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a b s t r a c t

Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial
NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of
NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors.
However, the specificity of the inhibitors continues to be an issue of debate, and the authentic signifi-
cance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS
genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities,
including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart fail-
ure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed
metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia.
Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and
pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnor-
malities (increased bone mineral density and bone turnover). These results provide evidence that NOSs
play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest
knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our
triple mutant model.
© 2015 Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nitric oxide (NO) plays a crucial role in maintaining homeo-
stasis (1e4). NO is synthesized from its precursor L-arginine by a
family of NO synthases (NOSs) that include neuronal (nNOS),
inducible (iNOS), and endothelial NOS (eNOS). It was initially
reported that nNOS and eNOS are constitutively expressed
mainly in the nervous system and the vascular endothelium,
respectively, synthesizing a small amount of NO in a calcium-
dependent manner under basal conditions and upon
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stimulation, and that iNOS is induced only when stimulated by
microbial endotoxins or certain proinflammatory cytokines,
producing a greater amount of NO in a calcium-independent
manner (3,4). However, recent studies have revealed that nNOS
and eNOS are also subject to expressional regulation (5e9), and
that iNOS is expressed even under physiological conditions
(10,11). Thus, it has become evident that all three NOS isoforms
are expressed under both physiological and pathological condi-
tions (10,12).

The roles of NO derived from whole NOSs have been examined
in pharmacological studies with non-selective NOSs inhibitors,
such as Nu-nitro-L-arginine methyl ester (L-NAME) and NG-mono-
methyl-L-arginine (L-NMMA). However, the NOS inhibitors possess
multiple non-specific actions, including antagonism of muscarinic
acetylcholine receptors (13), generation of superoxide anions (14),
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inhibition of cytochrome c reduction (15), and inhibition of
endothelium-independent relaxation induced by amiloride or
cAMP (16). We also reported that vascular lesion formation caused
by long-term treatment with L-NAME or L-NMMA is not mediated
by the simple inhibition of eNOS in mice, and that activation of the
tissue renin-angiotensin system and increased oxidative stress are
involved in the long-term vascular effects of the L-arginine ana-
logues in an NO-independent manner (17,18).

The roles of NO derived from whole NOSs have also been
investigated in studies with mice that lack each NOS isoform.
However, although the single eNOS null mice manifest accu-
mulation of cardiovascular risk factors that mimic human
metabolic syndrome (19), and although it is well established
that eNOS exerts anti-arteriosclerotic effects (20e25), the single
eNOS null mice do not spontaneously develop arteriosclerotic/
atherosclerotic vascular lesion formation (26). This inconsistency
could be due to a compensatory mechanism by other NOSs that
are not genetically disrupted (27). Indeed, in the singly eNOS-/-

mice, up-regulation of vascular nNOS expression has been
indicated (28,29). Furthermore, we revealed that NOS activity
and NOx (nitrite plus nitrate) production are fairly well pre-
served in that genotype (30). Thus, the authentic roles of
endogenous NO derived from entire NOSs still remain to be fully
elucidated.

To address this important issue, we successfully developed mice
in which all three NOS genes are completely disrupted (30). The
expression and activity of NOSs are totally absent in the triple n/i/
eNOSs null mice before and after administration of lipopolysac-
charide. While the triple NOSs null mice were viable and appeared
normal, their survival and fertility rates were markedly reduced as
compared with wild-type mice. The triple NOSs null mice exhibited
phenotypes in the cardiovascular, metabolic, renal, respiratory, and
bone systems. These results provide evidence that NOSs play
pivotal roles in the pathogenesis of a wide variety of disorders. This
review summarizes the latest knowledge on the significance of
NOSs in vivo, based on lessons we learned from experiments with
our triple mutant model.
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Fig. 1. Hemodynamics in wild-type and NOSs null mice. (A) Systolic blood pressure measured
C57BL/6 mice. (B) Heart rate measured by the tail-cuff method under conscious conditions
mice are derived from both wild-type C57BL/6J and 129SV mice. nNOS-/- and eNOS-/- mice w
backcrossed with any strains. Thus, we used both C57BL/6J and 129SV mice as wild genoty
levels, heart rate, plasma lipid profile, glucose metabolism, or the amount of visceral adipo
verified that there also was no significant difference in the extent of coronary vascular lesion
as mean ± SEM. Statistical analyses were performed by one-way analysis of variance (ANOVA
considered to be statistically significant. Quoted from reference 30 with permission.
2. Significance of NOSs in the cardiovascular system

