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A B S T R A C T

Accumulating evidence has demonstrated the importance of reactive oxygen species (ROS) as an essential second
messenger in health and disease. Endothelial dysfunction is the hallmark of atherosclerotic cardiovascular
diseases, in which pathological levels of ROS are substantially involved. The endothelium plays a crucial role in
modulating tone of underlying vascular smooth muscle by synthesizing and releasing nitric oxide (NO) and
endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size-dependent manner through the
diverse roles of the endothelial NO synthases (NOSs) system. Endothelium-derived hydrogen peroxide (H2O2) is
a physiological signaling molecule serving as one of the major EDH factors especially in microcirculations and
has gained increasing attention in view of its emerging relevance for cardiovascular homeostasis. In the clinical
settings, it has been reported that antioxidant supplements are unexpectedly ineffective to prevent cardiovas-
cular events. These lines of evidence indicate the potential importance of the physiological balance between NO
and H2O2/EDH through the diverse functions of endothelial NOSs system in maintaining cardiovascular
homeostasis. A better understanding of cardiovascular redox signaling is certainly needed to develop novel
therapeutic strategies in cardiovascular medicine. In this review, we will briefly summarize the current
knowledge on the emerging regulatory roles of redox signaling pathways in cardiovascular homeostasis, with
particular focus on the two endothelial NOSs-derived mediators, NO and H2O2/EDH.

1. Introduction

Reactive oxygen species (ROS) have been considered primarily
harmful because of their highly-damaging entity to cells and tissues
and pathological implications in various diseased states in humans
[1,2]. The detrimental roles of ROS have been well-documented in a
wide range of cardiovascular diseases in general, including athero-
sclerosis, hypertension, heart failure, cardiomyopathy, and coronary
artery disease in particular, where endothelial dysfunction is also
substantially involved in the pathophysiology [3]. However, accumu-
lating evidence has provided firm foundations for a paradigm shift on
the roles of ROS from pathological detriments to crucial physiological
signaling molecules [4,5]. Thus, ROS have been re-evaluated as a
physiological second messenger in light of recent advances in the better
comprehension of their diverse regulatory roles in health and disease
[6,7].

Endothelial dysfunction is the hallmark and potential predictor for
atherosclerotic cardiovascular diseases and is also noted in patients

with metabolic disorders, where prior exposure to various risk factors,
such as diabetes mellitus, hypertension, and hypercholesterolemia,
causes endothelial dysfunction, leading to the initial step toward
atherosclerotic cardiovascular diseases [8]. A typical feature of en-
dothelial dysfunction is reduced production of endothelium-derived
relaxing factors, including vasodilator prostaglandins (PGs), nitric
oxide (NO), and endothelium-dependent hyperpolarization (EDH)
factors (Fig. 1). Although the nature of EDH factors varies depending
on species and vascular beds examined, endothelium-derived hydrogen
peroxide (H2O2) is one of the major EDH factors in various vascular
beds in animals and humans and has gained increasing attention in
view of its emerging relevance for cardiovascular homeostasis [9].
Importantly, the endothelium synthesizes and releases NO and H2O2/
EDH to regulate vascular tone in a distinct vessel size-dependent
manner through the diverse roles of the NO synthases (NOSs) system;
NOS mainly serves as a NO-generating system to elicit soluble
guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-
mediated relaxations in large conduit vessels and a superoxide-gener-
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ating system to cause H2O2/EDH -mediated responses in small resis-
tance vessels [10] (Fig. 2). In the clinical settings, it has been reported
that chronic nitrate therapy could exert harmful effects in patients with
ischemia heart disease [11,12] and that antioxidant supplements are
unexpectedly ineffective to prevent cardiovascular events [13]. These
lines of evidence suggest the potential importance of the physiological
balance between NO and H2O2/EDH through the diverse functions of
endothelial NOSs system in maintaining cardiovascular homeostasis.

Obviously, a growing number of recent publications and review
articles in this field reflect that our scientific community craves for

much better understanding of this complex but promising redox
signaling systems and its clinical application for curing diseases
associated with oxidative stress [5,14–18]. In this review, we will
briefly summarize the current knowledge on the emerging regulatory
roles of redox signaling pathways in cardiovascular homeostasis, with
particular focus on the two endothelial NOSs-derived mediators, NO
and H2O2/EDH.

