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Introduction

　Nitric oxide (NO) possesses multiple biological ac-
tions that contribute to the maintenance of cardiovas-
cular homeostasis [1-6].  NO is formed from its pre-
cursor L-arginine by a family of NO synthases (NOSs) 
with stoichiometric production of L-citrulline.  The 

NOS system consists of three different NOS isoforms, 
encoded by three distinct NOS genes, including neuro-
nal (nNOS; also known as NOS-1), inducible (iNOS; 
also known as NOS-2) and endothelial NOS (eNOS; 
also known as NOS-3).
　It was initially indicated that nNOS and eNOS are 
constitutively expressed mainly in the nervous system 
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and the vascular endothelium, respectively, synthe-
sizing a small amount of NO in a calcium-dependent 
manner both under basal conditions and upon stimula-
tion, and that iNOS is induced only when stimulated by 
microbial endotoxins or certain proinflammatory cyto-
kines, producing a greater amount of NO in a calcium-
independent manner [1-6].  However, recent studies 
have revealed that both nNOS and eNOS are subject to 
expressional regulation [7-11], and that iNOS is consti-
tutively expressed even under physiological conditions 
[12, 13].  In addition, it has become apparent that in ad-
dition to eNOS and iNOS, nNOS also plays important 
roles in the cardiovascular system.
　Genetically engineered animals are a powerful ex-
perimental tool to study the function of target genes in 

vivo.  All types of NOS gene-knockout (KO) animals, 
including singly, doubly, and triply NOS-KO mice, 
have been generated (Table 1) [14-25].  Furthermore, 
various types of NOS gene-transgenic (TG) animals, 
including conditional and non-conditional TG mice 
with endothelium-specific or cardiomyocyte-specific 
overexpression of each NOS isoform, have also been 
established (Table 2) [26-35].  By using those geneti-
cally modified mice, the roles of NOSs in the patho-
genesis of heart failure have been extensively studied, 
and the findings provide pivotal insights into the sig-
nificance of NOSs in human heart failure.  In this re-
view, we summarize the current knowledge of NOSs 
and heart failure on the basis of research outcomes ob-
tained from the NOS gene-modified mice.

Table 1.  Mice lacking the NOS gene that have thus far been established

KO Mice Sites of gene deletion Authors References 

nNOS-KO exon 2 (#1) Huang PL, et al (1993): Cell 75: 1273-1286

exon 6 Gyurko R, et al (2002): Endocrinology 143: 2767-2774

exon 6 Packer MA, et al (2003): PNAS 100: 9566-9571

iNOS-KO proximal 585 bases of promoter plus exons 1-4 (#2) MacMicking JD, et al (1995): Cell 81: 641-650 

near exons 1-5 Wei X, et al (1995): Nature 375: 408-411

exons 12 and 13 and a part of exon 11 (#3) Laubach VE, et al (1995): PNAS 92: 10688-10692

eNOS-KO exons 24-26 (#4)  Huang PL, et al (1995): Nature 377: 239-242

exon 12(#5) Shesely EG, et al (1996): PNAS 93: 13176-13181

exons 24 and 25 Godecke A, et al (1998): Circ Res 82: 186-194

n/iNOS-KO #1 and #3 Tranguch S, et al (2003): Mol Reprod Dev 65: 175-179

#1 and #2 Morishita T, et al (2005): PNAS 102: 10616-10621

n/eNOS-KO #1 and #4 Son H, et al (1996): Cell 87: 1015-1023

#1 and #5 Tranguch S, et al (2003): Mol Reprod Dev 65: 175-179

#1 and #4 Morishita T, et al (2005): PNAS 102: 10616-10621

i/eNOS-KO #3 and #5 Tranguch S, et al (2003): Mol Reprod Dev 65: 175-179

#2 and #4 Morishita T, et al (2005): PNAS 102: 10616-10621

n/i/eNOS-KO #1, #2 and #4 Morishita T, et al (2005): PNAS 102: 10616-10621
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Role of eNOS in Heart Failure

