 1987c, Koga et al.

1988, Yasuro et al. 1999). Likewise in essential hyper-

tensive humans, the decreased responsiveness to

acetylcholine also can be corrected by inhibiting

COXs (Taddei et al. 1997a, Virdis et al. 2013). In

obese hypertensives, upregulation of the ET-1 system

(see section Endothelin-1) also contributes to the

endothelial dysfunction (Cardillo et al. 2004).

Diabetes. In arteries of diabetic animals and humans,

the phosphorylation of eNOS is reduced and thus the

NO-mediated endothelium-dependent relaxations/

dilatations are impaired, presumably as a result of the

chronic exposure to hyperglycaemia and the

occurrence of insulin resistance (De Vriese et al. 2000,

Vallejo et al. 2000, Cheng et al. 2001, Guzik et al.

2002, Inkster et al. 2002, Nassar et al. 2002, Pannir-

selvam et al. 2002, Kim et al. 2003, 2006, Shi et al.

2006, 2007a, Eringa et al. 2007, Goel et al. 2007,

Machha et al. 2007, Obrosova et al. 2007, Cao et al.

2008, Sch€afer et al. 2008, Akar et al. 2011, Kagota

et al. 2011, Leo et al. 2011, Sena et al. 2011, Estrada

et al. 2012, Li et al. 2012, 2013a, Patel et al. 2012,

Romero et al. 2011, Yamaleyeva et al. 2012, Meijer

et al. 2013, Rinne et al. 2013, Han et al. 2014,

Kassan et al. 2014, Sawada et al. 2014a,b, van Sloten

et al. 2014, Tian et al. 2014, Goulopoulou et al.

2015, Liu et al. 2015a). In the case of type 2 diabetes,

a genetic predisposition to endothelial dysfunction

may be involved (Iellamo et al. 2006). The mecha-

nisms underlying the reduced NO-dependent dilata-

tions in diabetes include: (i) reduced BH4

bioavailability and eNOS uncoupling (Guzik et al.

2002, Pannirselvam et al. 2002, Alp et al. 2003, Cai

et al. 2005); (ii) increased activity of arginase, likely

resulting from an augmented presence/activity of

Rho-kinase (Ming et al. 2004, Ryoo et al. 2006,

2008, Katusic 2007, L€uscher & Steffel 2008, Romero

et al. 2008, Vanhoutte 2008, Romero et al. 2011,

El-Bassossy et al. 2012, Yao et al. 2013); (iii) elevated

levels of ADMA (Lin et al. 2002, Xiong et al. 2003);

(iv) augmented production of superoxide anions and

thus scavenging of NO and increased presence of per-

oxynitrite (Cosentino et al. 1997, Mayhan & Patel

1998, Graier et al. 1999, Maejima et al. 2001, Inkster

et al. 2002, Pannirselvam et al. 2002, Pacher & Szabo

2006, Duncan et al. 2007, Quijano et al. 2007, Gao

et al. 2008, L€uscher & Steffel 2008, Sch€afer et al.

2008, Leo et al. 2011, Sena et al. 2011, Huang

et al. 2012, Cho et al. 2013); (v) NFjB activation

(Liu et al. 2015b); (vi) suppression by FOXO1 of

KLF2 (Lee et al. 2013); (vii) downregulation of stro-

mal interaction molecule 1 (STIM1) and of sarcoplas-

mic endoplasmic reticulum protein 3 resulting in

deficient endothelial intracellular calcium handling

(Estrada et al. 2012); (viii) overexpression of RAGE

receptors and quenching of NO by advanced glycosy-

lation products (AGE; Bucala et al. 1991, Yin &
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Xiong 2005, Gao et al. 2008, De Verse et al. 2012,

Tian et al. 2014); (ix) reduced presence of apelin

(Grisk 2007, Zhong et al. 2007); (x) altered metabo-

lism in the endothelial cells (De Zeeuw et al. 2015);

and (xi) reduced secretion of adiponectin by PVAT

(Meijer et al. 2012). Endothelial diabetic dysfunction

can be exacerbated by: (i) deletion of ACE2 (Patel

et al. 2012); and (ii) p22phox expression causing dys-

function through an extracellular signal regulated

kinase 1/2 (ERK1/2) and p38-mitogen-activated pro-

tein kinase-dependent mechanism (Kassan et al. 2014).

Conversely, the blunting of NO-dependent responses in

arteries of diabetic animals can be alleviated/prevented

by the following manoeuvres: (i) knockin of eNOS

with a single amino acid mutation at the S1176 phos-

phorylation site (Li et al. 2013a); (ii) induction of HO-

1 (Cao et al. 2008, Tian et al. 2014); (iii) heterozygous

knockout of Rho-kinase isoforms (ROCK 1 and ROCK

2; Yao et al. 2013); (iv) overexpression of STIM1

(Estrada et al. 2012); (v) KLF2 gene therapy (Lee et al.

2013); (vi) genetic deletion of sEH (Elmarakby et al.

2011); (vii) transgenic endothelium-specific overexpres-

sion of SIRT1 (Zhou et al. 2011); (viii) activation of

ACE2 (Fraga-Silva et al. 2013); (ix) endothelium-selec-

tive overexpression of constitutively active AMPK (Li

et al. 2012); (x) treatment with natural products such

as boldine, 3,4-dihydroxyacetophenone or resveratrol

(Akar et al. 2011, Lau et al. 2013, Liu et al. 2015a);

(xi) administration of stable melanocortin analogs

(Rinne et al. 2013); and (xii) treatment with existing

therapeutic agents [e.g. losartan (Nemoto et al. 2011),

metformin (Sena et al. 2011), miglitol (Sawada et al.

2014a,b) or ramipril (Tian et al. 2014)].

Beyond NO—Depending on the experimental model,

EDH-mediated responses are blunted (Weston et al.

2008, Leo et al. 2011, Gokina et al. 2013, Schach

et al. 2014) or unchanged (Kagota et al. 2011, Cho

et al. 2013) in arteries of diabetic animals. Besides the

reduced bioavailability of NO and altered EDH-like

responses, the production of mainly endothelium-

derived vasoconstrictor prostanoids (see section The

major villains: endothelium-derived vasoconstrictor

prostanoids), but possibly also that of adenosine

tetraphosphate (Up4A) (Matsumoto et al. 2014) and

ET-1 (see section Endothelin-1), contributes impor-

tantly to the endothelial dysfunction of diabetes. In

addition, the responsiveness of vascular smooth mus-

cle to endothelium-dependent vasodilators can be

abnormal (Lu et al. 2005, 2011b, Lesniewski et al.

2008, Shi et al. 2008, Goulopoulou et al. 2015).

Coronary disease. Individuals at increased risk of

coronary heart disease (CAD) are characterized by

impaired peripheral dilatations (Ijzerman et al. 2003).

Also in the coronary circulation, endothelial dysfunc-

tion is a characteristic of the disease, and the adminis-

tration of intracoronary acetylcholine even can lead to

the occurrence of vasospasm (Ludmer et al. 1986,

Hodgson & Marshall 1989, Shimokawa & Vanhoutte

1997, Vanhoutte et al. 1997, Lavi et al. 2008, Ong

et al. 2012, 2014, Ganz & Hsue 2013). Structural

and functional modifications of HDL may explain the

loss of their endothelial protective properties in

patients with CAD (Besler et al. 2011, Kratzer et al.

2014, Hays et al. 2015). The coronary endothelial

dysfunction in patients with CAD has also been asso-

ciated with mitochondrial dysfunction resulting from

too low levels of physical activity (Luk et al. 2012),

with increased circulating ADMA levels (Antoniades

et al. 2011) and with lower circulating levels of huma-

nin (Widmer et al. 2013). Both in animals and

humans, the presence of endothelial dysfunction pre-

dicts the severity of the outcome, in particular the

occurrence of myocardial infarction and stroke

(Suwaidi et al. 2000, Halcox et al. 2002, Kuvin &

Karas 2003, Mancini 2004, Rossi et al. 2008).

Ischaemia–reperfusion injury. Acutely reperfused

coronary arteries exhibit a reduced responsiveness to a

variety of endothelium-dependent vasodilators (Pear-

son et al. 1990a, Huang et al. 2011). Also in intact

humans, ischaemic injury reduces flow-mediated

dilatations (McLaughlin et al. 2014). The impairment

in NO bioavailability may be caused by increased

ROS production leading to reduced activity of canoni-

cal transient receptor potential channel 3 (TRPC3)

(Huang et al. 2011) or increased responsiveness of

ET-1 receptors (Wackenfors et al. 2004, Martinez-

Revelles et al. 2012). The impact of acute reperfusion

injury on endothelial cells and eNOS can be mitigated

by acetylcholine (He et al. 2015), nebivolol (Aragon

et al. 2011), TRPC3 stimulation (Huang et al. 2011),

sildenafil (McLaughlin et al. 2014), polyphenols (Shin-

mura et al. 2015, Yang et al. 2015) and caloric

restriction (Shinmura et al. 2015). Ischaemia–reperfu-
sion injury also has chronic endothelial consequences.

Thus, 12 weeks later, reperfused coronary arteries

exhibit impaired endothelium-dependent relaxations to

aggregating platelets and platelet-derived compounds

(ADP, serotonin and thrombin), but not to acetylcholine

(Pearson et al. 1990b). This endothelial dysfunction

resembles that observed in arteries with regenerated

endothelium (Shimokawa et al. 1989, 1991, Chan et al.

2013) and suggests a chronic selective impairment of

Gi-mediated responses.

Heart failure. Endothelium-dependent relaxations are

reduced in coronary and peripheral arteries of animals

and humans with ventricular hypertrophy and/or heart
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failure presumably because of the increased oxidative

stress resulting from underperfusion of the tissues

leading to downregulation of eNOS and reduced

bioavailability of NO (Kaiser et al. 1989, Treasure

et al. 1990, Kubo et al. 1991, Katz et al. 1992, Zhao

et al. 1995, Smith et al. 1996, Bauersachs et al. 1999,

Indik et al. 2001, Nakamura et al. 2001, Landmesser

et al. 2002, Malo et al. 2003, Trochu et al. 2003, Fer-

reiro et al. 2004, Widder et al. 2004, Lida et al.

2005, Gill et al. 2007, Rossi et al. 2008, Lam & Brut-

saert 2012, Witman et al. 2012). An impairment of

the vascular smooth muscle cells to relax contributes

to the blunting of the endothelium-dependent respon-

siveness (Gill et al. 2007). Treatment with low doses

of ouabain may improve NO release, as well as EDH-

mediated responses, in arteries of rodents with heart

failure (Siman et al. 2015). The degree of impairment

of endothelium-dependent vasodilatations predicts the

outcome in patients with chronic heart failure (Meyer

et al. 2005). The peripheral endothelial dysfunction

accompanying heart failure can be reversed, at least

temporarily, by heart transplantation (Witman et al.

2012).

Pulmonary hypertension. Chronic hypoxia causing

pulmonary hypertension is accompanied by reduced

endothelium-dependent relaxations of pulmonary

arteries, because of an overproduction of oxygen-

derived free radicals leading to reduced activity of

eNOS (resulting from a tighter coupling to caveolin-1)

and a diminished bioavailability of NO (Fresquet

et al. 2006, Jerkic et al. 2011, d’Uscio 2011, Shenoy

et al. 2013, 2014, Kuriyama et al. 2014, Nozik-

Grayck et al. 2014, Teichert-Kuliszewska et al. 2015).