Fig. 1. Mechanisms for synthesis and action of endothelium-derived relaxing factors. In addition to vasodilator prostaglandins (PGs) and nitric oxide (NO), several candidates could act as
endothelium-dependent hyperpolarizing (EDH) factor. PGs, NO, and EDH factor cause relaxations of underlying vascular smooth muscle through the mechanisms mediated by cyclic AMP
(cAMP), cyclic GMP (cGMP) and hyperpolarization mediated by opening of Ca-activated K (KCa) channels, respectively. Other abbreviations: AMPKα1, α1-subunit of AMP-activated
protein kinase; CaM, calmodulin; CaMKKβ, Ca2+/CaM-dependent protein kinase β; COX, cyclooxygenase; EETs, epoxyeicosatrienoic acids; eNOS, endothelial NO synthase; EOX,
epoxygenase; HETEs, hydroxyeicosatetraenoic acids; H2O2, hydrogen peroxide; IP3, inositol trisphosphate; LOX, lipoxygenase; LTs, leukotrienes; ONOO-, peroxynitrite; PKG1α, 1α-subunit
of protein kinase G; PLA2, phospholipase A2; PLC, phospholipase C; SOD, superoxide dismutase.

Fig. 2. Diverse roles of endothelial nitric oxide synthases system. In large conduit vessels, NO synthases (NOSs) mainly serve as a NO-generating system to cause vasodilatation through
soluble guanylate cyclase (sGC)-cGMP pathway, while in small resistance vessels, they act as a superoxide-generating system to evoke EDH-mediated responses through H2O2-induced
PKG1α dimerization and subsequent activation of potassium channels, leading to hyperpolarization and vasodilatation. Other abbreviations: Cu, Zn-SOD, zinc-superoxide dismutase; KCa,
calcium-activated potassium channel; LOX, lipoxygenase; Mito ETC, mitochondrial electron transport chain; NADPH, reduced nicotinamide adenine dinucleotide phosphate oxidase;
ONOO-, peroxynitrite; PKG1α, 1α-subunit of protein kinase G; XO, xanthine oxidase.
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2. Endothelium-derived H2O2 as an EDH factor

The endothelium plays a crucial role in modulating vascular tone by
synthesizing and releasing endothelium-derived relaxing factors, in-
cluding vasodilator PGs (e.g. prostacyclin), NO and EDH factors as well
as endothelium-derived contracting factors [19]. Among them, EDH
factors-mediated responses are the predominant mechanisms of en-
dothelium-dependent vasodilatation of resistance arteries [9,19]. EDH
factors cause hyperpolarization and subsequent relaxation of under-
lying vascular smooth muscle with resultant vasodilatation of small
resistance vessels to finely regulate blood pressure and organ perfusion.
More precise and comprehensive information regarding EDH-mediated
responses is available in the extensive review published recently [8].
We will focus on endothelium-derived H2O2 as an EDH factor in detail.

Early observations showing a vasoactive role of endothelium-
derived free radicals and H2O2 in isolated canine coronary arteries
imply that these endothelium-derived ROS can be vasoactive mediators
to take part in endothelium-dependent relaxation [20]. After the initial
reports on EDH factors in 1988 [21,22], three sets of early notions and
observations suggesting the similarities between NO and EDH led us to
hypothesize that a putative EDH factor could be a non-NO vasodilator
substance (possibly ROS) derived from endothelial NOSs system. First,
not only NO- but also EDH-mediated responses are susceptible to
vascular injuries caused by various atherosclerotic factors, such as
aging, smoking, hypertension, diabetes mellitus, and dyslipidemia, with
a resultant microvascular dysfunction, and conversely, the treatment of
those risk factors restores both NO- and EDH-mediated relaxations
[23,24]. Second, both eNOS-derived NO and EDH-mediated responses
are generated in a calcium/calmodulin-dependent manner [25]. Third,
it is a judicious notion that endothelial cells adopt a simple molecule
(like NO) rather than complex substances in controlling and adjusting
vascular tone in a moment to moment manner in response to diverse
physiological demands. In 2000, using eNOS-knockout (eNOS-KO)
mice, we were able to demonstrate for the first time that endothe-
lium-derived H2O2 is an EDH factor in mouse mesenteric arteries; EDH-
mediated relaxation and hyperpolarization of underlying vascular
smooth muscle were inhibited by catalase, a specific H2O2 inhibitor,
in small mesenteric arteries from wild-type mice and were significantly
reduced in eNOS-KO mice [26]. This is also true for other vascular beds,
such as human mesenteric [27] and coronary [28] arteries, porcine
coronary arteries [29], canine coronary arteries [30–32] and piglet pial
arterioles [33], although EDH-independent vasodilating mechanisms by
H2O2 have also been reported in other vascular beds [34,35]. Notably,
the estimated concentration of endothelium-derived H2O2 as an EDH
factor is in micro molar order [29,31], which is much lower concentra-
tion than that observed in various pathological states [36,37].

