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Reactive oxygen species (ROS) have been considered to play a major role in the pathogenesis of cardiovascular
diseases. However, this notion needs to be revised since recent evidence indicates that vascular-derived hydro-
gen peroxide (H2O2) serves as an important signalingmolecule in the cardiovascular system at its low physiolog-
ical concentrations. At low concentrations, H2O2 can act as a second messenger, transducing the oxidative signal
into biological responses through post-translational protein modification. These structural changes ultimately
lead to altered cellular function. Intracellular redox status is closely regulated by the balance between oxidant
and antioxidant systems and their imbalance can cause oxidative or reductive stress, leading to cellular damage
and dysregulation. For example, excessive H2O2 deteriorates vascular functions and promotes vascular disease
through multiple pathways. Furthermore, cyclophilin A (CyPA) has been shown to be secreted from vascular
smoothmuscle cells and to augment the destructive effects of ROS, linking it to the development of many cardio-
vascular diseases. Thus, it is important to understand the H2O2 signaling and the roles of downstream effectors
such as CyPA in the vascular system in order to develop new therapeutic strategies for cardiovascular diseases.
In this review,wewill discuss the dual roles of vascular-derivedH2O2 inmediating vascular functions (physiolog-
ical roles) and promoting vascular diseases (pathological roles), with particular emphasis on the function of
CyPA. This article is part of a Special Issue entitled “Redox Signalling in the Cardiovascular System”.

© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Endothelial cells and vascular smooth muscle cells (VSMC) se-
crete a variety of vasoactive substances that contribute to vascular
protection as well as vascular remodeling [1,2]. Furthermore, the
growth factors secreted from the VSMC play important roles in the
remodeling process as they mediate various cellular responses [3].
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Oxidative stress is one of the important stimuli that modulate VSMC
function and promote VSMC growth by inducing autocrine/paracrine
growth mechanisms [4].

Oxidative stress is generated by high levels of reactive oxygen species
(ROS), including superoxide anions (O2

−), hydrogen peroxide (H2O2), and
hydroxyl radical (·OH) [5]. ROShave been shown to promote cell prolifer-
ation and hypertrophy in a concentration-dependent manner [6]. More-
over, excessive ROS production can cause DNA damage and harmful
protein oxidation, ultimately promoting vascular diseases. Indeed, ROS
production has been implicated in the pathogenesis of cardiovascular
diseases [7–9], however, its specific molecular targets remain to be
elucidated.

Although high levels of ROS appear to contribute to vascular dis-
ease development, strictly controlled ROS formation has been shown
to mediate many important physiological functions in the vascular
cells. For example, H2O2 plays a crucial role as a signaling molecule
at very low concentrations [10] as we have previously demonstrated
that it is one of the endothelium-derived hyperpolarizing factors
(EDHF) that modulate vascular tone especially in the microvessels
[11–13] as well as in human coronary arteries [14]. In contrast,
H2O2 has also been shown to induce constrictions and a biphasic
effect in a concentration-dependent manner [15,16]. However, a
plausible explanation for why or how ROS contribute simultaneously
to both vascular protection and vascular diseases remains to be
elucidated [17].
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2. Regulation of ROS generation: oxidants and antioxidants

Intracellular redox status equilibrium is maintained by the balance
between oxidants (e.g. ROS) and antioxidants that can scavenge ROS in
the cell [18]. Excessive ROS damage mitochondrial proteins and further
increases ROS levels, thus forming a vicious cycle of oxidative damage.
In addition to the generation of ROS in the mitochondria, several en-
zymes can also generate intracellular ROS [18]. Among these enzymes,
nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox)
dynamically produce O2

− and H2O2 (Fig. 1). Importantly, the production
of endothelial H2O2 for EDHF responses appears to depend in part
upon endothelial NOS (eNOS) [19]. eNOS also produces NOwith a resul-
tant production of cyclic guanosinemonophosphate (cGMP) and NO can
react with O2

− to produce peroxynitrite (ONOO−) (Fig. 2) [20]. Other
enzymes, such as cytochrome P450 and xanthine oxidase (XO), also
produce intracellular ROS under pathological conditions [18].