In the monocrotaline-induced form of the disease, a

similar endothelial dysfunction caused by oxygen-

derived free radicals occurs in the right ventricle (Sun

& Ku 2006, Kajiya et al. 2007). The reduced NO

release accompanying pulmonary hypertension can be

accelerated by: (i) genetic deletion of bone

morphogenetic protein receptors (Frank et al. 2008;

see section The major villains: endothelium-derived

vasoconstrictor prostanoids); (ii) heterozygous deletion

of Alk1 (coding for an endothelial-specific receptor for

TGF-b; Jerkic et al. 2011); (iii) selective deletion of

endothelial SOD (Nozik-Grayck et al. 2014); or (iv)

reduction in the calcium-binding protein S100A1 (Tei-

chert-Kuliszewska et al. 2015). It can be curtailed, for

example, by the chronic administration of diminazene

aceturate (DIZE, activator of ACE2; Shenoy et al.

2013) or by stimulation of the EPO system with

genistein (Kuriyama et al. 2014).

Sleep apnoea. Intermittent hypoxia, as occurring with

obstructive sleep apnoea, observed mainly in obese

subjects, reduces endothelium-dependent responsive-

ness (Budhiraja et al. 2007, Butt et al. 2011, Azuma

et al. 2015). The endothelial dysfunction caused by

severe sleep apnoea is reversible (Butt et al. 2011,

Azuma et al. 2015). To judge from work in the ani-

mal, it results from a reduction in NO release because

of augmented oxidative stress and it does not involve

EDH-mediated responses, but may be due in part to

increased production of ET-1 (see section Endothelin-

1; Capone et al. 2012, Crossland et al. 2013).

Inflammation. Inflammatory conditions can be accom-

panied by endothelial dysfunction in the human

(Kharbanda et al. 2002, Higashi et al. 2008, Antoni-

ades et al. 2011). To judge from studies in mice, the

dysfunction is likely due to upregulation of NOX with

increased ROS production causing a decreased NO

bioavailability, and results from the NFjB induction

by cytokines (Lesniewski et al. 2011, Karbach et al.

2014). In the animal, induction of rheumatoid arthri-

tis causes blunting of endothelium-dependent relax-

ations due to elevated levels of monocyte chemotactic

protein-1 (MCP-1) and BH4 deficiency, leading to

exaggerated ROS production and eNOS uncoupling

(Haruna et al. 2006, He et al. 2013, Totoson et al.

2014). The endothelial dysfunction can be ameliorated

by statins (He et al. 2013). In patients with rheuma-

toid arthritis, flow-mediated dilatations are reduced,

possibly because of augmented circulating levels of

ADMA (Antoniades et al. 2011).

The weak link: regenerated endothelium

Endothelial cells form a monolayer mainly resulting

from contact inhibition. After maturation of the body,

they remain quiescent for many years before ageing

and apoptotic programming initiate their turnover.

However, the latter is accelerated by cardiovascular

risk factors such as hypertension and diabetes. Eventu-

ally, the apoptotic cells die and are removed by the

blood stream. They are replaced rapidly by regener-

ated endothelial cells. It is still uncertain what the

exact contribution in this regeneration process is of

neighbouring cells, freed of contact inhibition and cir-

culating endothelial progenitor cells (Vanhoutte 1997,

Hibbert et al. 2003, Sata 2003, Dimmeler & Zeiher

2004, Lamping 2007, Filipe et al. 2008, Zampetaki

et al. 2008, Hagensen et al. 2012).

Regenerated endothelial cells are dysfunctional

(Fig. 8). This conclusion is based on experiments per-

formed on porcine coronary arteries (Shimokawa and

Vanhoutte 1989a,b,c, Shimokawa et al. 1989, 1991,

Eto et al. 2005, Chan et al. 2013). One month after

in vivo balloon denudation of the endothelium of part

of the artery, total relining of the endothelial surface
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had occurred. Rings covered with regenerated

endothelium exhibited a marked blunting of the relax-

ations to aggregating platelets, serotonin or thrombin

and the remaining response was no longer inhibited

by pertussis toxin. By contrast, relaxations evoked by

ADP and bradykinin, which both depend on the Gq-

signalling cascade, as well as those to the calcium

ionophore A23187 were normal, illustrating the abil-

ity of the regenerated endothelial cells to produce

NO. These findings implied a selective dysfunction of

the Gi-dependent responses in regenerated endothelial

cells. This selective dysfunction was reduced by the

chronic intake of x3-unsaturated fatty acid, and exac-

erbated by a chronic hypercholesterolaemic diet which

resulted in the occurrence of typical atherosclerotic

lesions in the area of previous denudation. These

observations prompt the conclusion that the selective

dysfunction of regenerated endothelial cells is the first

step allowing the atherosclerotic process.

To analyse the molecular mechanisms underlying the

dysfunction of regenerated endothelial cells, primary

cultures were derived from either regenerated or native

endothelium (Borg-Capra et al. 1997, Fournet-Bour-

guignon et al. 2000, Kennedy et al. 2003, Lee et al.

2007). Primary cultures derived from regenerated

endothelial cells had the appearance and markers of

accelerated senescence, a reduced expression and activ-

ity of eNOS, a greater production of oxygen-derived

free radicals (produced by the endothelial NOX), took

up more modified LDL and generated more oxyLDL.

By contrast, the presence of Gi proteins was comparable

to that observed in primary cultures derived from the

native endothelium. The genomic changes observed in

cultures of regenerated endothelial cells were consistent

with those phenotypic and functional changes.

Increased extracellular concentrations of oxyLDL

reduce the production of EDRF/NO and the endothe-

lium-dependent relaxations to serotonin (Boulanger

et al. 1985, Cox & Cohen 1996). Taken in conjunc-

tion, those observations prompt the conclusion that an

augmented presence of oxyLDL is the cause of the

selective loss in Gi protein-mediated responses of regen-

erated endothelial cells and thus of the inability to

respond to serotonin and thrombin (Fig. 2). Obviously,

this is not the only negative effect of oxygen-derived

free radicals and oxyLDL which play a central role in

the atherosclerotic process (Fig. 9) (Stocker and Keaney

2004, 2005, Li & Mehta 2005, August et al. 2006).

Other factors include a direct inhibitory effect on the

expression, reduced activation (dephosphorylation) and

uncoupling of eNOS (Chu et al. 2005, Fleming et al.

2005, Brandes 2006, Heeba et al. 2007) and an

enhanced activity of arginase, which competes with NO

for the common substrate arginine (Fig. 6) (Ming et al.

2004, Brandes 2006, Ryoo et al. 2006, 2008, Katusic

2007, Romero et al. 2008, Vanhoutte 2008). In addi-

tion, a greater production of superoxide anions will

reduce the bioavailability of NO and increase the levels

of peroxynitrite (Kojda & Harrison 1999, Vanhoutte

2001, Fleming et al. 2005, Brandes 2006, Heeba et al.

2007).

Genomic factors and endogenous mediators, other

than the increased presence of oxyLDL, may acceler-

ate or contribute to the atherosclerotic process. These

include: (i) emergence of fatty acid-binding proteins

(Furuhashi et al. 2007, Lee et al. 2007, Furuhashi &

Hotamisligil 2008, Hoo et al. 2008) and matrix-

metalloproteinase 7 (MMP7; Lee et al. 2007);

(ii) circulating chemokines (Ardigo et al. 2007); (iii)

inhibition of the proteosome (Herrmann et al. 2007);

(iv) presence of growth-related oncogene-a (Bechara

et al. 2007); and (v) insufficiency of the paraoxonase-

Figure 8 Effects of oxidized low-density

lipoproteins (oxyLDL) in a regenerated

endothelial cell, resulting in the reduced

release of nitric oxide (NO). 5-HT, sero-

tonin receptor; A-FABP, fatty acid bind-

ing protein-4; B, bradykinin receptor;

P, purinoceptor; G, coupling proteins.
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1 gene (Guns et al. 2008). Of those, the most relevant

one may be adipocyte fatty acid-binding protein

(A-FABP). Indeed, the mRNA of this protein is

expressed in regenerated, but not native endothelial

cells (Lee et al. 2007). This overexpression of A-FABP

(as well as that of MMP7) requires the regeneration

process to occur in vivo, as it is not observed in

endothelial cells made senescent in vitro (Lee et al.

2010). In cultured human microvascular endothelial

cells, lipid induction of A-FABP expression is associ-

ated with reduced phosphorylation of eNOS and NO

production. These effects were reversed by the

A-FABP inhibitor BMS309403 (Lee et al. 2011b). In

the atherosclerosis-prone apolipoprotein E knockout

(ApoE�/�) mouse, the presence of A-FABP in the

endothelium increases with age, in parallel with

endothelial dysfunction involving Gi-mediated relax-

ations and the occurrence of atherosclerotic lesions

(Lee et al. 2011b); chronic treatment with

BMS309403 prevents the endothelial dysfunction (Lee

et al. 2011b). Likewise, after endothelial regeneration

following angioplasty in the coronary artery of the

pig, chronic treatment with the A-FABP inhibitor pre-

vents the selective reduction in endothelium-dependent

responses to serotonin, as well as the intimal thicken-

ing following the procedure (Chan et al. 2013). A sim-

ilar protection is exerted by chronic treatment with

the antioxidant apocynin, comforting the interpreta-

tion that overexpression of A-FABP and the resulting

increase in oxidative stress, and hence the augmented

presence of oxyLDL in the endothelial cells plays a

causal role in the genesis of endothelial dysfunction.

Whatever the cause is of their dysfunction, the

endothelial cells cannot produce enough NO in

response to platelets and thrombin and this NO defi-

ciency permits the inflammatory reaction leading to

atherosclerosis (Ross 1999, Aikawa & Libby 2004,

Hansson 2005, Barton et al. 2007, Vanhoutte 2009b,

Vanhoutte et al. 2009).

Endothelium-derived hydrogen peroxide

As mentioned in the Introduction, besides NO and

prostacyclin, a number of other endothelial mediators

and signals can cause endothelium-dependent, NO-

independent hyperpolarization (EDH) and thus relax-

ation of the underlying vascular smooth muscle

(Fig. 3) (F�el�etou & Vanhoutte 2006a,c, 2007, 2009,

Shimokawa 2014). To discuss in depth these other

endothelial signals is beyond the scope of this review,

and the contribution of EDH to endothelial dysfunc-

tions has been mentioned already. However, endothe-

lium-derived H2O2 has gained prominence and will be

discussed in more details in view of its emerging

relevance for the coronary circulation.

