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Vasa Vasorum
The coronary arterial wall generally consists of the tunica intima, tunica 

media and tunica adventitia. In particular, the coronary adventitia 

harbours the vasa vasorum (VV),which has a diameter of 50–300 µm 

and plays an important role as a network of nutrient blood vessels to 

the arterial wall (Figure 1).1–3

The VV is enhanced in association with arterial wall thickening when 

the wall exceeds 29 lamellar units in mammals.4 Intraplaque neovessels 

arising from adventitial VV leads to intraplaque haemorrhage,5,6 resulting 

in coronary plaque disruption (Figure 1).7,8 Thus, efforts have been 

made to identify the coronary VV in experimental animals and humans.9 

Indeed, recent advances in the field of intracoronary imaging have 

enabled us to visualise the coronary VV in humans in vivo, and have 

shed light on the clinical relevance of the VV in patients with coronary 

artery disease (CAD).10 In this brief review, we provide an overview of the 

recent progresses in intracoronary imaging for VV visualisation.

Intravascular Ultrasound
Intravascular ultrasound (IVUS) has been a most widely-used 

intracoronary imaging technique that offers a spatial resolution of 

100 µm,11 with the potential for VV visualisation and the detection of 

volume of blood flow in the VV. On cross-sectional IVUS imaging, the 

VV can be seen as a small, tubular, low-echoic structure (Figure 2A).12

Validation Studies
In a human autopsy study by Kume et al., a 40-MHz IVUS (Boston 

Scientific) was used to detect adventitial VV, which was validated 

with histology.12 For the measurement of VV distribution, Moritz 

et al. developed the special IVUS system (ChromaFlo®, Volcano 

Corporation), which was used for blood flow detection within the 

arterial wall.13 In the Moritz et al. study, blood flow in the VV was 

colourised within the encompassed arterial wall on the IVUS image, 

which was obtained using porcine coronary arteries in vivo (Figure 

2B).13 The VV area on the IVUS showed a strong correlation with the VV 

volume measured with micro-computed tomography (MCT) using the 

same porcine tissue ex vivo.

Clinical Relevance
Based on their histological validation study, Kume et al. demonstrated 

with a commercially-available IVUS that the prevalence of the VV 

at the proximal and distal reference segments adjacent to culprit 

lesions was significantly increased in patients with acute coronary 

syndrome compared with those with stable angina pectoris.12,14 

Using commercially-available echogenic microbubbles composed of 

albumin microspheres filled with octafluoropropane gas, Vavuranakis 

et al. demonstrated the feasibility of the IVUS contrast-enhancement 

detection techniques for the VV in both the adventitia and the plaque 

of human coronary arteries in vivo.15

Limitations of Intravascular Ultrasound
A fundamental limitation of IVUS is that it does not possess sufficient 

resolution for visualising the VV <100 µm, while the penetration depth 

of 8–10 mm seems to be sufficient for reaching the adventitia. A high-

definition, 60-MHz IVUS with superior spatial resolution <100 µm might 

have the potential to resolve this.16 Another limitation of IVUS is that 

serial studies are needed to verify the accuracy of VV visualisation and 

measurements unequivocally.

Intravascular Optical Coherence Tomography
Optical coherence tomography (OCT) is another commercially-

available intracoronary imaging technique that offers a spatial 

resolution of 10 µm, using backscattering of near-infrared light.11,17 

The resolution of 10 µm is high enough for detecting the VV of any 

size in humans in vivo. On cross-sectional OCT images, the VV can 

be visualised clearly as signal-voiding tubular or layer structures (Figure 3).
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Validation Studies
In a post-mortem study, Vorpahl et al. first reported the possibility 

that small black holes on cross-sectional OCT images correspond 

to intraplaque neovessels arising from the VV in the histology of a 

patient with ruptured plaque ex vivo.1 We were able to demonstrate 

for the first time that a second-generation OCT (Terumo) is capable of 

visualising the adventitial VV in porcine and human coronary arteries 

ex vivo and in vivo (Figure 3).18,19 We also showed the accuracy of 

manual measurements for adventitial VV on cross-sectional OCT 

images.19 In order to develop the measurement method, we defined 

adventitial area as ‘area outside the external elastic lamina within 

a distance of the thickness of intima plus media – vessel area’ and 

adventitial VV area as ‘adventitial VV area / adventitial area’.20,21 Another 

human autopsy study by Aoki et al. demonstrated the usefulness of 

3D volume-rendering OCT reconstructed with the ANALIZE software 

(Biomedical Imaging Resource) for the volumetric analysis of adventitial 

VV, which was validated with the number of VV counted on MCT.22 In 

the Aoki et al. study, adventitial the VV was defined as signal-voiding 

tubular or layer structures with diameters from 50 to 300 µm, which 

were consistently noted in at least two consecutive slices and located 

within 1 mm from the lumen–intima border.22

Clinical Relevance
Choi et al. demonstrated that OCT-derived intraplaque neovessels are 

associated with the early manifestation of coronary atherosclerosis 

in humans in vivo.23 However, Taruya et al. examined the structural 

pattern of the VV on 3D OCT images of human coronary atherosclerotic 

lesions and demonstrated that there are two different roles of the  

VV in the pathogenesis of coronary atherosclerosis.24 Adventitial VV 

was associated with plaque volume, while the increased internal 

running VV was correlated with plaque vulnerability.24 Tsujita et al. 