The amount of ROS produced by themitochondria and oxidizing en-
zymes is offset by the presence of antioxidants [21]. For example, O2

− is
rapidly dismutated to H2O2 by superoxide dismutase (SOD) and is
therefore highly restricted to certain cellular compartments (Fig. 1).
Among the ROS, H2O2 is most stable and can penetrate the membrane
and rapidly reach its cellular targets, acting as a second messenger.
However, H2O2 is neutralized by catalase localized in the peroxisome,
which catalyzes the decomposition of H2O2 to oxygen and water
(Fig. 2). In addition, peroxiredoxins also reduce H2O2 levels, whereby
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the peroxidatic thiol reacts with the oxidant to form a sulfenic acid.
Peroxiredoxin is then regenerated by the antioxidant protein
thioredoxin 1 (Trx1), thus balancing the intracellular redox state [22].
Trx1 also works as a signaling intermediate that can sense redox state
imbalances and to correct these asymmetries, transduces signals to
other effectors, including transcription factors and kinases [18]. The
dual roles of ROS, particularlyH2O2 as both a protective and pathological
agent, appear to be particularly important in vascular health.

3. ROS in the vascular system

3.1. Physiological levels of ROS contribute to vascular homeostasis

In the vascular wall, ROS are generated by several enzymes, includ-
ing NADPH oxidases, xanthine oxidase, enzymes in the mitochondrial
respiratory chain, and lipoxygenases [23]. Physiological levels of ROS
regulate cell function, proliferation and normal levels of cell death. For
example, at low concentrations, H2O2 plays an important role in
endothelial function and vascular relaxation [11–13]. Endothelium-
dependent relaxation is mediated primarily by prostacyclin, NO and
EDHF (Fig. 3) [24,25]. The existence of EDHF was first described in
1988 by Feletou and Vanhoutte et al. [26] and Chen et al. [27] indepen-
dently and they are primarily found in resistance vessels, which are the
principal regulators of vascular resistance and thus blood pressure.
Thus, regulation of EDHF is the predominant mechanism for controlling
vasodilation [28].

The contribution of H2O2 to EDHF-dependent vasodilation of resis-
tance vessels [11–13] can be primarily attributed to the oxidation of
protein kinase G, subunit 1α (PKG1α) [29]. Recent work from the
Eaton Laboratory has demonstrated that PKG can be activated by an
oxidation mechanism where the homodimer complex forms an
interprotein disulfide [30]. This oxidation to the disulfide state is impor-
tant for the catalytic activity of PKG. In endothelial cells, PKG activity is
also regulated by intracellular cGMP levels, which can be modified by
NO produced by shear stress and agonists, such as bradykinin, acetyl-
choline (ACh), and adenosine (Fig. 2) [31]. Furthermore, vascular
smooth muscle expressing PKG resistant to H2O2 oxidation (i.e. Cys42
to Ser mutant) displays altered relaxation properties that may be due
in part to changes in protein interactions with substrates such as
RhoA, MYPT1 and BKCa channels [31] (Fig. 3). These effects were dem-
onstrated using knock-in mice overexpressing Cys42Ser redox-dead
PKG1α that fail to form a PKG disulfide and importantly those mice
are hypertensive as compared with control mice [29,31].

Themechanism of H2O2-induced hyperpolarization seems to be com-
plex and varies depending on the type of blood vessels tested. For exam-
ple, Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ),
caveolin-1 and PKG1α in murine microvessels have all been shown to
play a substantial role in the enhanced EDHF-mediated responsemecha-
nism utilizing small amounts of O2

− andH2O2 in vascular endothelial cells
[32]. Bonemarrow (BM) also appears to play an important role inmodu-
lating microvascular EDHF [33]. To address this notion, we transplanted
BM from wild-type (WT) mice or eNOS−/− mice into male eNOS−/−

mice and found that the reduced endothelium-dependent relaxations
and hyperpolarizations of mesenteric arteries to ACh in eNOS−/− mice
were markedly improved when transplanted with WT-BM but not with
eNOS−/−-BM [33]. Furthermore, the enhanced endothelium-dependent
relaxations by WT-BM transplantation were abolished by catalase,
indicating that the improved responses were mediated by H2O2.
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The role of H2O2 as an EDHF has led to extensive research on the
importance and complexity of endothelium-derived relaxing factors.
Although our understanding of this vascular-derived oxidant is contin-
ually expanding, further studies are needed to clarify the physiological
role of H2O2 in vascular homeostasis.