Blood vessel size and relative contributions of

endothelium-derived NO and H2O2

NO and endothelium-derived, hyperpolarizing H2O2,

which under physiological conditions originates from

NOS-derived superoxide anions dismutated by

endothelial Cu,Zn-SOD (Morikawa et al. 2003,

Takaki et al. 2008b), play diverse roles in modulating

Figure 9 Mechanisms of oxyLDL-induced impairment of endothelial NO production. NO synthase (NOS) uses L-arginine to

generate NO. NO production can be attenuated in the presence of oxyLDL by interfering with the supply of L-arginine to the

enzyme through endogenous competitive inhibitors, in particular asymmetrical dimethyl-L-arginine (ADMA), as well as degrada-

tion of arginine through arginase. NOS expression and specific activity are decreased by oxyLDL through RhoA and PKC. NO

bioavailability is reduced by an oxyLDL-mediated activation of NOX, which leads to superoxide anion (O�
2 ) formation. This

process facilitates the generation of peroxynitrite (ONOO�), which subsequently oxidizes tetrahydrobiopterin (BH4), leading to

NOS uncoupling. Uncoupled NOS itself produces O�
2 , further promoting the process of BH4 oxidation. Rho, member of the

Rho protein family (either RhoA or Rac).
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vascular tone in a distinct blood vessel size-dependent

manner. Indeed, NO is the dominant endothelium-

dependent vasodilator in conduit arteries, while H2O2

is so in resistance vessels (Nagao et al. 1992a, Takaki

et al. 2008a,b, Shimokawa 2014). The precise mecha-

nism by which H2O2 relaxes the underlying vascular

smooth muscle involves induction of protein kinase

G1a (PKG1a) dimerization and subsequent activation

of large conductance calcium-activated potassium

channels, leading to hyperpolarization and vasodilata-

tion in murine resistance vessels as well as in human

coronary arterioles (Burgoyne et al. 2007, Liu et al.

2011, Prysyazhna et al. 2012, Zhang et al. 2012b).

Indeed, in mice, knockin of the mutant Cys42Ser

PKG1a yields vascular smooth muscle cells insensitive

to H2O2-induced dimerization, due to the absence of

a redox-sensitive sulphur; as a result, these animals

exhibit markedly impaired EDH-mediated relaxations

ex vivo and systemic hypertension in vivo (Prysyazhna

et al. 2012). In addition, H2O2 also has potent

vasodilator properties in coronary resistance vessels,

so that impaired H2O2-mediated vasodilatations may

lead to coronary microvascular dysfunction (Crea

et al. 2014). Since coronary vascular resistance is

predominantly determined by the pre-arterioles (more

than 100 lm in diameter) and arterioles (<100 lm)

where EDH-mediated responses become more impor-

tant than NO-mediated relaxations for vascular tone

(Crea et al. 2014), maintaining a proper blood vessel

size-dependent contribution of NO vs. EDH appears

essential for the treatment of coronary artery disease.

Further mechanistic insight into the blood vessel size-

dependent relative contributions of NO and H2O2 has

been gained. Thus, compared with conduit arteries, in

mouse resistance vessels, endothelial NO synthase is

functionally suppressed by caveolin-1 and relaxation

of their vascular smooth muscle cells to H2O2 is

enhanced through a PKG1a-mediated mechanism

(Burgoyne et al. 2012, Ohashi et al. 2012, Tsutsui

et al. 2012). Furthermore, in mice, endothelial AMPK

modulates EDH-mediated responses in resistance, but

not in conduit arteries, contributing to the regulation

of arterial blood pressure and coronary blood flow

responses in vivo (Enkhjargal et al. 2014). Although

three NO synthase isoforms including neural NO syn-

thase (nNOS, NOS1), inducible NO synthase (iNOS,

NOS2) and endothelial NOS (eNOS, NOS3) are

expressed in the cardiovascular system, eNOS is the

dominant NO synthase isoform in blood vessels

(Forstermann & Li 2011). NO synthases have been

known to generate superoxide anions from reductase

domain under physiological conditions (Stuehr et al.

2001), where superoxide anions are converted to

H2O2 to cause EDH-mediated responses. Since haeme

reduction rate in eNOS is much slower than that in

the other NO synthase isoforms, reductase domain-

mediated superoxide generation is a significant alter-

native in eNOS (Stuehr et al. 2001). Based on these

observations, eNOS may be the most important iso-

form in generating H2O2/EDH in the endothelium.

Note that superoxide anions relevant to are not

derived from pathologically uncoupled eNOS because

the H2O2/EDH-mediated responses are resistant to

NOS inhibitors and upregulation of eNOS cofactor

tetrahydrobiopterin has no effects on the responses

(Takaki et al. 2008a). This is the case at least in

normal mesenteric arteries (Takaki et al. 2008a); how-

ever, in human coronary arterioles, other sources of

superoxide anions have been proposed in H2O2-

mediated vasodilatation as well; mitochondrial respi-

ratory chain- and nicotinamide adenine dinucleotide

phosphate (NADPH)-derived H2O2 is associated with

flow-mediated dilation and bradykinin-induced vasodi-

latation respectively (Liu et al. 2003; Larsen et al.

2009).

Dual role of reactive oxygen species

Endothelium-derived H2O2 serves as an EDH factor

to cause vasodiltation as described above, while it also

induces endothelium-dependent vasoconstriction by

COX-dependent release of thromboxane in rat mesen-

teric arteries (Garcia-Redondo et al. 2009) and causes

vasoconstriction when hyperpolarization is compro-

mised in perfused mouse mesenteric arteries (Lucchesi

et al. 2005). The estimated concentration of endothe-

lium-derived H2O2 as an EDH factor is in micromolar

order (Matoba et al. 2003, Yada et al. 2006), which

is much lower concentration than that observed in

various pathological conditions (Schroder & Eaton

2008, Burgoyne et al. 2013). Although ROS, includ-

ing H2O2, usually are regarded as primarily harmful,

their protective role has attracted attention based on

the accumulating evidence that endothelium-derived

H2O2 participates in endothelium-dependent vasodi-

latation and contributes to vascular homeostasis at

physiologically relevant low concentrations (Matoba

et al. 2000, 2003, Morikawa et al. 2003, Shimokawa

& Matoba 2004, Yada et al. 2006, Takaki et al.

2008b, Burgoyne et al. 2013, Godo et al. 2014, Satoh

et al. 2014). As predicted (Vanhoutte 2001) following

the initial description of the role of H2O2 in EDH

(Matoba et al. 2000), the available evidence comforts

the interpretation that H2O2 is a physiological sig-

nalling molecule serving as an EDH-inducing mediator

especially in the microcirculation and thus modulates

arterial blood pressure (Prysyazhna et al. 2012),

metabolic coronary vasodilatation (Yada et al. 2007)

and metabolic functions (Nakajima et al. 2012). Such

physiological importance of H2O2 helps to understand
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why, in the clinical setting, chronic antioxidant

therapies do not improve mortality rate in patients or

even worsen their prognosis (Bjelakovic et al. 2007),

providing insight into the importance of ROS in main-

taining homeostasis in humans.

Endothelium-dependent contractions

As stated in the Introduction, the endothelium cells

can also initiate contractions of the underlying vascu-

lar smooth muscle cells (Fig. 3; De Mey & Vanhoutte

1982, 1983). Bioassay studies demonstrated that dif-

fusible substances (EDCF) are responsible for these

endothelium-dependent increases in vasomotor tone

(Rubanyi & Vanhoutte 1985, Iqbal & Vanhoutte

1988, Yang et al. 2003). The delicate balance between

endothelium-dependent relaxations and contractions

maintains vascular homeostasis. Reduced productions

of relaxing signals combined with an elevated

secretion of EDCFs are the major characteristic of

endothelial dysfunction (Wong & Vanhoutte 2010).

Although endothelial cells can produce ET-1 (Yanagi-

sawa et al. 1988, Yanagisawa & Masaki 1989, Schini

& Vanhoutte 1991b, Vanhoutte 1993, Rubanyi &

Polokoff 1994, B€ohm & Pernow 2007, Kirkby et al.

2008; see section Endothelin-1) and other non-prosta-

noid vasoconstrictor substances (Cosentino et al.

1994, Dhein et al. 1997, Saifeddine et al. 1998,

Jankowski et al. 2005), the available evidence strongly

suggests that under most circumstances (except in the

case of insulin resistance), vasoconstrictor prostaglan-

dins produced by COX in the endothelium explain

endothelium-dependent contractions (Vanhoutte et al.

2005, F�el�etou et al. 2011). The particular EDCF

responsible for the endothelium-dependent contrac-

tions highly depends on the aetiology of the disease,

the animal species studied or the specific vascular bed

chosen for examination. Endothelium-dependent con-

tractions are most prominent in arteries of aged, obese

or diseased (e.g. hypertension, diabetes) animals and

humans in which endothelial function is impaired

(Barton 2010, Tang & Vanhoutte 2010, Vanhoutte

2013b). However, the occurrence of endothelium-

dependent contractions also can occur in arteries and

veins of young and healthy subjects (Wong et al.

2009).

The major villains: endothelium-derived vasoconstrictor

prostanoids

Origin and action. Which cyclooxygenase isoform is

responsible – the forever argument?—Endothelium-

dependent, COX-dependent contractions (Fig. 10) to

acetylcholine and other vasoactive substances (e.g.

arachidonic acid, ATP, the calcium ionophore

A23187) have been observed in blood vessels from

different species (Furchgott & Vanhoutte 1989,

L€uscher & Vanhoutte 1990, Kauser & Rubanyi 1995,

Davidge & Zhang 1998, K€ah€onen et al. 1998,

Derkach et al. 2000, Yang et al. 2003, Vanhoutte

et al. 2005). Indeed, most endothelium-dependent

contractions are prevented by non-selective inhibitors

of COXs (Miller & Vanhoutte 1985, L€uscher &

Vanhoutte 1986, Katusic et al. 1988), exemplifying

the pivotal role of these enzymes in the phenomenon.

Bioassay studies indicated that the vasoconstrictor

prostanoids involved are produced by the endothelial

COX, rather than that of the vascular smooth muscle

(Yang et al. 2003). Two isoforms of the enzyme have

been identified in blood vessels (F�el�etou et al. 2011).

COX-1 is constitutively expressed, whereas COX-2 is

highly inducible (Pritchard et al. 1994). As two iso-

Figure 10 Endothelium-dependent contraction is likely to be

comprised of two components: Generation of prostanoids and

ROS. Each component depends on the activity of endothelial

COX-1 and the stimulation of the TP receptors located on the

smooth muscle to evoke contraction. In the SHR aorta, there is

an increased expression of COX-1 receptors, increased release

of calcium, ROS, endoperoxides and other prostanoids, which

facilitates the greater occurrence of endothelium-dependent

contraction in the hypertensive rat. The necessary increase in

intracellular calcium can be triggered by receptor-dependent

agonists, such as acetylcholine or ADP, or mimicked with cal-

cium increasing agents, such as the calcium ionophore

A23187. The abnormal increase in intracellular ROS can be

mimicked by the exogenous addition of H2O2 or the genera-

tion of extracellular ROS by incubation of xanthine with xan-

thine oxidase. AA, arachidonic acid; ACh, acetylcholine; ADP,

adenosine diphosphate; H2O2, hydrogen peroxide; M, mus-

carinic receptors; P, purinergic receptors; PGD2, prostaglandin

D2; PGE2, prostaglandin E2; PGF2a, prostaglandin F2a; PGI2,

prostacyclin; PGIS, prostacyclin synthase; PLA2, phospholi-

pase A2; ROS, reactive oxygen species; TXA2, thromboxane

A2; TXAS, thromboxane synthase; X + XO, xanthine plus

xanthine oxidase.
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forms exist, the next obvious question was which of

those two evokes endothelium-dependent contractions.