Among the possible sources and mechanisms involved in the
generation of H2O2 in the endothelium [2,36], Cu, Zn-superoxide
dismutase (SOD) plays a key role in the synthesis of H2O2/EDH;
eNOS produces superoxide anions when synthesizing NO from L-
arginine and oxygen under physiological conditions, while Cu, Zn-
SOD dismutates those superoxide anions into H2O2. Indeed, Cu, Zn-
SOD-KO mice show markedly impaired EDH-mediated relaxation and
hyperpolarization in mesenteric arteries and coronary circulation with-
out alterations in vasodilator properties of vascular smooth muscle
[38]. Cu, Zn-SOD-derived H2O2 signaling also plays important roles in
metabolic regulation [39]. Based on the observations that the H2O2/
EDH-mediated responses are resistant to NOS inhibitors and upregula-
tion of eNOS co-factor tetrahydrobiopterin has no effects on the
responses, superoxide anions relevant to H2O2/EDH are not derived
from pathologically uncoupled eNOS [40]. This is the case at least in
normal mouse mesenteric arteries [40]. Other sources of superoxide
anions have been proposed in H2O2-mediated vasodilatation; in human
coronary arterioles, mitochondrial respiratory chain- and NADPH-
derived H2O2 is associated with flow-mediated dilation and bradyki-
nin-induced relaxation, respectively [41,42].

To date, several mechanisms have been proposed for H2O2-induced
vasodilatation [15,43]. Most notably, Burgoyne et al. demonstrated a
precise mechanism by which H2O2/EDH relaxes underlying vascular
smooth muscle [44]. Briefly, H2O2 induces an interprotein disulfide
bond formation between two 1α-isoforms of cGMP-dependent protein
kinases (PKG1α) to enhance the kinase activity through their phosphor-
ylation. The activated PKG1α subsequently stimulates potassium chan-
nels, leading to hyperpolarization and vasodilatation in mouse mesen-
teric arteries [45] as well as in human coronary arterioles [46,47]
(Fig. 2). H2O2 also promotes the translocation of PKG1α from cytoplasm
to membrane in porcine coronary arteries [48]. Such reversible post
translational modulation [49] like phosphorylation gains much advan-
tage in the fine control of vascular tone in vivo [50]. The oxidant-
mediated signaling is essential for blood pressure control because the
‘redox-dead’ knock-in mice of Cys42Ser PKG1α, whose mutant PKG1α is
unable to be activated by H2O2-induced dimerization due to the
absence of its redox-sensitive sulfur, show markedly impaired EDH-
mediated relaxation in resistance arteries ex vivo and systemic hyper-
tension in vivo [45]. In addition, H2O2/EDH also plays important roles
with potent vasodilator properties in coronary resistance vessels. Since
coronary vascular resistance is predominantly determined by the
prearterioles (from approx. 500–100 µm in diameter) and arterioles
(less than 100 µm in diameter) where the effect of EDH-mediated
responses on vascular tone takes over that of NO-mediated relaxations
[51], maintaining the vessel size-dependent contribution of NO and
EDH is essential for the treatment of coronary artery disease.
Furthermore, the emerging roles of H2O2/EDH in coronary circulation
include coronary autoregulation [30], cardioprotection during coron-
ary ischemia reperfusion injury [31], and tachycardia-induced meta-
bolic coronary vasodilator responses [32] in dogs in vivo. Taken
together, endothelium-derived H2O2 functions as an important endo-
genous second messenger to elicit EDH-meditated relaxations, mod-
ulate vascular tone and maintain vascular homeostasis.