2.1. Hypertension

The triple NOSs null mice were significantly hypertensive as
comparedwith thewild-typemice (30). The degree of hypertension
in the triple NOSs null mice was similar to that in the eNOS null and
eNOS gene-disrupted double NOSs null mice (Fig. 1A). These results
suggest that hypertension is a common characteristic of the eNOS
gene disruption and is caused by a lack of endothelium-derived NO
with a resultant increase in peripheral vascular resistance (31).
Heart rate was significantly lower in the triple NOSs null than in the
wild-typemice, and thedegree of bradycardia in the tripleNOSs null
mice was also equivalent to that in the eNOS gene-disrupted single
and double NOSs null mice (Fig. 1B), indicating that bradycardia is
also a common phenotype of the eNOS gene deletion. Although
there is no conclusive explanation for the decreased heart rate in
association with the eNOS gene deletion, previous studies revealed
that eNOS-derived NO could affect baroreflex resetting or could be
involved in establishing the baroreceptor setpoint (31).
2.2. Arteriosclerosis

We previously revealed that not only eNOS and iNOS but also
nNOS is expressed in vascular lesions in a mouse carotid artery
ligation model and a rat balloon injury model, and that all three
NOSs play a role in the regulation of vascular lesion formation
(7e9,32). Spontaneous development of vascular lesion formation
(neointimal formation, medial thickening, and perivascular
fibrosis) was noted in the large epicardial coronary arteries, coro-
nary microvessels, and renal arteries in the triple NOSs null mice,
but not in the eNOS null mice (2,33). Spontaneous lipid accumu-
lation was also observed in the aorta of the triple NOSs null mice
(2,33). These results suggest the crucial role of NOSs in inhibiting
vascular lesion formation. The extent of hypertension was compa-
rable in the triple NOSs null and eNOS null mice, whereas spon-
taneous vascular lesion formation was observed only in the triple
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by the tail-cuff method under conscious conditions (n ¼ 9�16). *P < 0.05 vs. wild-type
(n ¼ 9�16). *P < 0.05 vs. wild-type C57BL/6 mice. All single, double, and triple NOSs-/-

ere backcrossed with C57BL/6J mice over five generations, while iNOS-/- mice were not
pe controls. We confirmed that there was no significant difference in blood pressure
se tissue between the C57BL/6 and 129SV mice at 3 months of age. Furthermore, we
formation between the 2 wild-type genotypes at 5 months of age. Results are expressed
) followed by Bonferroni post-hoc test for multiple comparisons. A value of P < 0.05 was
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Fig. 3. Decreased survival and causes of death in triple NOSs null mice. (A) Survival rate
(n¼ 29e57). The red line represents markedly reduced survival in the NOSs null mice. *,
y, and #: P < 0.05 between WT C57BL/6J vs. single, double, and triple NOSs null mice,
respectively. The “n” represents the number of mice used in each group. (B) Causes of
death (n ¼ 20). Results are expressed as mean ± SEM. Survival curves were analyzed by
the Kaplan-Meier method. Differences in cause of death were evaluated by ANOVA
followed by Scheffe post-hoc test for multiple comparisons. A value of P < 0.05 was
considered to be statistically significant. Quoted from reference 33 with permission.
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NOSs null mice, suggesting a minor role of hypertension in vascular
lesion formation in the triple NOSs null mice (2,33).