Using preferential and selective inhibitors of the two

isoforms of the enzyme, molecular biology experi-

ments and studies with blood vessels of genetically

modified mice concur to suggest that COX-1 is the

major source of EDCF, as least in mouse arteries

(Tang et al. 2005a, Zhou et al. 2013) and in the aorta

of SHR and diabetic rats (Ge et al. 1995, Traupe

et al. 2002b, Ospina et al. 2003, Wang et al. 2003,

Yang et al. 2003, Gluais et al. 2006, Virdis et al.

2013). In these arteries, the expression of COX-1 is

upregulated, which facilitates the enhanced production

of vasoconstrictor prostanoids in the endothelium that

diffuse to contract the underlying vascular smooth

muscle (F�el�etou et al. 2009, Tang & Vanhoutte

2009). The consequences of the upregulation of COX-

1 expression in these arteries can be reversed by

preferential selective inhibitors of this isoform.

However, under pathological conditions, including

hypertension, diabetes and obesity, the expression of

COX-2 in arteries is often upregulated (Pritchard

et al. 1994, Camacho et al. 1998, Zerrouk et al.

1998, Garcia-Cohen et al. 2000, Ikeda et al. 2008,

Shi & Vanhoutte 2008). Additionally, the expression

of COX-2 increases with ageing and with augmented

shear stress resulting from exaggerated pulsatile flow

(Topper et al. 1996, Hendrickson et al. 1999, Wong

et al. 2009). COX-2 can also be expressed constitu-

tively, as is the case in the endothelium of the rat

pulmonary and human renal arteries and in cultured

endothelial cells (Baber et al. 2003, Therland et al.

2004). In situations where endothelial COX-2 is

present/induced, the prostanoids generated by this iso-

form can evoke endothelium-dependent contractions

(Camacho et al. 1998, Zerrouk et al. 1998, Garcia-

Cohen et al. 2000, Blanco-Rivero et al. 2005, Hirao

et al. 2008, Shi & Vanhoutte 2008). For example, in

carotid and renal arteries of the SHR, the exaggerated

endothelium-dependent contractions in these arteries

are selectively inhibited by COX-2 inhibitors, indicat-

ing that the endothelium-dependent contractions in

these arteries are mediated by COX-2 upregulation

(Wong et al. 2009, Liu et al. 2014b, 2015b). In

human essential hypertension, COX-2 is overex-

pressed and appears to be the major isoform responsi-

ble for endothelial dysfunction (Virdis et al. 2013).

Hence, both COX isoforms can evoke endothelium-

dependent contractions (Vanhoutte 2013a). The con-

tribution of the specific COX isoforms to such con-

traction highly depends on their relative expression in

the particular artery of interest.

Calcium, the trigger for release—Although the release

of EDCF can be tonic (Iwatani et al. 2008) or elicited

by sudden stretch (Katusic et al. 1987), it usually is

Figure 11 Endothelium-dependent effects of acetylcholine in the rat aorta. Left: endothelium-dependent relaxations in

preparations of normotensive rats. Right: cyclooxygenase-dependent, endothelium-dependent contractions to acetylcholine in

SHR aorta. PGI2, prostacyclin; R, receptor; IP, prostacyclin receptor; TP, thromboxane receptor; PLA2, phospholipase A2; AA,

arachidonic acid; COX1, cyclooxygenase 1; S-18886, antagonist of TP receptors; M, muscarinic receptor; PGIS, prostacyclin

synthase; PGH2, endoperoxides; sGC, soluble guanylyl cyclase; AC, adenylyl cyclase; SR, sarcoplasmic reticulum; +, activation;

�, inhibition; ?, unknown site of formation.
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initiated by vasoactive mediators acting at the cell

membrane, including acetylcholine [activating

endothelial M3-muscarinic receptors (Boulanger et al.

1994)] or adenosine di- and triphosphate [activating

purinoceptors (Koga et al. 1989, Mombouli &

Vanhoutte 1993)]. These mediators activate calcium-

independent phospholipase A2 (iPLA2) that produces

lysophospholipids, which in turn open store-operated

calcium channels, permitting the influx of extracellular

calcium which subsequently activates calcium-depen-

dent phospholipase A2 (cPLA2) (Wong et al. 2010a),

which then makes arachidonic acid available for

endothelial COX, setting in motion the release of

EDCF. Indeed, the store-operated calcium channel

inhibitor, SKF-96565, prevented endothelium-depen-

dent contraction to acetylcholine (Wong et al. 2010a).

Exposure of arteries to 2-aminothoxydiphenyl borate,

a non-selective cation channel blocker, diminished

endothelium-dependent contractions (Wong et al.

2009). Fitting with this notion, endothelium-depen-

dent contractions are less prominent in bathing solu-

tion containing low extracellular calcium and are

absent when extracellular calcium ions are removed

(Wong et al. 2009). Reintroduction of calcium to the

bathing solution restores endothelium-dependent con-

traction to acetylcholine (Wong et al. 2009). These

experiments permitted the conclusion that an increase

in intracellular calcium concentration is pivotal for

the initiation of endothelium-dependent contractions

(Katusic et al. 1988, Okon et al. 2002, Gluais et al.

2006, Shi et al. 2007a,b, 2008, Tang et al. 2007,

Wong et al. 2008, 2010a). For these reasons, the

calcium ionophore A23187, a compound that allows

calcium ions to cross membranes thereby increasing

intracellular calcium levels, is often used experimen-

tally to induce endothelium-dependent contractions

(Yang et al. 2004, Shi et al. 2007a, Tang et al. 2007,

Qu et al. 2010).

EDCF candidates: when prostacyclin turns bad—

COX transforms arachidonic acid into endoperoxides

which are released during endothelium-dependent con-

tractions. Endoperoxides per se can activate vascular

smooth muscle and thus are considered as plausible

EDCF candidates (Ito et al. 1991, Asano et al. 1994,

Ge et al. 1995, Vanhoutte et al. 2005, Hirao et al.

2008). Endoperoxides diffusing from the endothelium

could be processed in the medial smooth muscle into

prostacyclin and then activate TP receptors, contribut-

ing to the vasoconstrictor activity of endothelial

COX-derived metabolites (Zhou et al. 2013). How-

ever, the majority of endoperoxides are converted in

the endothelial cells into prostacyclin, thromboxane

A2, prostaglandin D2, prostaglandin E2 and/or prosta-

glandin F2a by their selective synthases (Bos et al.

2004). The expression of the prostacyclin synthase

gene is the most abundant in endothelial cells from

mouse and rat aorta (Gluais et al. 2005, Tang & Van-

houtte 2008b). During endothelium-dependent con-

tractions to acetylcholine, the release of prostacyclin

outweighs that of other prostaglandins (Gluais et al.

2005). In arteries where endothelium-dependent con-

tractions to the muscarinic agonist are prominent,

prostacyclin does not evoke relaxation of the vascular

smooth muscle but instead causes contraction

(Rapoport & Williams 1996, Gluais et al. 2005).

Thus, it seems logical to conclude that endoperoxides

and prostacyclin are the main mediators of these

responses, at least for those evoked by acetylcholine

(Ge et al. 1995, Blanco-Rivero et al. 2005, Gluais

et al. 2005) in rat and mouse aortae. In situations

where endothelium-dependent contractions are medi-

ated by other agonists (including ADP, A23187, ET-1,

thrombin and nicotine), thromboxane A2 also con-

tributes (Katusic et al. 1988, Shirahase et al. 1988,

Auch-Schwelk & Vanhoutte 1992, Taddei &

Vanhoutte 1993, Derkach et al. 2000, Gluais et al.

2006, 2007). For instance, thromboxane A2 is a sig-

nificant EDCF in the canine basilar artery and in the

SHR aorta (Katusic et al. 1988, Auch-Schwelk &

Vanhoutte 1992, Gluais et al. 2006, 2007). In addi-

tion, studies in human renal arteries confirm that

endothelial COX-2 catalyses the formation of prosta-

glandin F2a, which is the predominant EDCF in this

preparation (Wong et al. 2009). Likewise, prostaglan-

din F2a is the main EDCF in renal arteries of rats with

hypertension induced by renal artery stenosis (Tian

et al. 2012). Of interest, COX-2-derived prostaglandin

F2a is the main EDCF in the aorta of young and

healthy hamsters and the contribution of this prosta-

glandin becomes increasingly significant in causing

endothelium-dependent contraction upon ageing

(Wong et al. 2009, 2010c). Therefore, the precise nat-

ure of the EDCFs varies among species and vascular

beds. The relative expression of respective prostaglan-

din synthases, the extent of oxidative stress and the

vasoactive mediators involved are among some of the

factors which can influence the precise chemical

nature of the prostanoid(s) triggering endothelium-

dependent contractions.

TP receptors, the effectors—COX-dependent,

endothelium-dependent contractions are inhibited by

antagonists of TP receptors (Tesfamariam et al. 1989,

Auch-Schwelk et al. 1990, Kato et al. 1990, Mayhan

1992, Yang et al. 2002, 2003, Zhou et al. 2005). The

TP receptors involved are those of the vascular

smooth muscle which initiate the contractile response

(Yang et al. 2003). Changes in extracellular pH affect

the responsiveness of the TP receptors. Extracellular
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acidosis prevents and alkalosis augments endothelium-

dependent contractions in mouse arteries (Baretella

et al. 2014), without affecting acetylcholine-induced,

eNOS-dependent relaxations. The release of vasocon-

strictor prostanoids was not altered by extracellular

changes in pH, demonstrating modulation of the

responsiveness of TP receptors on the vascular smooth

muscle cells to the unchanged release of EDCF

(Baretella et al. 2014). Of note, intracellular acidifica-

tion of endothelial cells and smooth muscle cells

inhibits eNOS activity and endothelium-dependent

relaxation (Boedtkjer et al. 2011).

Modulation of EDCF-mediated responses. NO, the

gatekeeper—Inhibitors of NO synthases cause an

immediate potentiation of EDCF-mediated responses

(Auch-Schwelk et al. 1992, Yang et al. 2002). This is

why experimentally, it is common to add NO syn-

thase inhibitors, such as Nx-Nitro-L-arginine methyl

ester (L-NAME) to the preparations to inhibit NO

production and enhance the amplitude of endothe-

lium-dependent contractions. However, the effect of

NO is not only acute, but previous exposure to

endogenous NO released from the endothelial cells or

to exogenous NO donors causes a long-term inhibi-

tion of endothelium-dependent contractions (Tang

et al. 2005b). These observations imply that any con-

dition resulting in a lesser bioavailability of NO will

favour the occurrence of EDCF-mediated contractions

and the precipitation of endothelial dysfunction

(F�el�etou et al. 2008, 2011, Vanhoutte et al. 2009).

Vice versa, EDCF can curtail relaxation mediated by

EDRFs (e.g. NO, prostacyclin, and EDH) by promot-

ing increases in blood vessel tone. In particular,

thromboxane A2 can modulate several signalling com-

ponents central to EDH – including direct modulation

of the hyperpolarization (of both endothelial and vas-

cular smooth muscle cells) mediated by the opening of

calcium-activated potassium channels, as well as the

subsequent conduction of hyperpolarization through

gap junctions (Ellinsworth et al. 2014). The crosstalks

between EDRFs and EDCFs provide another level of

control and ensue fine regulation of vascular tone.