3. Molecular mechanisms for the diverse functions of endothelial
NO synthases system

Next, we will discuss the diverse roles of endothelial NOSs system.
There are three NOS isoforms, including neural NOS (nNOS, NOS1),
inducible NOS (iNOS, NOS2), and endothelial NOS (eNOS, NOS3)
[52,53]. Although three NOS isoforms are expressed in cardiovascular
system, eNOS is the dominant NOS isoform in blood vessels [54]. NOSs
have been known to generate superoxide anions from reductase domain
under physiological conditions [55], where superoxide anions are
converted to H2O2 to cause EDH-mediated responses (Fig. 1). Because
heme reduction rate in eNOS is much slower than that in other NOS
isoforms, reductase domain-mediated superoxide generation is a sig-
nificant alternative in eNOS [55]. Based on these observations, it is
conceivable that eNOS is the most important isoform in generating
H2O2/EDH in the endothelium. Indeed, as described above, genetic
deletion of eNOS gene in mice causes impaired EDH-mediated relaxa-
tions associated with systemic hypertension [56]. Although singly-
eNOS-KO mice exhibit abolished NO-mediated relaxations in the aorta
and markedly reduced (but not abolished) EDH-mediated relaxations in
the mesenteric arteries, the remaining relaxations are still sensitive to
catalase [26]. We speculated that the three NOSs compensate each
other to maintain endothelium-dependent relaxations. Using doubly-n/
eNOS-KO and triply-n/i/eNOS-KO mice [57], we have previously
demonstrated that the EDH-mediated relaxations are progressively
reduced in accordance with the number of NOS genes ablated; as
compared with wild-type mice, the H2O2/EDH-mediated relaxations of
small mesenteric arteries are reduced almost by half in singly-eNOS-KO
mice, further diminished in doubly-n/eNOS-KO mice, and are finally
completely abolished in the triply-n/i/eNOS-KO mice without func-
tional alterations of underlying vascular smooth muscle [58]. In
contrast, NO-mediated relaxations are totally absent in all three
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genotypes of NOS-KO mice [58]. These findings provide a novel
concept on the diverse roles of endothelial NOSs system; in large
conduit vessels, they mainly serve as a NO-generating system to cause
vasodilatation through sGC-cGMP pathway, whereas in resistance
vessels, they act as a superoxide- generating system to evoke EDH-
mediated responses through H2O2-induced PKG1α dimerization and
subsequent activation of potassium channels, leading to hyperpolariza-
tion and vasodilatation (Fig. 2).