　Congestive heart failure can be induced by perma-
nent ligation of the coronary artery (i.e. myocardial 
infarction) and by transverse aortic constriction (i.e. 
pressure overload), respectively, in animals.  Cardio-
myocyte-restricted eNOS-TG mice with a 30-fold 
increase in cardiac NOS activity showed protection 
against detrimental left ventricular (LV) remodeling 
after coronary artery ligation, exhibiting improved LV 
systolic and diastolic function and attenuation of LV 
hypertrophy [29].  Endothelium-specific eNOS-TG 
mice with a 12-fold increase in vascular NOS activity 
also exhibited improvement of survival, LV dysfunc-
tion, and pulmonary edema following coronary ligation 
without affecting LV remodeling [36].  Consistent with 
these findings, eNOS-KO mice with heart failure due 
to myocardial infarction [37] or to pressure overload 
[38] displayed exacerbation of survival, LV remodel-
ing, and LV dysfunction.  It has also been reported that 
the presence of eNOS mediates the beneficial cardio-
vascular protective effects of statins [39], angiotensin-
converting enzyme inhibitors [40], angiotensin II type 
1 receptor blockers [40], and corticosteroids [41] in ex-

perimental heart failure.  Thus, it is evident that eNOS 
plays a protective role in heart failure [42, 43].

Role of nNOS in Heart Failure

　Conditionally targeted cardiomyocyte-specific nNOS- 
TG mice with a 5-fold increase in cardiac NOS ac-
tivity indicated delayed transition toward heart failure 
in response to pressure overload [30].  In agreement 
with the evidence, two strains of nNOS-KO mice with 
myocardial infarction-induced heart failure similarly 
showed exacerbation of survival, pathological LV re-
modeling, or LV dysfunction after coronary artery li-
gation, although the findings were not totally identical 
in the two studies [44, 45].  It is thus possible that in 
addition to eNOS, nNOS also plays a protective role in 
heart failure [46].

Role of iNOS in Heart Failure

　Increased iNOS expression is noted in cardiomyo-
cytes in septic shock, myocarditis, ischemia, and di-
lated cardiomyopathy, and has been implicated in the 
development of heart failure.  However, cardiomyo-

Table 2.  Mice overexpressing the NOS gene that have thus far been established

TG Mice Overexpression site Promoter used Authors References

nNOS-TG myocardium (conditional) α-MHC Burkard N, et al (2007): Circ Res 100: e32-e44

myocardium (conditional) α-MHC Loyer X, et al (2008): Circulation 117: 3187-3198

brain CaMKIIα Packer MA, et al (2005): Cell Mol Biol 51: 269-277

iNOS-TG myocardium (conditional) α-MHC Mungrue I, et al (2002): J Clin Invest 109: 735-743

myocardium α-MHC Heger J, et al (2002): Circ Res 90: 93-99

pancreatic β cell insulin Takamura T, et al (1998): J Biol Chem 273: 2493-2496

eNOS-TG endothelium preproendothelin-1 Ohashi Y, et al (1998): J Clin Invest 102: 2061-2071

endothelium eNOS van Haperen R, et al (2002): J Biol Chem 277: 48803-48807

myocardium α-MHC Brunner F, et al (2001): Circulation 104: 3097-3102

myocardium α-MHC Janssens S, et al (2004): Circ Res 94: 1256-1262

CaMKII: calcium-calmodulin multifunctional kinase II, MHC: myosin heavy chain, TG: transgenic
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cyte-specific iNOS overexpression per se (in two dif-
ferent strains with either a 10-fold [31] or 40-fold in-
crease [28] in cardiac NOS activity) did not result in 
heart failure, suggesting that increased iNOS expres-
sion is not the triggering factor of heart failure.  On the 
other hand, iNOS-KO mice with heart failure induced 
by myocardial infarction [47-49] and by pressure 
overload [50] showed improved survival, lessened 
LV remodeling and dysfunction, and decreased myo-
cardial apoptosis.  Furthermore, iNOS-KO mice with 
heart failure induced by cardio-specific overexpres-
sion of tumor necrosis factor-α exhibited improved 
β-adrenergic inotropic responsiveness.  It is thus pos-
sible that in contrast to eNOS and nNOS, iNOS exerts 
an opposite, unfavorable role in heart failure status.  
The underlying mechanisms for the contrasting roles 
among NOS isoforms in heart failure are unclear, but 
may relate to differences in spatial localization, ex-
pressional regulation, NO-generating capacity, or per-
oxynitrite generation [43, 51, 52].