3.2. Pathological levels of ROS promote vascular disease

To date, most of the research on H2O2 has focused on its pathological
roles. Diabetic vascular dysfunction is associated with an increase in
ROS [34]. Cardiovascular diseases often result from imbalances in the
levels of oxidative species in the cell. The O2

−-producing oxidases
in the vascular system, including eNOS, cyclooxygenase, lipoxygenase,
P-450 monooxygenase and NADPH oxidases [35], can be stimulated to
produce excess ROS by external stimuli, such as mechanical stretch,
pressure, shear stress, and hypoxia and by humoral factors such as an-
giotensin II [23,36]. Excessive ROS targetmultiple biomolecules, causing
numerous cellular complications, including lipid peroxidation, protein
oxidation/inactivation and DNA damage/mutations [23]. Furthermore,
increased O2

− levels attenuate endothelium-dependent relaxation
and promote contraction in VSMC through formation of hydroxyl
radicals [37,38] and can become H2O2 spontaneously or through SOD-
dependent dismutation (Fig. 2). Although H2O2 is important for
endothelial function and vascular relaxation at physiological low
concentrations [11,13], pathological higher concentrations of ROS are
hazardous to the cells, leading to endothelial dysfunction and VSMC
proliferation. Furthermore, H2O2 is converted by endogenous peroxi-
dases into either H2O and O2 or hydroxyl radicals, which are known to
cause endothelium-dependent contractions through production of
vasoconstrictor prostanoids in VSMC, leading to additional cellular
damage [39].

Twenty years ago, very little was known about the proliferative re-
sponse induced in VSMCs after arterial injury. ROS generated during
arterial injury were considered, at least in part, to be responsible for
this cellular response. Using xanthine/xanthine oxidase to generate
ROS, Rao and Berk demonstrated that ROS stimulate VSMC proliferation
in vitro and that H2O2 is the primarymolecule responsible for xanthine/
xanthine oxidase-induced VSMC DNA synthesis [40]. Both O2

− and H2O2

stimulate VSMC growth, but only O2
− rapidly activatesMAP kinase, sug-

gesting that additional signal events are involved in the mitogenic ef-
fects of H2O2 [9]. Based on these reports, excess amount of ROS
appears to promote VSMC proliferation and increase the potential to
develop vascular diseases. Interestingly, ROS stimulate extracellular-
signal-regulated kinases 1 and 2 (ERK1/2) in a biphasic manner in
VSMC, and one explanation for the delayed ERK1/2 activation is an in-
volvement of the Secreted OXidative stress-induced Factors (SOXF) [41].
Cyclophilin A (CyPA) is one of the major proteins released into the medi-
um in response to ROS [42]. Importantly, human recombinant CyPA stim-
ulates ERK1/2 andDNA synthesis in VSMCs in a concentration-dependent
manner [42]. Thus, extracellular CyPA is a novel growth factor that
contributes to ROS-induced VSMC growth [43].
3.3. Potential limitations/drawbacks of therapeutically targeting either ROS
or H2O2 in the vasculature

Exogenous H2O2 has been commonly used to elucidate the role of
H2O2 in vascular function [14,44]. In the recent paper from the
Gutterman laboratory, the EC50 of exogenous H2O2-induced dilation
in human coronary arteries was approximately 1–3 × 10−5 mol/L.
This concentration is similar to those used in the other studies [44].
However, the concentrations used for the exogenous H2O2 application
were higher than those reported for endogenously generated H2O2

(b10−6 mol/L) in physiological conditions. The discrepancy of H2O2

concentrations between the exogenous stimulation and the endoge-
nous generation would be explained in part by the fact that the limited
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amount of exogenous H2O2 (1% to 15%) diffuses and reaches into the
intracellular target components [14,44].

4. The role of CyPA in ROS-induced vascular disease

4.1. Function of CyPA

In 1984, intracellular CyPA was identified as the main target for the
immunosuppressive drug, cyclosporine [45]. Cyclophilins are a family
of highly conserved and ubiquitous proteins termed immunophilins
[46]. Themost abundant cyclophilin is CyPA,which iswidely distributed
in almost all tissues [47]. Owing to its enzymatic properties, cellular lo-
calization, and role in protein folding, CyPA is classified into a diverse set
of proteins termed foldases [48]. It catalyzes the cis-trans isomerization
of peptidyl-prolyl bonds of certain proteins (PPIase activity) and acts as
an accelerant during protein folding and assembly. In addition to its role
in protein folding, CyPA has recently been demonstrated to have a vari-
ety of functions, including intracellular trafficking, signal transduction
and transcriptional regulation [49,50]. Importantly, CyPA plays a crucial
role in the translocation of Nox enzymes such as p47phox [51], which
are known to contribute to VSMC proliferation and development of vas-
cular diseases [23]. Since ROS production by Nox enzymes activates
other oxidase systems, CyPA and Nox enzymes amplify ROS formation
in a synergistic manner, leading to increased oxidative stress.