Impact of oxidative stress—Increased ROS levels play

a major regulatory role on vascular tone. Superoxide

anions effectively inactivate EDRF-NO, thus reducing

its bioavailability and favouring the occurrence of

endothelium-dependent contractions (Gryglewski et al.

1986, Rubanyi & Vanhoutte 1986, Auch-Schwelk

et al. 1992, Cosentino et al. 1994, Tschudi et al.

1996b, Touyz & Schiffrin 2004, DeLano et al. 2006,

Miyagawa et al. 2007, Macarthur et al. 2008). In

particular, under conditions of high oxidative stress

(e.g. in the presence of high glucose), peroxynitrite is

formed by the reaction of NO with superoxide anions,

which leads to tyrosine nitration and subsequent

inactivation of prostacyclin synthase (Zou et al.

2002). This may result in a compensatory production

of prostaglandin E2 and F2a which then become

increasingly responsible for endothelium-dependent

contractions (Zou et al. 1999, Bachschmid et al.

2003, Gluais et al. 2005). ROS have been identified as

EDCF per se in the canine basilar artery (Katusic &

Vanhoutte 1989) and in rat renal artery (Gao & Lee

2005). Free radicals can presumably diffuse to the

underlying vascular smooth muscle and activate COX

in the vascular smooth muscle cells (Auch-Schwelk

et al. 1989, Katusic & Vanhoutte 1989, Garcia-Cohen

et al. 2000, Yang et al. 2002, 2003, Wang et al.

2003, Shi & Vanhoutte 2008), thereby producing

prostanoids that in turn activate TP receptors. The

oxygen-derived free radicals may reach the vascular

smooth muscle cells through the shielded channels

constituted by the myo-endothelial gap junctions

(Tang & Vanhoutte 2008a). ROS can amplify rather

than directly induce endothelium-dependent contrac-

tions. This interpretation is based on the observations

that in a number of arteries, cell-permeable ROS scav-

engers, such as tempol, variably depress endothelium-

dependent contractions (Auch-Schwelk et al. 1989,

Yang et al. 2002, 2003, Tang & Vanhoutte 2008a).

In arteries such as the mouse aorta, the renal arteries

of hypertensive rats, an increased production of ROS

stimulates endothelial COX-2 to release more ROS

and prostanoids which in turn activate TP receptors

to cause contraction of the vascular smooth muscle

cells (Tang et al. 2007, Tian et al. 2012). Therefore,

ROS serve as a trigger/amplifier for the release of

EDCF leading to greater amplitude of the resulting

endothelium-dependent contractions.

At the initiation of the endothelium-dependent con-

tractions that they evoke, acetylcholine and A23187

cause a burst of endothelial free radical production

(Tang et al. 2007). Since the burst is prevented by

indomethacin, COX appears to be one of the main

sources of superoxide anions in endothelial cells

(Tang et al. 2007). This is apparently also the case

in the human forearm vasculature, where both COX

inhibitors and antioxidant curtail endothelial dys-

function (Virdis et al. 2013). Various other enzymes

generate intracellular ROS, including xanthine oxi-

dase, uncoupled NO synthases, mitochondrial oxi-

dases, lysyl oxidase and NOX. The endoplasmic

reticulum (ER) stress-induced unfolded protein

response (UPR) also produces ROS (Lenna et al.

2014). The NO scavenging properties of, and the

facilitation of endothelium-dependent contractions

exerted by ROS help to understand why substances

that decrease oxidative stress confer vascular protec-
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tion. For instance, berberine (a botanical alkaloid

purified from Coptidis rhizomes) inhibits ER stress

by activating AMPK (Liu et al. 2015b). In SHR car-

otid arteries, berberine inhibits the expression of a

number ER stress-related protein (including eukary-

otic translation initiation factor 2A, X-box-binding

protein 1 and activating transcription factor-2 and -

6) and reduces ROS production leading to COX-2

downregulation (Liu et al. 2015b). The natural

antioxidant defence represented by the uncoupling

proteins can scavenge mitochondrial ROS and lower

oxidative stress (Liu et al. 2014b). For example, sita-

gliptin [a selective DPP4 inhibitor which upregulates

the expression of uncoupling protein 2 (UCP2)]

reduces COX-2 expression by lowering oxidative

stress in SHR arteries (Liu et al. 2014b). Similar

observations in aortae of angiotensin II-infused mice

indicate that sitagliptin normalizes ROS overproduc-

tion and attenuates endothelium-dependent contrac-

tions, an effect absent in UCP2 knockout mice (Liu

et al. 2014b). Fitting with this notion, UCP2 expres-

sion is reduced in the renal arteries of SHR com-

pared with Wistar-Kyoto rat (WKY), and

overexpression of UCP2 inhibits endothelium-depen-

dent contractions in the former (Liu et al. 2014b).

Hence, the mitochondrial UCP2 negatively regulates

intracellular ROS production and prevents the occur-

rence of endothelium-dependent contractions. This

interpretation is consistent with the observation that

endothelium-dependent contractions are attenuated

by mitochondrial ROS scavengers such as coenzyme

Q10 and idebenone (Liu et al. 2014b). HO-1 is

another negative regulator of intracellular ROS,

which reduces the expression and activity of vascular

COX in diabetic rats and hence influences the pro-

duction of vasoconstrictor prostanoids (Wang et al.

2014d). Compounds such as hemin and tricar-

bonyldichlororuthenium (II) dimer, which induce the

expression of HO-1, or release the HO-1 product

carbon monoxide, respectively, suppress ROS pro-

duction, inhibit COX-2 upregulation and impair

endothelium-dependent contractions in the SHR

aorta (Li et al. 2011, Wang et al. 2014d). Taken in

conjunction, ROS amplify endothelium-dependent

contractions by inactivating NO, acting as an EDCF

per se, and/or by upregulating the expression and

activity of COXs.

Oestrogens and gender—In arteries of ovariectomized

animals, chronic treatment with oestrogens reduces

the augmented production of vasoconstrictor prosta-

noids by endothelial COX1 and reduces the

augmented responsiveness of the TP receptors of the

vascular smooth muscle cells (Davidge & Zhang

1998, Dantas et al. 1999, Ospina et al. 2003). Oestro-

gens also reduce acutely EDCF-mediated responses in

an NO-independent way (Zhang & Kosaka 2002).

The production of endothelium-derived prostanoids is

larger in arteries from male than female animals (Kau-

ser & Rubanyi 1995, K€ah€onen et al. 1998). It is

tempting to assume that the lesser occurrence of car-

diovascular disease in women prior to menopause is

related in part to the braking effect of oestrogens on

EDCF-mediated responses.

Other hormones—Chronic treatment with thyroid

hormone reduces the release of endothelium-derived

vasoconstrictor prostanoids in arteries of diabetic

animals (Cai et al. 2015). GLP1 curtails endothelium-

dependent contractions (Liu et al. 2014b).

Age—Endothelium-dependent contractions become

more prominent with ageing (Koga et al. 1988, 1989,

Iwama et al. 1992, Kung & L€uscher 1995, Heymes

et al. 2000, Abeywardena et al. 2002, Matsumoto

et al. 2007). The age dependency of the response is

explained best by an increased oxidative stress result-

ing in the upregulation of COXs (Ge et al. 1995,

Heymes et al. 2000, Matsumoto et al. 2007, Shi et al.

2008, Tang & Vanhoutte 2008b). In addition, the

expression of the prostacyclin synthase gene augments

with age (Numaguchi et al. 1999). Prostacyclin no

longer evokes relaxations in arteries from ageing ani-

mals (Levy 1980, Rapoport & Williams 1996, Gluais

et al. 2005). Inhibitors of COX, given in vivo or

in vitro, prevent or revert, respectively, the blunting of

endothelium-dependent relaxations due to ageing

(Koga et al. 1988, 1989, Davidge et al. 1996, Wang

et al. 2003, Bulckaen et al. 2008, Virdis et al. 2013).

Indomethacin augments the relaxations to acetyl-

choline in isolated arteries of older patients as well as

the vasodilator response to the muscarinic agonist in

the forearm of ageing people, suggesting that the

importance of EDCF-mediated responses also

increases with age in the human (L€uscher et al.

1987a, Taddei et al. 1995a,b, 1997a,b).

Vitamin D—Epidemiologic studies imply that a low

vitamin D status is associated with impaired vascular

function (Tare et al. 2011, Ott et al. 2013, Hashemi

et al. 2015; see section Nitric oxide). Chronic treat-

ment with calcitriol, the active form of vitamin D,

reduces the amplitude of ex vivo endothelium-depen-

dent contractions in arteries of hypertensive rats

(Wong et al. 2008, 2010b, Dong et al. 2012). The

calcitriol-induced protection involves VDR activation

leading to the downregulation of the expression/pres-

ence of AT1 receptors and NOX subunits which in

turn prevents ROS overproduction (Wong et al. 2008,

2010b, Dong et al. 2012). This modulation is also
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accompanied by reduced COX-1 mRNA expression

and protein presence, as well as by a lowered arterial

blood pressure (Wong et al. 2008, 2010b, Dong et al.

2012). These changes have been confirmed in human

renal arteries but, however, are not observed in nor-

motensive animals (Wong et al. 2008, 2010b, Dong

et al. 2012). Thus, hypertensive individuals with vita-

min D deficiency may be more prone to endothelial

dysfunction characterized by increased occurence of

endothelium-dependent contractions/constrictions.

Bone morphogenetic protein 4—This protein, origi-

nally thought to participate mainly in embryonic

development and bone and cartilage formation, exerts

a wide range of pathophysiological activities, includ-

ing the initiation and maintenance of endothelial

dysfunction (Wong et al. 2010c). Diseases character-

ized by enhanced ROS production (e.g. cancers and

hypertension) are accompanied by augmented cellular

and circulating levels of bone morphogenetic protein 4

(BMP4; Miriyala et al. 2006, Kallioniemi 2012, Guo

& Dong 2014). In the mouse, the infusion of exoge-

nous BMP4 impairs acetylcholine-induced relaxations

ex vivo through stimulation of NOX, leading to ROS-

dependent overexpression of COX-2 in endothelial

cells and exaggerating the occurrence of endothelium-

dependent contractions (Wong et al. 2010c). Such

BMP4-induced endothelial dysfunction is absent in

COX-2 deficient mice (Wong et al. 2010c), supporting

the interpretation that the inducible COX isoform is

responsible for the abnormal endothelium-dependent

relaxations and the predominance of EDCF-mediated

responses. Silencing of BMP receptor 1A prevents the

harmful effect of exogenous BMP4 (Wong et al.

2010c), demonstrating their importance in the

response. The role of BMP4 in stimulating COX-2

expression by increasing ROS production has also

been confirmed in arteries of hypertensive rats and

humans since noggin, a BMP4 antagonist, improves

endothelial function and reduces BMP4 and COX-2

expression in renal arteries of hypertensive rats and

patients (Wong et al. 2010c).

Obesity and PVAT—Adipose tissues can produce

ROS and thus contribute to endothelial dysfunction

(Gao et al. 2006, Wang et al. 2014a; see section

Nitric oxide). NOX subunits are localized in the cyto-

plasm and cell membrane of the adipocytes of PVAT

(Gao et al. 2006, Wang et al. 2014a). Superoxide

anion production by PVAT is inhibited by diphenylene

iodonium (DPI) and enhanced by the stimulator of the

enzyme, NADH (Gao et al. 2006). Stimulated super-

oxide anion formation in PVAT may reduce the

bioavailability of endothelium-derived NO, thereby

mediating an increase in vascular tone (Wang et al.