Bone marrow-derived vascular progenitor cells in the blood
accumulate in injured arteries, differentiate into vascular wall cells,
and contribute to arteriosclerotic vascular lesion formation. All
NOSs have been reported to be expressed in bone marrow cells.
However, whether NOSs in bone marrow cells play a role in
vascular lesion formation remained to be clarified. We previously
reported that, in wild-type mice that underwent bone marrow
transplantation from green fluorescent protein-transgenic mice,
green fluorescent protein-positive fluorescence was detected in the
ligated carotid arteries, confirming the involvement of bone
marrow-derived vascular progenitor cells in vascular lesion for-
mation after carotid artery ligation (34). In a comparison between
the triple NOSs null genotype that received the triple NOS null bone
marrow transplantation and the triple NOSs null genotype that
received the wild-type bone marrow transplantation, the extent of
neointimal formation and the extent of constrictive remodeling
were both significantly less in those that received the wild-type
bone marrow transplantation, along with significantly higher
NOS activities in the ligated carotid arteries (Fig. 2) (35). Further-
more, in a comparison of the wild-type genotype with the wild-
type bone marrow transplantation and the wild-type genotype
with the triple NOSs null bone marrow transplantation, the extent
of neointimal formation and the extent of constrictive remodeling
were both significantly greater in the wild-type genotype with the
triple NOSs null bone marrow transplantation, and this was asso-
ciated with significantly lower NOS activities in the ligated carotid
arteries (Fig. 2) (35). These results indicate that NOSs in bone
marrow cells exert an inhibitory effect on vascular lesion formation
caused by blood flow disruption in mice in vivo, demonstrating a
novel vasculoprotective role of NOSs in bone marrow-derived
vascular progenitor cells.

2.3. Myocardial infarction

During 11 months of follow-up, all (100%) of the wild-type mice
lived, whereas only 15% of the triple NOSs null mice survived
(Fig. 3A) (33). The survival rate was significantly worse in
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Fig. 2. Exacerbated constrictive vascular remodeling and neointimal formation in ligated
plantation. (A) Constrictive vascular remodeling (reduction in cross-sectional vascular area
*P < 0.0001. Results are expressed as mean ± SEM. Statistical analyses were performed by an
Quoted from reference 35 with permission.
accordance with the number of disrupted NOS genes in the order of
single, double, and triple NOSs null mice. Postmortem examination
revealed that 55% of the triple NOSs null mice died of myocardial
infarction (Figs. 3B and 4A) (33). This is the first demonstration to
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carotid arteries of wild-type mice after triple NOSs null mouse bone marrow trans-
) (n ¼ 5�7). *P < 0.001. (B) Neointimal formation (intima-to-media ratio) (n ¼ 7�13).
unpaired student t-test. A value of P < 0.05 was considered to be statistically significant.
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show that a deficiency of NOSs leads to the development of spon-
taneous myocardial infarction. In the coronary arteries of the dead
triple NOSs null mice, marked intimal formation, medial thick-
ening, and mast cell infiltration were noted, while intra-coronary
thrombus was rarely observed (Fig. 4AeC) (33). Histamine
released from adventitial mast cells is thought to cause coronary
vasospasm with resultant myocardial infarction in humans (36). It
is thus possible that coronary intimal hyperplasia, medial thick-
ening, and vasospasm are involved in the pathogenesis of
myocardial infarction in the triple NOSs null mice. Although human
myocardial infarction mainly results from rupture of atheroscle-
rotic plaques and subsequent thrombus formation, the triple NOSs
null mice seem to be a model of non-atherosclerotic forms of acute
myocardial infarction in humans. In the triple NOSs null mice, there
was a complete lack of endothelium-dependent relaxations to
acetylcholine, which is a physiological eNOS activator, and con-
tractions to phenylephrine, which is an a1 adrenergic receptor
agonist, were markedly potentiated (33). Thus, vascular dysfunc-
tion could also be involved in the pathogenesis of myocardial
infarction in the triple NOSs null mice.