Mechanistic insight into vessel size-dependent contribution of NO
and H2O2/EDH has been recently emerging. First, at least in mice under
physiological condition, the extent of eNOS bound to cavelion-1 (a
negative regulator of eNOS) is greater in mesenteric arteries than in the
aorta, and thus eNOS is functionally suppressed in resistance vessels
through a cavelin-1-dependent mechanism, switching its function from
NO synthase to H2O2/EDH- generating enzyme [59] (Fig. 2). Second,
relaxation responses of vascular smooth muscle to H2O2 are enhanced
through a PKG1α-mediated mechanism in resistance vessels in mice
[59,60]. Indeed, mouse resistance vessels have less NO production and
less antioxidant capacity, allowing PKG1α to be more sensitive to H2O2-
induced activation and subsequent hyperpolarization and relaxation of
vascular smooth muscle [60]. Third, endothelial AMP-activated protein
kinase (AMPK) modulates EDH-mediated responses in resistance ar-
teries, but not in conduit arteries, to regulate blood pressure and
coronary flow responses in mice in vivo [61]. Fourth, it has been
previously reported that NO donors attenuate EDH-mediated responses
in porcine coronary arteries in vitro [62] and canine coronary micro-
circulation in vivo [63]. Furthermore, NO exerts a negative-feedback
effect on endothelium-dependent relaxations through cGMP-mediated
desensitization in canine coronary arteries ex vivo [64]. Multiple
mechanisms may be involved in the negative interactions between
NO and H2O2/EDH. For instance, desensitization of vascular smooth
muscle to H2O2 is likely to be involved because H2O2-induced PKG1α
dimerization, a central mechanism of H2O2-induced vasodilatation, is
inhibited by cGMP-dependent activation of PKG [60], and in turn,
pharmacological inhibition of sGC sensitizes conduit vessels to H2O2-
induced vasodilatation in mice [60]. These observations support the
notion that excessive endothelium-derived NO desensitizes blood
vessels to H2O2/EDH-mediated relaxations. In addition, the actions of
other EDH factors may also be inhibited through interaction with NO.
Mustafa et al. have reported that NO exerts a direct inhibitory effect on
cystathionine γ-lyase activity in vitro [65]. Considering that cystathio-
nine γ-lyase is a biosynthetic enzyme of hydrogen sulfide, which is
another oxidant species serving as one of EDH factors in mouse
mesenteric arteries [65,66], it is conceivable that this mechanism is
also involved in the negative feedback of NO on EDH-mediated
relaxations. Collectively, these results are consistent with the widely
accepted view that EDH functions as a compensatory vasodilator system
when NO-mediated relaxations are hampered. Thus, EDH dominance in
microcirculation is a vital mechanism to maintain sufficient tissue
perfusion in the setting of pathological conditions where NO-mediated
responses are compromised [19].

The activity of eNOS is modulated through an array of post-
translational modifications (e.g. phosphorylation, thiopalmitoylation,
S-nitrosylation, acetylation, glycosylation, and S-glutathionylation)
[50]. Importantly, some of them are susceptible to and dysregulated
by increased levels of ROS in ageing, hypertension, diabetes mellitus,
and heart failure [50]. For example, oxidative stress not only causes
oxidative conversion of an essential eNOS cofactor tetrahydrobiopterin
to dysfunctional dihydrobiopterin but also induces S-glutathionylation
of eNOS in a reversible manner, converting its function from NO
synthase to superoxide-generating enzyme [67,68]. These oxidative
modulations lead to eNOS uncoupling, where endothelium-derived NO-
mediated responses are impaired with reseuultant development of
cardiovascular diseases. These lines of evidence suggest a possible
importance of physiological redox balance in vivo and a potential
therapeutic application of thiol-reducing agents like hydrogen sulfide

for the treatment of cardiovascular diseases associated with oxidative
stress. Further comprehensive discussions on the regulatory mechan-
isms of eNOS functions are available in recently published extensive
reviews [50,52,53,67].

4. Dual roles of reactive oxygen species

A disequilibrium between prooxidants and antioxidants in favor of
oxidants is referred to as oxidative stress and has been recognized as a
distinct clinical entity from a physiological condition. This recognition
is due to the damaging properties of ROS in numerous experimental
models and its pathological implications in a variety of cardiovascular
diseases, cancers and aging [1,2]. Nevertheless, accumulating evidence
has unveiled the diverse regulatory roles of ROS in vivo [6]. As
predicted previously [69] following our original H2O2/EDH report
[26], H2O2 is a physiological signaling molecule serving as an EDH
factor especially in microcirculation to modulate blood pressure [45],
coronary circulation [30–32] and metabolic functions [70]. We will
focus on the physiological roles of H2O2, one of the most plentiful and
steady form of ROS in our body, in the regulation of vascular home-
ostasis.