Role of the Entire NOS System in Heart Failure

　The roles of the NOS system in vivo have been in-
vestigated in pharmacological studies.  As pharmaco-
logical tools used to inhibit NO synthesis, L-arginine 
analogues have been widely used.  However, the L-
arginine analogues possess multiple non-specific ac-
tions [53, 54].  Indeed, we clarified the NO-indepen-
dent vascular actions of L-arginine analogues (e.g. a 
synthetic analogue, N ω-nitro-L-arginine methyl ester, 
and an endogenous analogue, asymmetric dimethyl-
arginine).  Although long-term treatment with L-argi-
nine analogues had long been believed without doubt 
to simply inhibit vascular NO synthesis and cause 
arteriosclerotic vascular lesion formation, we found 
that the long-term vascular effects of L-arginine ana-
logues are not solely mediated by the simple inhibition 
of vascular NO synthesis [53, 54].  Activation of the 
tissue renin-angiotensin system and increased oxida-
tive stress, independent of endogenous NO inhibition, 
are involved in the long-term vascular effects of those 
analogues [53, 54].  These findings questioned the pre-

vious theory regarding the effects of L-arginine ana-
logues, and warranted re-evaluation of previous stud-
ies using those analogues [53, 54].  Thus, due to their 
non-specificity, the authentic roles of the NOS system 
in our body still remain to be fully elucidated.
　To address this issue, we have generated mice in 
which all three NOS isoforms are completely disrupted 
(triply n/i/eNOS‒/‒ mice) [20, 55].  The n/i/eNOS‒/‒ 
mice are unexpectedly viable and appear normal, but 
their survival and fertility rates are markedly reduced 
as compared with wild-type (WT) mice.  The n/i/
eNOS‒/‒ mice spontaneously develop cardiovascular 
diseases, including hypertension, dyslipidemia, and 
arteriosclerosis [56, 57].  It, however, remains to be de-
termined whether or not the NOS system plays a role in 
maintaining cardiac architecture and function.  We thus 
addressed this point in our triply mutant mice.
　Morphological, echocardiographic, and hemody-
namic analyses were performed in wild-type (WT), 
singly nNOS‒/‒, iNOS‒/‒, eNOS‒/‒, and triply n/i/
eNOS‒/‒ mice.  At 5 months of age, but not at 2 months 
of age, significant LV hypertrophy was noted in n/i/
eNOS‒/‒ mice and to a lesser extent in eNOS‒/‒ mice, 
but not in nNOS‒/‒ or iNOS‒/‒ mice, compared with WT 
mice (Fig. 1).  Importantly, significant LV diastolic 
dysfunction (as evaluated by echocardiographic E/A 
wave ratio and hemodynamic -dP/dt and Tau), with 
preserved LV systolic function (as assessed by echo-
cardiographic fractional shortening and hemodynamic 
+dP/dt) (Fig. 2), was noted only in n/i/eNOS‒/‒ mice, 
and this was associated with enhanced LV end-diastol-
ic pressure (LVEDP) and increased lung wet weight 
(Figure 3), all of which are characteristics consistent 
with diastolic heart failure in humans.  Finally, long-
term oral treatment with an angiotensin II type 1 (AT1) 
receptor blocker olmesartan significantly prevented all 
these abnormalities of n/i/eNOS‒/‒ mice.  These results 
provide the first direct evidence that the complete dis-
ruption of all NOS genes results in LV hypertrophy and 
diastolic dysfunction in mice in vivo through the AT1 
receptor pathway, demonstrating a pivotal role of the 
NOS system in preventing diastolic heart failure [58].
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Fig. 1.  Left ventricular (LV) and cardiac myocyte hypertrophy in 5-month-old n/i/eNOS－/－ and eNOS－/－ mice.  
A: Centripetal concentric LV hypertrophy (LVH) in n/i/eNOS‒/‒ and eNOS‒/‒ mice.  Scale bars, 1 mm.  B: The ratio of LV 
weight/body weight (n=5-7).  C, D: Cardiac myocyte hypertrophy in n/i/eNOS‒/‒ and eNOS‒/‒ mice (n=5-7).  Arrows in panel 
C indicate the border of each cardiac myocyte.  Scale bars in panel C, 0.02 mm.  *: P < 0.05 vs.  WT, †: P < 0.05 vs. eNOS‒/‒.  
(Reproduced from ref.  Shibata et al.  (2010) with permission of the Circulation Journal Press)
WT: wild type, nNOS‒/‒: singly nNOS‒/‒, iNOS‒/‒: singly iNOS‒/‒, eNOS‒/‒: singly eNOS‒/‒, n/i/eNOS‒/‒: triply n/i/eNOS‒/‒
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Fig. 2.  Diastolic dysfunction in n/i/eNOS－/－ mice assessed by cardiac catheterization.  A: Representative traces of 
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Fig. 3.  Enhanced lung wet weight/dry weight ratio, cardiac brain natriuretic peptide (BNP) and transforming 
growth factor-β (TGF-β) levels, and cardiac fibrosis in n/i/eNOS－/－ mice. A: The ratio of lung wet weight/dry weight 
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Murine Model of Spontaneous Diastolic Heart Failure 