The renin-angiotensin system was markedly activated in the
triple NOSs null mice, and long-term treatment with an angiotensin
II type 1 (AT1) receptor blocker olmesartan potently inhibited cor-
onary arteriosclerotic lesion formation, vascular mast cell infiltra-
tion, and the occurrence of myocardial infarction in those mice,
with a resultant improvement of the prognosis (33). These results
suggest that the AT1 receptor pathway is involved in the occurrence
of spontaneous myocardial infarction in the triple NOSs null mice.
Chronic kidney disease is a condition characterized by pro-
gressive and irreversible loss of renal function. Previous epide-
miological studies have indicated that the presence of chronic
kidney disease significantly increases the risk of acute myocardial
infarction in men, and that the impact of chronic kidney disease
on the risk of cardiovascular disease is as strong as that of dia-
betes mellitus and pre-existing ischemic heart disease (37e39).
Such a disease state is modeled in experimental animals by sur-
gically dissecting a large part of the renal mass (40,41). On the
basis of this background, we have recently investigated the effect
of subtotal nephrectomy on the incidence of acute myocardial
infarction in the triple NOSs null mice. Two-thirds nephrectomy
(NX) caused sudden cardiac death due to acute myocardial
infarction in the triple NOSs null mice as early as 4 months after
the surgery (42). The 2/3NX triple NOSs null mice exhibited
electrocardiographic ST-segment elevation, reduced heart rate
variability, echocardiographic regional wall motion abnormality,
and accelerated coronary arteriosclerotic lesion formation. Car-
diovascular risk factors (hypertension, hypercholesterolemia, and
hyperglycemia), an increased number of circulating bone
marrow-derived vascular smooth muscle cell progenitor cells (a
pro-arteriosclerotic factor), and cardiac up-regulation of stromal
cell-derived factor-1a (a chemotactic factor of the progenitor
cells) were noted in the 2/3NX triple NOSs null mice, and were
associated with significant increases in plasma angiotensin II
levels (a marker of activation of the renin-angiotensin system)
and urinary 8-isoprostane levels (a marker of oxidative stress).
The 2/3NX triple NOSs null mouse is a new experimentally useful
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model of acute myocardial infarction. Activation of the renin-
angiotensin system, oxidative stress, cardiovascular risk factors,
and stromal cell-derived factor-1aeinduced recruitment of bone
marrow-derived vascular smooth muscle cell progenitor cells
appear to be involved in the pathogenesis of acute myocardial
infarction in this model. Our findings provide novel evidence that
NOSs play a pivotal role in the pathogenesis of this reno-cardiac
connection.

2.4. Cardiac hypertrophy

At 5 months of age, but not at 2 months of age, significant left
ventricular hypertrophy (Fig. 5A), increased left ventricular weight
(Fig. 5B), and cardiac myocyte hypertrophy were noted in the triple
NOSs null and eNOS null mice, but not in the nNOS null or iNOS null
mice, as compared with the wild-type mice (43). The extents of
those structural changes were all significantly larger in the triple
NOSs null than in the eNOS null mice. The left ventricular end-
diastolic dimension was significantly smaller only in the triple
NOSs null mice compared with the wild-type mice, indicating
centripetal left ventricular hypertrophy in the triple NOSs null
mice. Despite comparable blood pressure levels in the triple NOSs
null and eNOS null mice, the extent of the left ventricular hyper-
trophy was greater in the triple NOSs null than in the eNOS null
mice, and anti-hypertensive treatment with hydralazine failed to
inhibit its progression, suggesting a minor role of hypertension in
the pathogenesis of left ventricular hypertrophy in the triple NOSs
null mice. It is thus conceivable that a lack of NOSs results in the
development of left ventricular hypertrophy in mice in vivo.

Recent clinical studies have revealed that electrocardiographi-
cally determined left ventricular hypertrophy is a risk factor for
cardiovascular death not only in hypertensive patients, but also in
normotensive subjects (44,45). However, the underlying mecha-
nisms remain to be elucidated. Based on our research outcomes
obtained from the triple NOSs null mice, we have recently tested
our hypothesis that normotensive subjects with electrocardio-
graphically determined left ventricular hypertrophy have reduced
NO production (46). The plasma NOx levels were markedly more
reduced in normotensive males with electrocardiographically
determined left ventricular hypertrophy than in those without. In
addition, the plasma NOx levels were inversely associated with the
prevalence and severity of electrocardiographically determined left
ventricular hypertrophy. These findings suggest that normotensive
individuals with electrocardiographically determined left
WT n NOS-/- i NOS-/- 

e NOS-/- n/i/e NOS-/- 

A

Fig. 5. Left ventricular hypertrophy in 5-month-old triple NOSs null and eNOS null mice. (A
null mice. Scale bars, 1 mm. (B) The ratio of left ventricular weight/body weight (n ¼ 5-7). *P
Statistical analyses were performed by one-way ANOVA followed by Fisher’s post-hoc test fo
Quoted from reference 43 with permission.
ventricular hypertrophy exhibit defective NO production. Our
findings may thus explain, at least in part, a potential mechanism
underlying the increased risk of cardiovascular death in normo-
tensive subjects with electrocardiographically determined left
ventricular hypertrophy. It is interesting to note that the observa-
tions in the triple NOSs null mice could be translated to the human
subjects.