It is now known that CyPA is secreted from the VSMC via a highly
regulated pathway, which involves vesicle transport and plasma mem-
brane binding in response to oxidative stress [52]. The expression of
RhoA and Cdc42 (cell division control protein 42) dominant-negative
mutants and a Rho-kinase inhibitor blocked ROS-induced CyPA secre-
tion [52,53]. These results suggest that CyPA is secreted from VSMC
through a process that requires ROS production, RhoA/Rho-kinase
activation and vesicle formation [54]. In the VSMC, extracellular CyPA
stimulates ERK1/2, Akt, and JAK (Janus protein tyrosine kinase) that
contribute to ROS production [55,56] (Fig. 4). In endothelial cells,
extracellular CyPA augments pro-inflammatory pathways, including
enhanced expression of adhesion molecules, and promotes atheroscle-
rosis [57,58]. In inflammatory cells, extracellular CyPA also works as a
chemoattractant in cooperation with other cytokines and chemokines.
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Although the protein basigin has been proposed to serve as an extracel-
lular receptor for CyPA in inflammatory cells [59], the identity of CyPA
receptors in endothelial cells and VSMC remains unknown. Further
knowledge of the extracellular CyPA receptors on vascular cells will
contribute to the development of novel therapies for cardiovascular
diseases.

4.2. CyPA promotes atherosclerosis

Changes in vascular redox state and extracellular CyPA are common-
ly involved in the pathogenesis of vascular restenosis [60], aortic aneu-
rysms [53], atherosclerosis [58] and cardiac hypertrophy [61]. We
demonstrated that CyPA (both intracellular and extracellular) contrib-
utes to atherosclerosis by promoting EC apoptosis and EC expression
of leukocyte adhesion molecules. These actions stimulate inflammatory
cell migration, enhance ROS production, increase proliferation of mac-
rophages and VSMC and increase pro-inflammatory signal transduction
in VSMC [58]. In the context of atherosclerosis, CyPA is regarded as a
pro-inflammatory andpro-atherogenicmolecule. The role of CyPA in in-
flammation was discovered using mice lacking both apolipoprotein E
(ApoE−/−) and CyPA (CyPA−/−) that appeared to be protected
from atherosclerosis development. The atheroprotection observed in
ApoE−/−CyPA−/−micewas due to the decreased levels of inflammation
mediated by the absence of CyPA [62]. The vascular endothelium ex-
presses a large array of vital proteins that function in normal cellular
processes, the loss of which lead to initiation of atherosclerosis [63].
For example, eNOS function is critical for vascular homeostasis via gen-
eration of NO and its loss is pro-atherogenic. Furthermore, the progres-
sion of atherosclerosis is associated with decreases in both eNOS
expression and NO production. In the ApoE−/−CyPA−/− mice, aortic
staining revealed significantly higher eNOS expression as compared
with ApoE−/− mice [58], indicating that CyPA plays a role in regulating
the eNOS/NO levels. Moreover, shear stress-induced eNOS expression
was significantly increased when CyPA siRNA was used to silence
CyPA in human umbilical vein endothelial cells (HUVEC) [58]. In addi-
tion, CyPA knockdown in HUVEC increased eNOS promoter activity
and eNOS mRNA levels, whereas overexpression of CyPA reduced
eNOS protein and mRNA levels. Both the antioxidants N-acetyl cysteine
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(NAC) and Tiron reversed this CyPA-mediated inhibition of eNOS
promoter activity [58]. These findings suggest a novel mechanism by
which CyPA promotes atherosclerosis through suppression of eNOS
transcription.

Furthermore, overall ROS production is significantly higher in
HUVEC overexpressing CyPA than in cells transfected with the vector
control [58]. This suggests that CyPA plays a critical role in ROS genera-
tion in endothelial cells as in VSMC [64] and that CyPA likely induces in-
flammation through ROS-dependent mechanisms in those vascular
cells [56]. Based on these results, CyPA is likely the primary mediator
that augments ROS production, contributing to vascular inflammation
and atherogenesis [56].