2014a). PVAT-derived ROS also modulate the release

of adipokines and enhance the responsiveness of vas-

cular muscle cells to EDCF by reducing the recycling

of TP receptors (Valentin et al. 2003, Wang et al.

2004). Finally, they impair adiponectin signalling that

normally enhances NO generation and endothelium-

dependent relaxations (Wang et al. 2014a; see section

Nitric oxide). Thus, ROS produced by PVAT enhance

endothelium-dependent contractions. Besides produc-

ing ROS, adipose tissues, in particular PVAT, can

facilitate contractions of the vascular smooth muscle

cells that they surround by releasing adipocyte-derived

contracting mediators, including lipocalin-2, resistin,

calpastatin, chemerin, angiotensinogen, vasoconstric-

tor prostanoids, superoxide anions and ET-1

(Gollasch 2012, Gu & Xu 2013, Meyer et al. 2013,

Oriowo 2015). Of those, lipocalin-2 is an important

contributor to endothelial dysfunction and the

emergence of endothelium-dependent contractions, in

particular. Lipocalin-2 production is upregulated in

obese human subjects and animals (Wang 2012). Aug-

mented circulating lipocalin-2 levels have also been

found in patients with cardiovascular abnormalities

(Hemdahl et al. 2006). Polyamination of lipocalin-2

facilitates its clearance from the circulation (Song

et al. 2014). However, lipocalin-2 can undergo deami-

dation, presumably within adipose tissues (Song et al.

2014). Once it is deaminated, the circulating half-life

of the deleterious adipokine is enhanced and the high

levels of the deaminated form exert pro-inflammatory

and endothelial damaging effects (Song et al. 2014).

Mice deficient in lipocalin-2 are protected against

endothelial dysfunction caused by dietary challenges

(Liu et al. 2012a). Compared with those of wild type

controls, arteries of lipocalin-2 knockout mice exhibit

a longer NO bioavailability and increased responsive-

ness to endothelium-dependent vasodilators (Liu et al.

2012a). Deficiency of this adipokine results in dimin-

ished EDCF-mediated contractions (Liu et al. 2012a).

Administration of exogenous lipocalin-2 to lipocalin-2

knockout mice attenuates endothelium-dependent

relaxations to insulin and promoted endothelium-

dependent contractions to acetylcholine by promoting

eNOS uncoupling and COX overexpression respec-

tively (Liu et al. 2012a).

High-fat intake and obesity potentiate the occur-

rence of EDCF-mediated responses, possibly because

of insulin resistance, resulting in greater production of

oxygen-derived free radicals, an upregulation of the

expression of TP receptors, and the unleashed produc-

tion of ET-1 (see section Hypoxia: when NO turns

bad) (Traupe et al. 2002a,b, Mundy et al. 2007,

Xiang et al. 2008, Gollasch 2012). The potentiation

of endothelium-dependent contractions in obesity,

besides the obvious role of PVAT, can be attributed to
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TLR4 activation by saturated fatty acids and/or bacte-

rial endotoxin lipopolysaccharides (Liang et al. 2013).

Indeed, deletion of TLR4 protects mice against

endothelial dysfunction resulting from obesity,

whether genetically or diet-induced both by potentiat-

ing endothelium-dependent relaxations (see section

Nitric oxide) and decreasing endothelium-dependent

contractions (Liang et al. 2013). Activation of TLR4

promotes the transcription of NOX-1 and NOX-4,

resulting in elevated production of ROS; the increased

level of ROS favours eNOS uncoupling, decreases NO

production and bioavailability, impairs EDH-mediated

responses and increases the activity of COX1 with

augmented EDCF-mediated contractions (Liang et al.

2013).

Hallmark of disease. Diabetes—The endothelium-

dependent relaxations to acetylcholine are blunted in

a number of arteries from diabetic animals (Tesfamar-

iam 1994, De Vriese et al. 2000). This is due in part

to the concomitant release of EDCF and can be attrib-

uted to the exposure of the endothelial cells to high

glucose, resulting in increased oxidative stress and

overexpression not only of both COX-1 and COX-2

but also of TP receptors in vascular smooth muscle

(Tesfamariam et al. 1990, 1991, Shi et al. 2006,

2007a,b, 2008, Xu et al. 2006, Obrosova et al.

2007, Michel et al. 2008, Shi & Vanhoutte 2008,

Ramos-Alves et al. 2012, Zhu et al. 2014). In the case

of diabetes, the production of ROS plays a crucial role

in triggering and amplifying EDCF-mediated responses

(Shi et al. 2007b, 2008, Shi & Vanhoutte 2008).

Hypertension—The endothelium-dependent relax-

ations to acetylcholine are blunted and the endothe-

lium-dependent contractions to acetylcholine are more

pronounced in arteries of the SHR than in those of

normotensive WKY (Lockette et al. 1986, L€uscher &

Vanhoutte 1986, L€uscher et al. 1987b,c, Koga et al.

1989, K€ah€onen et al. 1998). These changes are pre-

vented by inhibitors of COX and antagonists at TP

receptors (L€uscher & Vanhoutte 1986, Koga et al.

1989, Kung & L€uscher 1995, Zhou et al. 1999, Yang

et al. 2003). Increased production of vasoconstrictor

prostaglandins also contributes to the endothelial dys-

function evoked by increased circulating levels of

aldosterone (Xavier et al. 2008). The increase in intra-

cellular endothelial calcium concentration caused by

acetylcholine is greater in SHR arteries than in those

of the WKY, while during exposure to A23187 it is

comparable, suggesting that a key aspect of the promi-

nence of endothelium-dependent contractions in the

former relates to an abnormal handling of calcium

(Tang et al. 2007). In addition, in the aorta of the

hypertensive strain the expression of COX-1 is

increased (Ge et al. 1995, Tang & Vanhoutte 2008b).

However, this overexpression is not present in arteries

of pre-hypertensive SHR (Ge et al. 1999, Tang & Van-

houtte 2008b). These findings prompt the conclusion

that the overexpression of the enzyme in arteries from

adult hypertensive animals reflects premature ageing of

the endothelium rather than a genetic predisposition.

The burst of endothelial free radicals is also greater in

arteries of the SHR than in those of the WKY (Tang

et al. 2007), implying a greater facilitation of EDCF-

mediated responses. The expression of the prostacyclin

synthase gene is more abundant in endothelial cells of

the SHR than in the WKY endothelium, and the pro-

tein presence of the enzyme is augmented by hyperten-

sion (Numaguchi et al. 1999, Tang & Vanhoutte

2008b). These endothelial changes explain why acetyl-

choline causes a greater release of endoperoxides and

prostacyclin in SHR than in WKY arteries (Ge et al.

1995, Gluais et al. 2005). In addition, although the

mRNA expression and protein presence of TP recep-

tors are comparable in arteries of WKY and SHR

(Tang & Vanhoutte 2008b, Tang et al. 2008), the lat-

ter are hyper-responsive to the vasoconstrictor effect of

endoperoxides and prostacyclin (Levy 1980, Ge et al.

1995, Rapoport & Williams 1996, Gluais et al. 2005).

This hyper-responsiveness is present in pre-hyperten-

sive animals, and thus, the hyper-responsiveness is not

a consequence of premature ageing caused by the

chronic exposure to increased blood pressure (Ge et al.

1999). However, certain genetic traits (in particular the

absence of IP receptor responsiveness) may further

aggravate endothelial dysfunction. Obviously, the

absence of vasodilator response to prostacyclin

contributes, and helps to explain why in humans car-

diovascular disease is accelerated by a dysfunctional

prostacyclin receptor mutation (Arehart et al. 2008)

(Fig. 11). Aspirin and indomethacin potentiate the

vasodilator response to acetylcholine in the forearm of

patients with hypertension but not in that of normoten-

sive subjects (Taddei et al. 1995b, 1997a,b, Monobe

et al. 2001). This then suggests that EDCF-mediated

responses also are part of the endothelial dysfunction

of human hypertension.

Coronary disease—Aspirin and the TP receptor inhibi-

tor terutroban improve responses to endothelium-

dependent vasodilator stimuli in patients with CAD,

suggesting that endothelium-derived prostanoids

contribute to the endothelial dysfunction resulting

from the disease (Husain et al. 1998, Belhassen et al.

2003).

Immunodeficiency—Subjects with human immunodefi-

ciency virus (HIV) infection exhibit vascular inflamma-

tion and endothelial dysfunction to judge from reduced
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flow-mediated vasodilatations (Blanco et al. 2006).

These complications are related both to the HIV infec-

tion and the highly active antiretroviral therapy that

patients are placed on (Friis-Møller et al. 2007, Hulten

et al. 2009). The endothelial dysfunction observed in

HIV-infected patients is explained best by an increase

microvascular production of ROS, thereby reducing

NO bioavailability, blunting acetylcholine-induced

endothelium-dependent relaxation, facilitating

endothelium-dependent contractions and enhancing TP

receptor responsiveness (Wang et al. 2013).

Endothelin-1

Production, actions and clearance of endothelin-

1. ET-1, the first member of the endothelin peptide

family originally identified in endothelial cells

(Yanagisawa et al. 1988), is a potent vasoconstrictor

peptide and the most abundant isoform in the cardio-

vascular system (Kurihara et al. 1994, Schiffrin 1999).

ET-1 is synthesized from a precursor, the pre-proET-1

which is successively cleaved into the basically inactive

39 amino acid Big-ET-1. Then, Big-ET-1 is converted

to the 21-amino acid ET-1, predominantly but not

exclusively, by the action of endothelin-converting

enzymes (ECEs), belonging to the neprilysin family

(D’Orl�eans-Juste et al. 2003, Kohan et al. 2011).

ET-1 interacts with two G protein-coupled recep-

tors termed ETA and ETB (Arai et al. 1990, Sakurai

et al. 1990, Masaki et al. 1994). Both ETA and ETB

receptors are localized on vascular smooth muscle

cells where they exert their vasoconstrictor, prolifera-

tive and hypertrophic action, but in arteries, the

former are the predominant vasoconstrictor receptor

(Rubanyi & Polokoff 1994). In the vascular wall, ETB

receptors are expressed predominantly in the endothe-

lial cells and its activation is associated with the

release of the anti-aggregator, vasodilator and antipro-

liferative NO and prostacyclin (De Nucci et al. 1988,

Thorin & Clozel 2010). Both in vivo and in vitro,

these endothelial effects of ET-1 counterbalance the

effects of ETA/ETB stimulation on the vascular smooth

muscle cells (Fig. 12). Besides the endothelial cells, the

ETB receptor is highly expressed in the renal collecting

duct where it contributes to the regulation of sodium

excretion and therefore of arterial blood pressure

(Kohan et al. 2011).

Endothelins are degraded locally, at least in part by

neutral endopeptidase (NEP) and deamidase, and are

rapidly eliminated from the circulation by binding to

the endothelin ETB receptor subtype, here acting as a

clearance receptor (Thorin & Clozel 2010, Kohan

et al. 2011). The rapid clearance of ET-1 by the

pulmonary, splanchnic and renal circulations, associ-

ated with its local processing, implies that ET-1 is an

autocrine or paracrine mediator rather than a systemic

hormone (Culshaw et al. 2015).