2.5. Heart failure

Heart failure is a leading cause of morbidity and mortality in
industrialized countries (47,48). There is growing recognition that
not only systolic heart failure but also diastolic heart failure with
normal systolic function is common and causes significant
morbidity and mortality. Indeed, recent studies have revealed that
as many as 30-50% of patients with congestive heart failure have
diastolic heart failure, and that the morbidity and mortality rates
for diastolic heart failure are nearly identical to those for systolic
heart failure in aged patients (49). At 5 months of age, but not at 2
months of age, significant left ventricular diastolic dysfunction (as
evaluated by echocardiographic E/A wave ratio and
hemodynamic �dP/dt and Tau), with preserved left ventricular
systolic function (as assessed by echocardiographic fractional
shortening and hemodynamic þdP/dt) (Fig. 6), was noted only in
the triple NOSs null mice, and this was associated with enhanced
left ventricular end-diastolic pressure and increased lung wet
weight, all of which are characteristics consistent with diastolic
heart failure in humans (43). These results provide the first direct
evidence that the complete disruption of all NOS genes results in
diastolic dysfunction inmice in vivo, demonstrating a pivotal role of
NOSs in the pathogenesis of diastolic heart failure.

2.6. Endothelium-dependent hyperpolarization

Endothelium plays an important role in maintaining vascular
homeostasis by synthesizing and releasing several relaxing factors,
such as prostacyclin, NO, and endothelium-derived hyperpolarizing
factor (EDHF). Shimokawa et al. demonstrated in animals and
humans that endothelium-derived hydrogen peroxide (H2O2) is an
EDHF, and that H2O2 is produced in part by eNOS (50,51). Shimo-
kawa et al. subsequently examined the contribution of NOSs to
EDHF-mediated responses in the single eNOS null, double n/eNOSs
null, and triple n/i/eNOSs null mice (52). EDHF-mediated relaxation
and hyperpolarization in response to acetylcholine of mesenteric
WT nNOS-/- iNOS-/- eNOS-/- n/i/eNOS-/-
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arteries were progressively reduced as the number of disrupted
NOS genes increased, whereas vascular smooth muscle function
was preserved. Loss of eNOS expression alonewas compensated for
by other NOS genes, and endothelial cell production of H2O2 and
EDHF-mediated responses were completely absent in the triple
NOSs null mice, even after antihypertensive treatment with hy-
dralazine. NOS uncoupling, which is caused by a deficiency of tet-
rahydrobiopterin, a cofactor of NOS, was not involved, as
modulation of tetrahydrobiopterin synthesis had no effect on
EDHF-mediated relaxation, and the tetrahydrobiopterin/dihy-
drobiopterin ratio was comparable in the mesenteric arteries and
the aorta. These results demonstrate that EDHF-mediated re-
sponses are totally dependent on the NOSs system in mouse
mesenteric arteries. Collectively, this study provides a novel
concept on the diverse roles of the endothelial NOSs systemmainly
contributing to the EDHF/H2O2 responses in small-sized arteries
while serving as a NO-generating system in large arteries.

3. Significance of NOSs in the metabolic system

3.1. Metabolic syndrome

The eNOS null and triple NOSs null mice manifested metabolic
syndrome-like phenotypes, including hypertension, hyper-
triglycemia, visceral obesity, impaired glucose tolerance, and
insulin resistance (33). The extents of hypertension, hyper-
triglycemia, and visceral obesity were comparable in the two ge-
notypes, whereas the extents of impaired glucose tolerance and
insulin resistance were greater in the triple NOSs null than in the
eNOS null genotypes, and hyper-low-density-lipoprotein (LDL)-
emia was observed only in the triple NOSs null genotype. It is thus
possible that NOSs play an important role in the pathogenesis of
metabolic syndrome.

Adiponectin is an anti-metabolic and anti-atherogenic adipo-
cytokine, improving hypertriglyceridemia, glucose metabolism,
and insulin resistance, and inhibiting the progression of arterio-
sclerosis (53e55). The deficiency of adiponectin is thought to
contribute to the progression of metabolic syndrome and its
vascular complications (54). In the triple NOSs null mice, plasma
adiponectin levels were significantly reduced, suggesting that the
adiponectin deficiency is involved in the pathogenesis of metabolic
abnormalities and arteriosclerotic lesion formation in the triple
NOSs null mice (33).