Endothelium-derived ROS, including superoxide anions, NO, perox-
ynitrite, hydroxyl radicals and H2O2, modulate vascular tone through
multiple mechanisms in health and disease [19,71,72]. These ROSs
have been regarded to be primarily harmful in vascular biology. For
example, H2O2 at high concentrations causes endothelium-dependent
vasoconstriction through multiple mechanisms including release of
cyclooxygenase-derived thromboxane [73,74], and overproduction of
superoxide anions reacts with and scavenges NO to form peroxynitrite,
a potent oxidant with toxic entity to cells and tissues [75]. In striking
contrast, the vasoprotective roles of H2O2 have attracted much atten-
tion as endothelium-derived H2O2 causes endothelium-dependent va-
sodilatation and contributes to microvascular homeostasis at its phy-
siological low concentrations [27,31,37,72]. The estimated concentra-
tion of endothelium-derived H2O2 as an EDH factor is in micro molar
order [29,31], which is much lower concentration than that observed in
various pathological states [36,37]. When applied exogenously in organ
chamber experiments, 10–100 μmol/L of H2O2 causes vasodilatation of
human coronary arterioles [46,47] and in mouse small mesenteric
arteries [26,59], while higher concentrations of H2O2 elicit vasocon-
striction. Note that only 10–15% of H2O2 applied exogenously reaches
the intracellular targets due to endogenous antioxidants and membrane
impedance [76]. Similarly, peroxynitrite shows a dual role working as
an endogenous mediator in a distinct concentration-dependent manner
[77]. Adachi et al. have demonstrated that peroxynitrite at low
concentrations (10–50 μmol/L) increases the activity of sarco/endo-
plasmic reticulum calcium ATPase (SERCA) through S-glutathiolation
of the reactive thiol on Cys674 and contributes to NO-mediated
vasodilatation, while peroxynitrite at higher concentrations (>
100 μmol/L) inhibits the SERCA activity [77]. Furthermore, eNOS-
transgenic/apoE-knockout mice fed with high-cholesterol diet exhib-
ited more advanced atherosclerotic lesion formation compared with
apoE-knockout mice [78], suggesting a potential downside of excessive
NO. More recently, we also have demonstrated that excessive endothe-
lial NO production by either caveolin-1-deficiency or eNOS overexpres-
sion disrupts the physiological balance between NO and EDH in
microcirculation, resulting in impaired cardiovascular homeostasis in
mice [79]. Taken together, these apparent double-edge sword effects of
ROS may provide a clue to the development of novel therapeutic
strategies for cardiovascular diseases associated with oxidative stress.

The sources and regulatory mechanisms of physiologically relevant
H2O2 is in debate [6]. It is conceivable that local subcellular concentra-
tions at microdomains rather than net cellular concentrations may be
critical to determine whether the effects of ROS can be detrimental or
beneficial to cellular processes and that co-localization of the source
and target of H2O2 may help prevent non-specific injurious oxidations

S. Godo, H. Shimokawa Free Radical Biology and Medicine  (xxxx) xxxx–xxxx

4



[80,81]. For instance, caveolar localization of NOX1 in hypertension
causes just a minor increase in ROS but is enough to interrupt NO-
mediated responses [82]. Based on the idea that specific cystein
residues can function as redox-dependent switches, an interesting
mechanism by which ROS-mediated signalings can be regulated have
been proposed from the Eaton laboratory [36,37,83]. Cells and tissues
are equipped with several free radical scavengers, including SOD,
catalase, glutathione peroxidase and peroxiredoxins. Peroxiredoxins
are one of the most abundant proteins in some cells and, like other
redox-reactive proteins, are characterized by their cysteine residue
enclosing a thiol in basal ionized state, which is prone to oxidative post-
translational modifications. They contribute to decompose physiologi-
cal concentrations of H2O2, however, when exposed to as high as 100–
200 μmol/L of H2O2, hyperoxidation of their catalytic cysteine to
sulfinic acid occurs to preclude the decomposition of H2O2, leading to
an initial step toward cardiovascular dysfunctions [36,37,83].
Regarding the sources, endothelium-derived H2O2 is mainly generated
by the dismutation of superoxide anions, which come from various
sources in the endothelium, including NADPH oxidase, mitochondrial
electron transport chain, xanthine oxidase, lipoxygenase and NOS
[37,84]. Although the precise mechanisms underlying the physiological
regulation of ROS production in the endothelium have not yet fully
understood, recent studies have provided novel potential mechanisms
relevant to modulation of endothelium-dependent responses. For
instance, microRNAs, which are small non-coding RNAs regulating
gene expressions through degradation or translational repression of
mRNA, have emerged as important regulators in cardiovascular system
[85]. Among the key players in H2O2/EDH-mediated responses, miR-
103/107 have been shown to target caveolin-1 to downregulate its
expression [86] and miR155 is substantially involved in the negative
regulation of NO production and endothelium-dependent vasodilata-
tion by directly targeting eNOS [87]. Moreover, a class of transient
receptor potential (TRP) channels plays important role in regulating
intracellular Ca2+ concentration and membrane potentials to control
vascular tone and thereby blood flow through EDH-mediated mechan-
isms [9]. Notably, several TRP subfamilies serve as redox sensor to be
controlled by endogenous ROS including H2O2 and NO [88,89]. Further
studies are certainly needed to understand how endothelium-derived
ROS are finely regulated to participate in endothelium-dependent
responses under physiological conditions.