recently reported that intraplaque neovessels can be seen on OCT 

at the site of a repeatedly-provoked coronary spasm, indicating that 

such coronary spasms could be a trigger of coronary thrombosis.25 

Kitabata et al. demonstrated that patients with intraplaque neovessels 

on OCT have a greater frequency of plaque rapture compared with 

those without intraplaque neovessels.26 Uemura et al. examined 

the morphological features of non-significant stenotic lesions in 

patients with CAD and demonstrated that complex characteristics 

of thin-capped fibroatheroma and intraplaque neovessels could 

be potential predictors of subsequent plaque progression after 

coronary intervention.27 Similarly, Amano et al. found that intraplaque 

neovessels are an independent predictor of a slow-flow phenomenon 

after stent implantation.28 Allograft vasculopathy after heart 

transplantation is generally characterised by intimal hyperplasia 

and diffuse progressive luminal narrowing, where the OCT-derived 

adventitial VV volume is one of the major determinant factors of 

intimal plaque progression.29

Coronary vasomotion abnormalities, such as coronary spasm and 

coronary microvascular disorders (CMD), play key roles in the 

pathogenesis of CAD. We were able to demonstrate for the first time 

that the OCT-proven adventitial VV is markedly enhanced along with the 

spastic coronary segments in patients with vasospastic angina.20,21 In our 

study, the extent of the VV formation was highly correlated with that of 

acetylcholine-induced coronary vasoconstricting responses and activity 

of Rho-kinase, a key molecule of coronary spasm.30 Coronary blood 

flow assessment combined with OCT observation resulted in adventitial 

VV density being negatively correlated with endothelium-dependent 

microvascular function, and positively correlated with endothelium-

Signal-voiding structures on the ex-vivo OCT image (A) can accurately detect adventitial VV, 
which was validated in histology, (B) and in the porcine coronary artery. The in-vivo OCT 
image shows the signal-voiding tubular or layer structures (red arrows) as adventitial VV in 
the human coronary artery in vivo (C). OCT = optical coherence tomography. Adapted with 
permission from Nishimiya et al.18,19

Figure 1: Adventitial Vasa Vasorum Formation in the 
Human Coronary Artery
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Coronary adventitia harbors the VV, inflammatory cells/cytokines and adipose tissue. The VV 
plays an important role as a conduit that diffuses inflammatory cells/cytokines derived from 
adipose tissue in the pathogenesis of coronary artery disease. Intraplaque neovessels arising 
from adventitial VV can be a trigger of intraplaque haemorrhage in the lesion with a necrotic 
core, resulting in coronary plaque disruption. VV = vasa vasorum.

Figure 2: Intravascular Ultrasound images of coronary 
adventitial Vasa Vasorum Formation in Pigs and Humans
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Small, tubular, low-echoic structures (red arrows) on the IVUS image represent adventitial 
VV in a patient with acute coronary syndrome (A). Blood flow in the VV is in red within 
the encompassed arterial wall (yellow concentric circles) on the special IVUS system 
(ChromaFlo®) and porcine coronary artery in vivo (B). IVUS = intravascular ultrasound; VV = 
vasa vasorum. Adapted with permission from Kume et al.14 and Moritz et al.13

Figure 3: Optical Coherence Tomography Images of 
Coronary Adventitial Vaso Vasorum Formation in Pigs 
and Humans
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independent microvascular function, suggesting that adventitial VV has 

relevance to CMD in the early stage of coronary atherosclerosis.31

Notably, we recently demonstrated that coronary segments under a 

myocardial bridge (MB) lack adventitial VV compared with proximal 

or distal reference segments.32 Because the VV carries inflammatory 

cells and cytokines derived from pericoronary adipose tissue (PCAT) 

to atherosclerotic lesions, this result could explain, at least in part, the 

fact that coronary segments under an MB have less atherosclerotic 

lesions. Sudden coronary artery dissection (SCAD) has emerged as 

a cause of heart attacks among young women, especially during the 

peripartum period. An OCT study by Kwon et al. found evidence that 

adventitial VV is augmented at the coronary segment of intramural 

haematoma in patients with SCAD.33

Limitations of Optical Coherence Tomography
First, the penetration depth of OCT light is limited in few millimetres, 

and is prone to higher absorption in the advanced coronary lesions 

(e.g. lipid-pooling and necrotic core), which limit the visualisation of 

adventitial VV behind such lesions. Second, it remains to be elucidated 

whether or not OCT-derived VV arises from arteries or veins. Third, the 

current OCT system is not equipped with the facility for blood flow 

measurements in VV. Interestingly, Cheng et al. reported an intensity 

kurtosis detection method on OCT that may enable us to examine 

blood flow dynamics in VV.34

Future Perspectives
The formation of VV has been suggested to initiate the development 

of coronary atherosclerosis.35 We recently demonstrated that 
18F-fluorodeoxyglucose (FDG) PET can accurately detect PCAT 

inflammation in pigs ex vivo and in vivo.36 Further studies with 

multimodalities (e.g. OCT combined with FDG PET) are needed to 

elucidate the causal relationship between adventitial inflammatory 

changes and the manifestation of coronary atherosclerosis. Moreover, 

there is a pressing unmet need for direct and/or indirect therapeutic 

approaches to mitigate adventitial VV angiogenesis. Importantly, we 

recently demonstrated that after drug-eluting stent implantation 

in pigs in vivo, adventitial sympathetic nerve fibres (SNF) can be 

enhanced and associated with adventitial VV growth. Catheter-based 

renal denervation also significantly upregulates the expression of 

α2-adrenergic receptor-binding sites in the nucleus tractus solitaries 

and attenuates adventitial VV enhancement associated with a decrease 

in SNF.37 Thus, intracoronary imaging could also be useful when testing 

these novel approaches in practice.

Conclusions
Recent advances in intracoronary imaging have begun to uncover the 

roles of the VV in the pathogenesis of CAD. We consider intracoronary 

imaging to have important potential in elucidating the pathogenesis 

of CAD in general and pathophysiological roles of the coronary 

adventitia in particular. n
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