　Heart failure is a leading cause of morbidity and 
mortality in industrialized countries [59, 60].  There 
is growing recognition that not only systolic heart fail-
ure but also diastolic heart failure with normal systolic 
function is common and causes significant morbidity 
and mortality.  Indeed, recent studies have revealed 
that as many as 30-50% of patients with congestive 
heart failure have diastolic heart failure, and that the 
morbidity and mortality rates for diastolic heart failure 
are nearly identical to those for systolic heart failure 
in aged patients [61].  Based on these new lines of 
evidence, diastolic heart failure has currently attracted 
considerable attention.
　Thus far, 4 genetically engineered mouse models 
that spontaneously develop diastolic dysfunction in the 
absence of systolic dysfunction have been reported: 1) 
mice lacking the α1 subunit of soluble guanylate cyclase 
[62], 2) mice deficient in the peptide hormone relaxin 
[61, 63], 3) mice overexpressing cardiac ACE [64], and 
4) mice bearing R58Q mutation of the ventricular myo-
sin regulatory light chain [65].  However, no evidence 
of heart failure has been present in the former two mice, 
and indexes of heart failure (e.g. LVEDP) have not been 
studied in the latter two mice.  On the other hand, we 
demonstrated that the n/i/eNOS‒/‒ mice showed higher 
LVEDP and increased lung wet weight in addition to 
diastolic dysfunction.  Thus, our triply mutant mice 
may be the first genetically engineered murine model 
of spontaneous diastolic heart failure [58].  In human 
patients with diastolic heart failure, the expression level 
of three NOS isoforms or the level of NO production 
has not been reported.  Thus, the significance of the n/i/
eNOS‒/‒ mice as a model of human diastolic heart fail-
ure remains to be clarified in future studies.
　NO attenuates cardiac myocyte hypertrophy and 
cardiac fibrosis in response to norepinephrine stimula-
tion in cultured rat LV cells [66], and NO augments 
LV diastolic distensibility and myocardial relaxation 
in isolated mammalian beating hearts and in humans 
[67].  Furthermore, an increase in cardiac eNOS ex-
pression induced by pharmacological treatment with 
the eNOS enhancer AVE3085 has been shown to ame-
liorate diastolic heart failure in Dahl salt-sensitive rats.  
These results are in agreement with our evidence that 

loss of NO leads to cardiac myocyte hypertrophy, car-
diac fibrosis, and diastolic dysfunction.  

Concluding Remarks

　The mouse is the most ideal genetically modifiable 
mammalian presently available [51].  Studies with 
mice that are deficient in or overexpressing NOSs 
provide pivotal insights into the cardiac pathophysi-
ology of NOSs at the molecular level.  These studies 
have demonstrated that, in the pathogenesis of heart 
failure, eNOS and nNOS exert cardiac protective 
roles, that iNOS exerts unfavorable roles, and that the 
NOS system in its entirety exerts salutary roles.  The 
observations with the genetically modified animals 
have greatly advanced our understanding of the roles 
of NOSs in the pathogenesis of human heart failure.  
Further studies are certainly needed to clarify whether 
these outcomes can be translated to human patients 
with heart failure.
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一酸化窒素合成酵素と心不全  ― 遺伝子改変マウスからの教訓
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要　　　旨：一酸化窒素（NO）合成酵素（NOS）には，神経型，誘導型，内皮型の3種類のNOSアイソフォームが存在す
る．ヒト心臓には，すべてのNOSsが発現している．従来 ,心不全におけるNOSsの役割が，NOS阻害薬を用いて研究
されてきた．さらに ,近年では，遺伝子改変動物が実験に使用されるようになり，ヒト心不全におけるNOSsの役割
の理解に重要な示唆を与えている．我々は，NOSアイソフォームを欠損させたNOS遺伝子改変マウスを用いて，そ
の心臓の構造と心機能を評価した．その結果，3種類のNOSアイソフォームを欠損させた triple NOS欠損マウスにだ
け，有意な求心性肥大と拡張障害があり，その病態は，ヒトの拡張期心不全に酷似していることを明らかにした．ま
た，AT1受容体拮抗薬を負荷した結果，それらの病態が抑制されたことから，これらの機序には，AT1受容体を介して
いることが示唆された．triple NOS欠損マウスを用いた研究は，ヒト心不全におけるNOSsの役割の解明に，大きく
寄与したものと言える．

キーワード：一酸化窒素合成酵素，心不全，左室肥大，マウス．
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