5. Clinical implications

It is difficult to accurately assess the in vivo importance of H2O2/
EDH in humans because the contribution of EDH is determined only
after the blockade of both vasodilator PGs and NO [9]. However,
evaluation of endothelial function in humans has attracted much
attention in the clinical settings. Endothelial dysfunction is often noted
in patients with atherosclerotic risk factors and cardiovascular diseases;
antecedent exposure to various risk factors disables endothelial cells to
produce sufficient amount of NO, leading to the first step toward
inflammatory responses and atherosclerosis [8]. Although NO-mediated
relaxations are easily impaired in the early stage of atherosclerotic
conditions, EDH-mediated responses are fairly preserved or even
temporarily enhanced to maintain vascular homeostasis [9,43]. This
is well exemplified in the studies showing that enhanced EDH-mediated
vasodilation compensates for reduced NO-mediated responses in hy-
percholesteremic subjects [23,90]. After a prolonged exposure to
atherosclerotic risk factors, this compensatory roles of EDH-mediated
responses are eventually disrupted to cause metabolic disturbance [91].
In other clinical studies, endothelial dysfunction, as evaluated by
impaired digital reactive hyperemia in peripheral arterial tonometry
or flow-mediated dilation of the brachial artery, are associated with
future cardiovascular events in patients with coronary artery diseases
[92,93]. These observations suggest that endothelial functions in
peripheral vascular beds could predict future cardiovascular events.

On the basis of the premise that reducing oxidative stress could
exert beneficial effects on various diseased states associated with
elevated levels of ROS in general and cardiovascular diseases in
particular, numerous clinical trials of antioxidants have been conducted
[13,94,95]. Contrary to thousands of in vitro and animal studies and
acute beneficial effects on endothelial functions in humans [16], the
results of systemic and long-term administrations of antioxidants have
been disappointing in many clinical trials. Indeed, long-term antiox-
idant therapy for patients with hypertension failed to lower systemic
blood pressure or to improve mortality rate [13,96]. A supplementation
of tetrahydrobiopterin, an essential co-factor for NOSs to produce NO,
was neutral [97,98], and an iNOS inhibitor increased the mortality rate
in patients with septic shock [99]. Although the reason for such
‘antioxidant paradox’ in cardiovascular diseases remains largely un-
known, these results in the clinical studies indicate potential harm of
non-specific elimination of ROS as well as the importance of the
physiological balance of endogenous antioxidant systems in humans.
Available evidence suggests that vitamin C seems at least better than
other antioxidants; favorable effects on endothelial function in both
acute and chronic phase [16], beneficial effects in subjects with low
concentrations of vitamin C at baseline [100], and relatively poor
reactivity with H2O2 [14]. In addition, antioxidant paradox can be
explained, at least in part, by reductive stress [101].

Notably, standard therapeutic agents used for the treatment of
cardiovascular diseases in the current era share the pleiotropic effects
on endothelial function by enhancing NO-mediated vasodilatations
with modest antioxidant capacities as well, including angiotensin-
converting enzyme inhibitors, angiotensin II receptor blockers, and
statins [53].

6. Conclusions

In conclusions, experimental and clinical studies in our and other
laboratories have demonstrated that endothelial NOSs have diverse
functions to maintain cardiovascular homeostasis, where the physiolo-
gical balance between NO and H2O2/EDH is important. Further
characterization and better understanding of cardiovascular redox
signaling is required to develop novel therapeutic strategies in cardi-
ovascular medicine.
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