4.3. Clinical implications of oxidative stress research on CyPA

The identification of CyPA as a mediator of tissue damage associated
with inflammation and oxidative stress provides new insight into the
mechanisms of several therapies. We have recently demonstrated that
plasma levels of CyPA are significantly elevated in patients with
angiographically-proven coronary artery disease (CAD) [65]. Impor-
tantly, CyPA levels were also elevated in patients with hypertension, di-
abetes mellitus, smoking, dyslipidemia and advanced age [65], all of
which are atherosclerotic risk factors as well as ROS-inducers. We also
demonstrated that CyPA is a prognosticmarker for cardiovascular inter-
vention, such as percutaneous coronary intervention (PCI) and coronary
artery bypass graft (CABG) [65]. Furthermore, after the treatment in
several individuals, the plasma obtained at baseline and a follow-up re-
vealed a significant reduction after the treatment [65]. Medical treat-
ments that control atherosclerotic risk factors decreased plasma CyPA
levels in CAD patients, suggesting that plasma CyPA is useful for the
evaluation of systemic oxidative stress and the therapeutic effect by
medication [65]. Taken together, these results suggest that circulating
CyPA is a novel biomarker for CAD and plays a crucial and synergistic
role in ROS augmentation, contributing to the progression of atheroscle-
rosis [56]. Importantly, CyPA is highly expressed at sites with unstable
atherosclerotic plaques, especially those associated with macrophages
and foam cells [65]. However, CyPA expression during plaque destabili-
zation in humans and its regulatory mechanism still remain elusive.
Further research regarding the role of CyPA in the progression of athero-
sclerosis is necessary to identify potential CyPA-related therapeutic
targets.

5. Future perspectives

Numerous basic and clinical studies have demonstrated that ROS
play a major role in the pathogenesis of endothelial dysfunction and
atherosclerosis. However, no therapeutic strategies are yet available
for clinical use of the antioxidants. We consider that one of the reasons
for this dilemma is that low concentrations of ROS, particularly H2O2,
play an important role in intracellular signaling pathways that are cru-
cial for numerous vascular cell functions. The source/location of ROS
production may also be important in determining their physiological
or pathological roles. For example, the roles of ROS in endothelial cells,
VSMC andmigrating perivascular inflammatory cells would be different
between physiological and pathological conditions. In addition, the dual
roles of ROS may be somewhat analogous to the beneficial/deleterious
actions of NO in cell signaling [20]. Furthermore, the production of
ROS in inflammatory cells plays a crucial role in the cellular responses
in immune response and infection [66]. Although many strategies to
control oxidative stress have been previously tested in various diseases,
we need to pay close attention to the existence of a complex network of
molecules that exogenously or endogenously contribute to the balance
between oxidant and antioxidant systems. Thus, it may be an important
clinical strategy to use antioxidants and/or drugs that can prevent
oxidation of selected redox-sensitive targets under certain disease
conditions, while allowing the ROS to continue to function in normal
processes.

Furthermore, the identification of CyPA as a mediator of oxidative
stress-induced tissue damage has provided some additional insight
into the mechanisms of several therapies. For example, Rho-kinase
inhibitor and simvastatin significantly reduced CyPA secretion from
VSMC [52,64]. Indeed, Rho-kinase is an important therapeutic target
in cardiovascular diseases [67] and Rho-kinase inhibition has been
reported to reduce AngII-induced abdominal aortic aneurysm (AAA)
formation [68], atherosclerosis, pulmonary hypertension [69] and cardi-
ac hypertrophy [70]. Moreover, angiotensin II type 1 (AT1) receptor
blockers and angiotensin-converting enzyme (ACE) inhibitors have
been shown to reduce cardiovascular diseases [71–73], for which re-
duced CyPA secretionmay be involved as shown in AAA, atherosclerosis
and pulmonary hypertension [64].

Based on the role of extracellular CyPA, it is logical to consider that
agents that prevent CyPA receptor binding and reduce circulating
CyPA may have therapeutic potentials. Blocking this vicious cycle that
augments ROS production through CyPA autocrine/paracrine signaling
pathway could be a novel therapeutic tool for controlling cardiovascular
diseases. However, the regulation of CyPA expression and the identity of
its extracellular receptors remain largely unknown. Thus, further basic
and clinical studies are needed to identify CyPA-related therapeutic
targets in the future [74].
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