3.2. Severe dyslipidemia induced by a high-fat diet

We examined the effect of a Western-type cholesterol-rich diet
on lipid metabolism in the triple NOSs null mice (56). The high-
cholesterol diet for 3 months significantly increased serum LDL
cholesterol levels in all the wild-type and single, double, and triple
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NOSs genotypes examined as compared with a regular diet.
Intriguingly, when compared with the wild-type genotype, the
serum LDL cholesterol levels in the high-cholesterol diet were
significantly and markedly elevated only in the triple NOSs null
genotype, but not in any single or double NOSs null genotypes
(Fig. 7A), and this was associated with remarkable atherosclerosis
(Fig. 7B) and sudden cardiac death, which occurred mainly in 4-5
months after the high-cholesterol diet. Hepatic LDL receptor
expression and hepatic levels of sterol regulatory element-binding
protein-2 (SREBP-2) which is a transcriptional factor that controls
LDL receptor gene expression (57) were markedly reduced only in
the triple NOSs null genotype, accounting for the diet-induced
dyslipidemia in the genotype. These results suggest that complete
disruption of all NOSs causes severe dyslipidemia, atherosclerosis,
and sudden cardiac death in response to a high-fat diet in mice
in vivo through the down-regulation of the hepatic LDL receptor,
demonstrating the critical role of NOSs in maintaining lipid
homeostasis.

4. Significance of NOSs in the renal system

4.1. Nephrogenic diabetes insipidus

Nephrogenic diabetes insipidus is characterized by an inability
to concentrate urine despite normal or elevated plasma concen-
trations of an anti-diuretic hormone, vasopressin. The triple NOSs
null mice showed prominent polyuria, polydipsia, and blunted
renal responsiveness to exogenous vasopressin (Fig. 8) (30).
Vasopressin stimulates adenylate cyclase, increases cAMP pro-
duction, and activates cAMP-dependent protein kinase via V2 re-
ceptor in renal collecting duct principal cells. Phosphorylation of
aquaporin-2 by the kinase in turn leads to translocation of
aquaporin-2 from cytoplasmic vesicles to the apical plasma
membrane, thereby increasing water permeability and reabsorp-
tion. In the kidney of the triple NOSs null mice, reduced
vasopressin-induced cAMP production, decreased membranous
aquaporin-2 water channel expression, and tubuloglomerular
lesion formation (renal tubular apoptosis and regeneration, glo-
merulosclerosis, and glomerular thrombi) were noted. All of these
are consistent with the characteristics of nephrogenic diabetes
insipidus, suggesting a crucial role of NOSs in the pathogenesis of
nephrogenic diabetes insipidus.
4.2. Pathological renal remodeling

Chronic unilateral ureteral obstruction (UUO) is a well-
characterized model of experimental obstructive nephropathy,
culminating in renal tubular apoptosis, interstitial fibrosis, and
glomerulosclerosis (58,59). These alterations are also a common
feature of a variety of kidney disorders, including chronic kidney
disease (CKD) and end-stage renal disease (60). UUO caused sig-
nificant renal lesion formation in the wild-type, single, and triple
NOSs null mice, but the extents of renal lesion formation was
markedly and most accelerated in the triple NOSs null genotype
(61). UUO elicited the infiltration of inflammatory macrophages,
up-regulation of transforming growth factor (TGF)-b1, and induc-
tion of epithelial mesenchymal transition (EMT) in all of the ge-
notypes; however, the extents were again largest by far in the triple
NOSs null genotype. These results suggest that the complete
disruption of all NOSs results in markedly accelerated renal lesion
formation in response to UUO in mice in vivo, demonstrating the
critical renoprotective role of NOSs against pathological renal
remodeling.
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5. Significance of NOSs in the respiratory system

5.1. Accelerated pulmonary fibrosis

Up-regulation of NOSs and an increase in plasma NOx levels
have been reported in patients with pulmonary fibrosis. However,
the regulatory role of NOSs in pulmonary fibrosis remains to be
clarified. Mukae et al. have recently examined the impact of
bleomycin-induced pulmonary fibrosis on the triple NOSs null mice
(62). Bleomycin (8 mg/kg/day) was administered intraperitoneally
in the wild-type, single NOS null, and triple NOSs null mice for 10
consecutive days, and 2 weeks later, fibrotic and inflammatory
changes of the lung were evaluated. The histopathological findings,
collagen content, and the total cell number in bronchoalveolar
lavage fluid were all most accelerated in the triple NOSs null mice
(Fig. 9). Long-term treatment with a NO donor significantly pre-
vented those pathological changes in the triple NOSs null mice.
These results provide the first evidence that NOSs deficiency leads
to a deterioration of pulmonary fibrosis in a bleomycin-treated
murine model.
6. Significance of NOSs in the bone system