Regulation of production and action of endothelin-

1. Under normal physiological conditions, the

endothelial production of ET-1 and/or its action on

vascular smooth muscle is tightly kept under control

by counter-regulatory systems. Indeed, contractions

and pressor response initiated by ET-1 are unusual

when compared to those produced by most other

vasoconstrictors in that they are slowly developing

and long lasting even after washing out the peptide

(De Nucci et al. 1988, Yanagisawa et al. 1988).

NO, the gatekeeper—Stimulation of NO production

inhibits the expression and the production of

endothelin-1 (Boulanger & L€uscher 1990, Vanhoutte

2000). After translation and processing in the

endothelial cells, ET-1 is usually secreted immedi-

ately. Intracellular storage and on-demand release

can occur, but it is rather uncommon (Goel et al.

2010). Whether or not NO acts on the former or the

latter releasing pathway is basically unknown. Fur-

thermore, the powerful and sustained vasoconstric-

tion elicited by this peptide is efficiently blunted by

both exogenous and endothelium-derived NO, in a

cyclic GMP-dependent manner (Miller et al. 1989,

Lillestol et al. 1998). Finally, when released, endothe-

lin-1 activates nearby endothelial ETB receptors,

which are associated to NO production, including in

human coronary arteries (Schini et al. 1991, Halcox

et al. 2007). Thus, under normal conditions, any

overproduction of ET-1 would be offset by the

increased release of NO, which downregulates the

generation of the peptide and curtails its vasocon-

strictor and growth-stimulating effects (Vanhoutte

2000, Vanhoutte et al. 2009, De Mey & Vanhoutte

2014; Fig. 12). In vivo, the sustained increase in arte-

rial blood pressure caused by the acute or chronic

administration of various NOS inhibitors is reduced

by ETA antagonists, further substantiating the pre-

ponderant role of NO in regulating the release and

the vasoconstrictor action of ET-1 (Banting et al.

1996, Gardiner et al. 1996, Marjan et al. 1998, Pol-

lock 1999).

Calcitonin gene-related peptide—Calcitonin gene-

related peptide is expressed mainly in neurons and

endocrine cells (Brain & Grant 2004). Contractile

responses to ET-1 are sensitive to the relaxing effects

of CGRP, whether administrated exogenously or

released from perivascular sensory nerves by capsaicin,

a vanilloid molecule, acting on TRPV1 (F�el�etou and

Vanhoutte 2006c, Meens et al. 2009, 2010). GCRP

also stimulates NO-mediated endothelium-dependent
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vasodilatation as well as cAMP production by adeny-

lyl cyclase in the vascular smooth muscle cells (Brain

& Grant 2004). However, termination of the long-

lasting interaction between ET-1 and ETA receptor

(and thus of the sustained contraction induced by the

peptide) does not involve these pathways, but rather

CGRP receptor-dependent G protein bc subunit-

mediated signalling (Meens et al. 2012). In line with

the varying distribution of sensorimotor nerves, in

blood vessels this CGRP/ETA receptors crosstalk is

not uniformly distributed in all vascular smooth mus-

cle (Meens et al. 2011), but is present in human coro-

nary arteries (Labruijere et al. 2013) and in rats

in vivo (Meens et al. 2011). Therefore, besides NO,

the feedback inhibition of the action of ET-1 by

CGRP is sufficiently important to affect peripheral

vascular resistance and arterial blood pressure in

responses to ET-1 (Meens et al. 2011). The physiolog-

ical relevance of a potential regulation of the action of

ET-1 by sensorimotor nerves, the most likely vascular

source of CGRP, remains to be assessed (De Mey &

Vanhoutte 2014). Nevertheless, TRPV1 activation

exerts a protective effect in hypertension and its asso-

ciated disorders indicating that it counteracts vascular

dysfunction (Zhang et al. 2015).

Physiological role of ET-1 in the peripheral and coro-

nary circulation. Although ET-1 has been described as

one of the most potent known vasoconstrictors, its

acute administration in healthy mammals, including

humans, leads to a biphasic response, an initial and

transient reduction in arterial blood pressure followed

by a sustained hypertensive phase, due to the primary

activation of endothelial ETB receptors followed by

that of vasoconstrictor (primarily ETA and to a lesser

extent ETB) receptors on the vascular smooth muscle

(Kurihara et al. 1994, Haynes et al. 1995a,b, Thorin

& Webb 2010).

Lessons from genetically modified animals—Knocking

out preproET-1, endothelin-converting enzyme 1 or

ETA receptor leads to lethality in homozygous animals

and therefore does not allow a proper appraisal of the

role of ET-1 in cardiovascular physiology (Von Web-

sky et al. 2009). The arterial blood pressure of

heterozygous knockout mice for the ETA receptor is in

the normal range, while heterozygous ETB knockout

mice are hypertensive (Berthiaume et al. 2000). Speci-

fic deletion of the ETB receptor in endothelial cells or

in the renal collecting duct shows that the hyperten-

sion can be attributed to an enhanced sodium reten-

tion but not to an increased vascular resistance, an

interpretation substantiated by the hypertensive phe-

notype also observed in mice with specific deletion of

ET-1 in the collecting duct (Kohan 1996, Ahn et al.

2004, Ge et al. 2005, 2006, Bagnall et al. 2006).

Transgenic mice overexpressing ET-1 are normoten-

sive but exhibit renal fibrosis leading to fatal kidney

disease (Hocher et al. 1997). In such mice hyperten-

sion occurs only after salt loading (Hocher et al.

Figure 12 NO and endothelin. Release and actions of endothelin-1 (ET-1) in the vascular wall. AA, arachidonic acid; AVP,

arginine vasopressin; cAMP, cyclic AMP; cGMP, cyclic GMP; COX, cyclooxygenases; ECE, endothelin converting enzyme; ETA

and ETB, endothelin receptors; NO, nitric oxide; NOS, nitric oxide synthase; PGI2, prostacyclin; R, cell membrane receptor.
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1997); they show exacerbated vasoconstriction and

exaggerated increases in arterial blood pressure with

concomitant NOS inhibition or deletion (Von Websky

et al. 2009). Mice with specific conditional deletion of

the ET-1 gene in their endothelial cells are hypotensive

(Kisanuki et al. 2010). Conversely, transgenic mice

strongly overexpressing the human ET-1 gene selec-

tively in the endothelium exhibit an ETA-dependent

increase in arterial blood pressure (Leung et al. 2011,

Rautureau et al. 2015), while less severe ET-1 overex-

pression causes only vascular injury, attributable to

early changes in the expression of genes associated

with enhanced lipid biosynthesis, but no elevation in

arterial blood pressure (Simeone et al. 2011).

Thus, these studies on genetic murine models

emphasize the importance of ET-1 and ETB receptors

in controlling sodium and fluid homeostasis in the kid-

ney while in the vasculature they provide evidence for

the existence of a paracrine vasoregulator pathway

mediated by endothelial-derived ET-1 acting on the

vascular smooth muscle ETA receptors and illustrate

the predominant role of the NO system in regulating

ET-1 synthesis and action.

Lessons from pharmacological experiments—The con-

tribution of endogenous ET-1 generation to human

cardiovascular homeostasis has generally been assessed

by acute or short-lasting administration of antagonists

of ETA and/or ETB receptors. In healthy humans, sys-

temic inhibition of ETB increases peripheral resistance

and arterial blood pressure (Strachan et al. 1999). In

most of the studies involving healthy subjects, the

peripheral administration of an ETA antagonist (gener-

ally BQ123) increases forearm blood flow (Love et al.

1996, McAuley et al. 2000, Boak et al. 2005), a

response blunted by either an ETB antagonist or a

NOS inhibitor (Verhaar et al. 1998). However, such

vasodilator response to ETA blockade is not observed

consistently (Cardillo et al. 2002a,b, 2004, Campia

et al. 2004, Westby et al. 2011). Similarly, phospho-

ramidon, a mixed ECE/NEP inhibitor, but not thior-

phan a selective NEP inhibitor, increases forearm

blood flow (Haynes & Webb 1994, Haynes et al.

1995b, Love et al. 1996). These results suggest that

the constitutive production and release of ET-1, via a

balanced action on both its receptors, contribute to

the regulation of regional blood flow and arterial

blood pressure. The observation that in vivo ETB

receptor activation exerts a tonic effect is rather sur-

prising since vasodilatation associated to the release of

endothelium-derived NO in response to exogenous

and acute administration of ETB agonists are highly

transient (Newby et al. 2002) and since stimulated

ETB receptors internalize rapidly (Wu-Wong et al.

1995). Nevertheless, under physiological conditions,

blockade of ET-1 receptors overall has little or

moderate effects, by contrast to what is observed in

pathological situations (Iglarz & Clozel 2010).

Compared to peripheral arteries the coronary circu-

lation appears more prone to the vasoconstrictor

effects of ET-1 (Kolettis et al. 2013). In subjects with

angiographically normal coronary arteries, BQ123

(ETA receptor antagonist) induces an increase in the

diameter of the proximal segments (Kyriakides et al.

2000, Kinlay et al. 2001, MacCarthy et al. 2001), and

in coronary patients, mixed ETA/ETB blockade also

increases the diameter of coronary vessels with no or

mild angiographic alterations (Wenzel et al. 1998,

Halcox et al. 2007). However, selective ETB receptor

antagonism causes coronary microvascular

constriction, without affecting tone of the epicardial

arteries, by reducing endothelin clearance and NO

bioavailability (Halcox et al. 2007).

Hallmark of disease. Hypoxia—Hypoxia is a major

positive regulator of ET-1 synthesis, increasing the

gene expression of the peptide in animal in animal

and human endothelial cells and augmenting its

release from various vascular beds in vivo and thus its

circulating levels (Rakugi et al. 1990, Kourembanas

et al. 1991, Elton et al. 1992).

Diabetes—Hyperglycaemia enhances the expression of

ET-1 and its constitutive production by endothelial

cells (Yamauchi et al. 1990, Park et al. 2000) and

plasma ET-1 levels are elevated in patients with dia-

betes (Schneider et al. 2002). In peripheral and coro-

nary arteries of various diabetic animals (Verma et al.

2002, Ergul 2011), as well as in isolated peripheral

arteries of patients with diabetes (McIntyre et al.

2001), hyper-responsiveness to ET-1 is obvious. Fur-

thermore, in patients with diabetes, endogenous ET-1

contributes to the maintenance of basal vascular tone

and to endothelial dysfunction (Cardillo et al. 2002a,

Mather et al. 2002, Yoon et al. 2008, Rafnsson et al.

2012). In these patients, selective ETA and dual ETA-

ETB antagonists improve endothelium-dependent

vasodilatations, while ETB blockade alone increases

basal blood flow without improving endothelium-

dependent responses (Rafnsson et al. 2014).