6.1. Increased bone mineral density and enhanced bone turnover

The non-specificity of the NOS inhibitors has caused conflicting
results among previous pharmacological studies with the NOS in-
hibitors, such that NO has been suggested to be stimulatory (63) or
nonessential (64) for osteoblast function and to be stimulatory (65)
or inhibitory (66) for osteoclast function. We thus addressed this
point in the triple NOSs null mice (67). Bone mineral density,
trabecular bone thickness, and trabecular bone density were
significantly higher in the triple NOSs null mice, but not in any
single NOS null mice, as compared with the wild-type mice
(Fig. 10). Markers of osteoblastic bone formation, including the
bone formation rate, the mineral apposition rate, and the serum
alkaline phosphatase concentration, were also significantly larger
only in the triple NOSs null mice compared with the wild-type
mice. Furthermore, markers of osteoclastic bone resorption,
including the osteoclast number, the osteoclast surface, and the
urinary deoxypyridinoline excretion, were again significantly
greater only in the triple NOSs null mice. These results suggest that
genetic disruption of NOSs enhances bone mineral density and
bone turnover in mice, demonstrating the critical role of NOSs in
maintaining bone homeostasis.
7. Concluding remarks

Genetically engineered mouse is one of the most useful exper-
imental tools to study the function of target genes in vivo. The triple
NOSs null model manifests abnormalities in the cardiovascular
system (hypertension, arteriosclerosis, myocardial infarction, car-
diac hypertrophy, diastolic heart failure, and reduced EDHF re-
sponses), the metabolic system (metabolic syndrome and high-fat
diet-induced severe dyslipidemia), the renal system (nephrogenic
diabetes insipidus and pathological renal remodeling), the



Fig. 9. Deterioration of lung fibrosis in the triple NOSs null mice at 2 weeks after bleomycin treatment. Bleomycin (8 mg/kg/day) was administered intraperitoneally in the wild-
type, single NOS null, and triple NOSs null mice for 10 consecutive days, and 2 weeks later, fibrotic and inflammatory changes of the lung were evaluated. (A) Hematoxylin-eosin
staining in normal saline (NS)-treated mice. Scale bar ¼ 100 mm. (B) Hematoxylin-eosin staining, Masson-trichrome staining, a-smooth muscle actin (SMA) staining, MAC-2 staining
in bleomycin-treated mice. Scale bar ¼ 100 mm. (C) The fibrotic tissue area (blue-stained). (D) The collagen content in lung tissue. White and black bars indicate normal saline-
(n ¼ 3) and bleomycin- (n ¼ 5) treated mice, respectively. *P < 0.05 vs. bleomycin-treated wild-type mice. Statistical analyses were performed by the Mann-Whitney U (non-
parametric) test. A value of P < 0.05 was considered to be statistically significant. Quoted from reference 62 with permission.
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respiratory system (accelerated pulmonary fibrosis), and the bone
system (increased bone mineral density and enhanced bone
turnover). These findings provide the first direct evidence of the
critical roles of NOSs in the pathogenesis of a wide variety of
disorders.
We are currently studying the role of NOSs in cerebral infarction.
Intriguingly, cerebral infarct size after middle cerebral artery oc-
clusion was not larger, but rather markedly smaller in the triple
NOSs null mice than in the wild-type mice (68). These results
suggest that, in contrast to the protective role of NOSs inmyocardial



Fig. 10. Abnormal trabecular bone microstructure in triple NOSs null mice. (A) Calcein double labeling in the proximal tibia. (B) Three-dimensional micro-computed tomography of
the femur. In both analyses, trabecular bone thickness and density were increased in the triple NOSs null mice. Quoted from reference s67 with permission.
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infarction, NOSs may play an opposite injurious role in cerebral
infarction. Thus, the roles of NOSs appear to be different in distinct
organs or disease states. Further studies are certainly needed to
clarify the complex roles of NOSs in humans in vivo.
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