Hypertension—ET-1 may be involved in the pathogene-

sis of hypertension, especially in salt-dependent hyper-

tension (Moorhouse et al. 2013). Indeed, ET-1 is a

potent vasoconstrictor in the kidney and thus can have

opposing actions on water and sodium regulation. If

ETB stimulation in the collecting duct prevents water

and sodium reabsorption and therefore volume expan-

sion, ET-1 contributes also to the tone of the glomeru-

lar afferent and efferent arterioles. A prolonged
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vasoconstriction of these arteries, predominantly via

ETA activation, produces a decrease in renal blood flow

and a reduction in glomerular filtration rate associated

with an enhanced filtration fraction, leading to sodium

and water reabsorption (Laffin & Bakris 2015).

Additionally, ET-1 increases vascular ROS formation,

is a pro-inflammatory and pro-fibrotic agent and pro-

motes vascular remodelling. These phenomena are

strongly associated with hypertension and endothelial

dysfunction (Sandoval et al. 2014).

In deoxycorticosterone acetate (DOCA)-salt hyper-

tensive animals, the levels of both ET-1 and vascular

superoxide anions are elevated and ETA blockade

decreases arterial blood pressure and normalizes ROS

production (Callera et al. 2003). However, the source

of reactive species generation either by xanthine

oxidase, mitochondrial enzymes and/or NOX are

uncertain (Beswick et al. 2001, Li et al. 2003, Viel

et al. 2008).

Patients with hemangioendothelioma have increased

serum levels of ET-1 and elevated arterial blood pres-

sure; both normalized following tumour removal

(Yokokawa et al. 1991). However, in hypertensive

patients, plasma levels of ET-1 are not necessarily dif-

ferent from those in healthy subjects, possibly because

of the vectorization of ET-1 release towards the ablu-

minal side of the endothelial cells and the efficiency of

the clearance system (Goddard & Webb 2000). Addi-

tionally, the endothelial damage caused by a rise in

arterial blood pressure augments ET-1 expression in

blood vessels and in the heart. The peptide can also

be upregulated by a number of factors involved in

vascular disease (Iglarz & Clozel 2007). Thus, the

involvement of the endothelin system could be

secondary to the chronic increase in arterial blood

pressure, rather than a primary in essential hyperten-

sion (Schiffrin 2005).

Nevertheless, endothelin antagonists increase fore-

arm blood flow and reduce arterial blood pressure to

a greater extent in hypertensive than in normotensive

subjects (Goddard & Webb 2000). Both mixed ETA/

ETB (Krum et al. 1998) and more selective ETA

(Moorhouse et al. 2013) antagonists are efficacious in

doing so. However, these agents are not used for the

treatment of primary hypertension since their side

effects, predominantly the occurrence of peripheral

oedema, outweigh their therapeutic benefit (Laffin &

Bakris 2015).

Endothelin antagonists are prescribed for the treat-

ment of pulmonary hypertension (Steriade et al. 2014)

and could be of interest in resistant hypertension, in

hypertension associated with chronic kidney disease or

metabolic syndrome (Moorhouse et al. 2013, Laffin

& Bakris 2015), or in patients with drug-dependent

increases in arterial blood pressure [e.g. angiogenesis

inhibitor (Lankhorst et al. 2014) or calcineurin

inhibitor (Raina et al. 2012)]. Additionally, animal

studies indicate that ET-1 is likely to play a major

contributing role in the genesis of preeclampsia (Palei

et al. 2013). However, the teratogenic effects of ET-1

deletion (Kurihara et al. 1994) make this therapeutic

indication for endothelin antagonist unlikely, unless

proven safe when administrated at the end of

pregnancy.

Atherosclerosis and coronary disease—ET-1, beyond

its function as a vasoactive peptide, also plays a

crucial role in the atherogenic process by enhancing

mitogenesis, inducing extracellular matrix formation

and contributing to the development of inflammation

within the blood vessel wall (Schiffrin 1999). Hence,

ET-1 has been implicated in the generation of

atherosclerosis (Bacon et al. 1996) and the pathophys-

iology of numerous coronary artery disorders, includ-

ing coronary endothelial dysfunction (Lerman et al.

1995), coronary spasm (Toyo-oka et al. 1991),

myocardial infarction (Miyauchi et al. 1989) and

myocardial reperfusion injury (Tamareille et al. 2013).

ET-1 induces endothelial dysfunction by interference

with glucose and lipid metabolism, increased oxidative

stress, disrupting the NO pathway, and accelerating

inflammatory processes (Kolettis et al. 2013).

There is controversy regarding peripheral vascular

responses to endogenous or exogenous ET-1 in

hypercholesterolaemic patients, being either unaltered

(Nohria et al. 2003, Boak et al. 2005) or enhanced

(Cardillo et al. 2000). However, in patients with

atherosclerosis, the contribution of endogenous ET-1

to the active constriction of coronary arteries is aug-

mented, especially at the sites of stenosis (Kinlay et al.

2001). Long-term endothelin receptor antagonism

improves endothelial function and attenuates plaque

progression in patients with early atherosclerosis

(Reriani et al. 2010, Yoon et al. 2013).

Myocardial infarction—Plasma levels of ET-1 are

increased in various animal models of acute myocar-

dial infarction (Kolettis et al. 2013). In clinical stud-

ies, they correlate with infarct size (Miyauchi et al.

1989, Yasuda et al. 1990) and predict short or long-

term outcome (Omland et al. 1994, Yip et al. 2005).

Additionally, ET-1 is released during the early phase

of reperfusion (Malatino et al. 1993) and contributes

to myocardial reperfusion injury by activating ETA

receptors (Tamareille et al. 2013). In patients with

ST segment elevation and acute myocardial infarc-

tion, ETA blockade prior to reperfusion improves

myocardial perfusion, decreases infarct size and

improves long-term outcome (Adlbrecht et al. 2012,

2014).
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Heart failure—ET-1 can drive the progression of heart

failure. It is a potent constrictor of both systemic and

pulmonary arterioles and veins and is involved in

vascular and myocardial hypertrophy and fibrosis.

Thus, in patients with heart failure, ET-1 contributes

importantly to peripheral resistance, and the activa-

tion of both ETA and ETB receptors causes vasocon-

striction (Love et al. 1996). In these patients,

circulating concentrations of precursor BigET-1, or

those of the active peptide itself are enhanced and

constitute independent predictors of morbidity and

mortality (Wei et al. 1994, Masson et al. 2006,

Gottlieb et al. 2015). Short-term ET-1 receptor block-

ade in patients with severe heart failure have hemody-

namic benefits (decrease in systemic and pulmonary

resistance as well as in atrial pressure and an increase

in cardiac output). However, the results of chronic

clinical trials with either mixed ETA-ETB or specific

ETA receptor antagonists in both acute and chronic

heart failure were disappointing (Kohan et al. 2012).

Coronary restenosis—ET-1, acting on ETA receptors,

promotes neo-intimal lesion formation and luminal

occlusion following vascular injury. The expression of

ET-1, ECE and endothelin receptors are enhanced in

neo-intimal vascular smooth muscle cells after percu-

taneous coronary angioplasty (Shirai et al. 2006).

Additionally, vascular remodelling in human internal

mammary arteries (used for coronary bypass grafting)

is associated with enhanced presence of ET-1 and aug-

mented expression of ETA and to a lesser extent of

ETB receptors (Sutherland et al. 2006). The beneficial

effects of ET receptor blockade can already be

observed even before grafting since ETA, ETB and

mixed ETA-ETB antagonists improve endothelium-

dependent relaxations in human internal mammary

arteries (Verma et al. 2001). Again, at least in

rodents, ETA receptors are predominantly involved in

this deleterious effect of ET-1, since selective ETA

antagonism reduces neo-intimal lesion size in a mouse

model of intraluminal injury (Duthie et al. 2015).

Hypoxia: when NO turns bad

In a number of isolated arteries and veins, hypoxia

causes an acute contraction of vascular smooth muscle

that is more pronounced when the preparations are

constricted and is therefore termed hypoxic augmenta-

tion of vasoconstriction. Most of the hypoxic

augmentation is endothelium dependent (De Mey &

Vanhoutte 1982, 1983) and involves the transfer of a

chemical mediator (Rubanyi & Vanhoutte 1985, Iqbal

& Vanhoutte 1988). The endothelium-dependent com-

ponent of the response requires the presence of NO

and activation of sGC; it does not require increased

levels of cGMP, the prototypical product of sGC

(Gr€aser & Vanhoutte 1991, Pearson et al. 1996, Chan

et al. 2011, Chen et al. 2014). However, this hypoxic

endothelium-dependent response is accompanied by

increases in the intracellular level of inosine 50-tripho-
sphate (ITP) and in the synthesis of inosine 30,50-cyclic
monophosphate (cIMP) by sGC (Beste et al. 2012,

Chen et al. 2014). The administration of either exoge-

nous cIMP or ITP causes augmented vasoconstriction

to hypoxia (Chen et al. 2014). The contractions

evoked by hypoxia and cIMP are associated with

increased activity of Rho-kinase, implying that cIMP

mediates the hypoxic effect by sensitizing the myofila-

ments of the vascular smooth muscle cells to calcium

via activation of Rho-kinase (Chan et al. 2011, Chen

et al. 2014). Hypoxic vasoconstriction is exacerbated

in the coronary circulation by previous ischaemia–
reperfusion injury (Pearson et al. 1996). Since hypoxia

is implicated in the exaggerated coronary vasocon-

strictions accompanying CAD, myocardial infarction,

hypertension and stroke, the newly found role of

cIMP may help to identify unique therapeutic targets

for certain cardiovascular disorders, in particular

those associated with sleep apnoea (Gao & Vanhoutte

2014, Gao et al. 2014, Leung et al. 2015).

Conclusion

Native, healthy endothelial cells respond to a number

of stimuli (e.g. serotonin from aggregating platelets

and thrombin) by releasing NO, which relaxes the

vascular smooth muscle that surrounds them (except

under hypoxic conditions when it favours vasocon-

striction). NO, in synergy with prostacyclin, further

inhibits platelet aggregation. It also reduces the

endothelial expression of adhesion molecules and thus

the adhesion and penetration of leucocytes (macro-

phages). The endothelial mediator also prevents the

proliferation of vascular smooth muscle cells and

limits the formation of oxyLDL. Ageing and certain

lifestyle factors (e.g. lack of exercise, Western diet,

pollution and smoking), or certain diseases (e.g. dia-

betes and hypertension) result in a lesser release of

NO and an acceleration of the turnover of the apop-

totic process in the endothelium. The apoptotic

endothelial cells are replaced by regenerated ones.

However, such regenerated cells are dysfunctional,

senescent, and incapable of producing the required

amounts of NO, which facilitates the inflammatory

response leading to the formation of atherosclerotic

plaques. The shortage of NO also unleashes the

production not only of endothelium-derived vasocon-

strictor prostanoids (in particular endoperoxides, and

prostacyclin) but also that of ET-1. These mediators

activate receptors of the vascular smooth muscle cells
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leading to vasoconstriction which amplifies the degree

of endothelial dysfunction. The understanding of the

delicate balance between vasodilator (growth inhibit-

ing) and vasoconstrictor (growth stimulating) signals

emitted by endothelial cells is far from complete. In

particular, how this balance varies in blood vessels of

different sizes in diseased subjects is pretty much an

open question. Indeed, we know a lot about endothe-

lial dysfunction in large arteries (the obvious focus of

this review) but only begin to appreciate the role of

the endothelium in pathologies involving the smaller

arteries and the microcirculation.
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