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Rho-kinase (ROCKs) belongs to the family of serine/threonine kinases and is an
important downstream effector of the small GTP-binding protein RhoA. There are
two isoforms of Rho-kinase, ROCK1 and ROCK2, and they have different
functions with ROCK1 for circulating inflammatory cells and ROCK2 for vascular
smooth muscle cells. It has been demonstrated that the RhoA/Rho-kinase pathway
plays an important role in various fundamental cellular functions, including
contraction, motility, proliferation, and apoptosis, leading to the development of
cardiovascular disease. The important role of Rho-kinase in vivo has been dem-
onstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia-reperfusion
injury, hypertension, pulmonary hypertension, stroke, and heart failure. Further-
more, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have been
demonstrated for the treatment of several cardiovascular diseases in humans. Thus
the Rho-kinase pathway is an important new therapeutic target in cardiovascular
medicine.
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THE RHO FAMILY OF small G proteins comprises 20 members of
ubiquitously expressed proteins in mammals, including RhoA,
Rac1, and Cdc42 (25, 65, 122). Among them, RhoA is the
best-characterized protein that acts as a molecular switch that
cycles between an inactive GDP-bound and an active GTP-
bound conformation, interacting with downstream targets to
elicit a variety of cellular responses (Fig. 1) (23). The activity
of RhoA is controlled by the guanine nucleotide exchange
factors that catalyze the exchange of GDP for GTP (102). In
contrast, GTPase-activating proteins stimulate the intrinsic
GTPase activity and inactivate RhoA (12). It has been demon-
strated that guanine nucleotide dissociation inhibitors block
spontaneous RhoA activation (Fig. 1) (81).

In 1996, Rho-kinase (Rho-kinase-�/ROCK 2 and Rho-ki-
nase-�/ROCK 1) was identified as the effector of Rho (Fig. 2)
and has been extensively studied, especially on its functions in
the cardiovascular system (6, 53). Phosphorylation of myosin
light chain (MLC) is a key event in the regulation of vascular
smooth muscle cell (VSMC) contraction. MLC is phosphory-
lated by Ca2�-calmodulin-activated MLC kinase and dephos-
phorylated by MLC phosphatase. Agonists bind to G protein-
coupled receptors and induce contraction by increasing both
cytosolic Ca2� concentration and Rho-kinase activity through
mediating guanine nucleotide exchange factor. The substrates
of Rho-kinase have been identified, including MLC, myosin-
binding subunit or myosin phosphatase target subunit 1, ezrin/
radixin/moesin family, adducin, phosphatase and tensin ho-
molog on chromosome 10, and LIM-kinases (Fig. 1). Rho-
kinase enhances MLC phosphorylation through the inhibition

of myosin-binding subunit of myosin phosphatase and medi-
ates agonists-induced VSMC contraction (Fig. 1).

The interaction between endothelial cells (ECs) and VSMCs
plays an important role in regulating vascular integrity and
vascular homeostasis. ECs release vasoactive factors, such as
prostacyclin, nitric oxide (NO), and endothelium-derived hy-
perpolarizing factor, participating in the regulation of vascular
tone and arterial resistance (110, 118, 135). It has been dem-
onstrated that both endothelial NO production and NO-medi-
ated signaling in VSMCs are targets and effectors of the
RhoA/Rho-kinase pathway. In ECs, the RhoA/Rho-kinase
pathway negatively regulates NO production. In contrast,
VSMCs are among the most plastic of all cells in their ability
to respond to different stimuli. Growth factors secreted from
VSMCs play an important role in mediating various cellular
responses in vascular remodeling (10, 11, 30). Recent evidence
suggests that many other stimuli that modulate VSMC func-
tions, including reactive oxygen species (ROS), promote
VSMC growth by inducing auto/paracrine growth mechanisms
(127). Among those auto/paracrine factors, cyclophilin A
(CyPA) has been identified as a ROS-related protein that is
secreted from VSMCs by RhoA/Rho-kinase activation (95,
120) (Figs. 3 and 4). We have recently demonstrated that the
extracellular CyPA decreases endothelial NO synthase (eNOS)
expression (78), suggesting the indirect role of RhoA/Rho-
kinase for the negative regulation of endothelial NO produc-
tion. The initial investigations in our laboratory on the therapeutic
importance of Rho-kinase were previously summarized (117).
Since then, significant progress has been made in our knowl-
edge on the therapeutic importance of Rho-kinase in car-
diovascular medicine. In this article, we will briefly review
the recent progress in the translational research on the
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therapeutic importance of the Rho-kinase pathway in car-
diovascular medicine.

Role of Rho-Kinase in the Regulation of Cardiovascular
Function

Rho-kinase is a serine/threonine kinase with a molecular mass
of �160 kDa. Two isoforms of Rho-kinase encoded by two
different genes have been identified (Fig. 2) (58, 69, 75). In
humans, ROCK1 (Rho-kinase-�) and ROCK2 (Rho-kinase-�)
genes are located separately on chromosome 18 and chromosome
2, respectively. They are ubiquitously expressed in invertebrates
and vertebrates with ROCK1, especially in circulating inflamma-
tory cells and ROCK2 in VSMCs. ROCKs consist of three major
domains, including a kinase domain in its NH2-terminal domain,
a coiled-coil domain that includes Rho-binding domain in its
middle portion and a putative pleckstrin homology (PH) domain
in its COOH-terminal domain (25) (Fig. 2). ROCKs activity is
enhanced by binding of GTP-bound active form of RhoA (69)
(Fig. 1). Rho-kinase inhibitors, fasudil (7) and Y-27632 (131),
have been developed, and they inhibit Rho-kinase activity in a
competitive manner with ATP at the Rho-binding site (19). It has
been demonstrated that hydroxyfasudil, a major active metabolite

of fasudil, exerts a more specific inhibitory effect on Rho-kinase
(37, 116).

Although the regulation of ROCK expression has not
been fully elucidated, some studies have reported changes in
ROCK expression. Functional differences between ROCK1
and ROCK2 have been reported; ROCK1 is specifically
cleaved by caspase-3, whereas ROCK2 is cleaved by granzyme
B (15, 104). The small G protein RhoE specially binds to the
NH2-terminal region of ROCK1 at the kinase domain (Fig. 2),
whereas the myosin phosphatase target subunit 1 binds spe-
cially to ROCK2 (56, 139). RhoE binding to ROCK1 inhibits
its activity and prevents RhoA binding to Rho-binding domain
(85). Both ROCK1 and ROCK2 mRNAs and proteins are
upregulated by angiotensin II (ANG II) via ANG II type 1
receptor stimulation and by interleukin-1� (IL-1�) (38). A
number of Rho-kinase substrates have been identified (64)
(Fig. 1), and Rho-kinase-mediated substrate phosphorylation
causes actin filament formation, organization, and cytoskeleton
rearrangement (Fig. 1) (86). The NH2-terminal regions, up-
stream of the kinase domains of ROCKs, may play a role in
determining substrate specificity of the two Rho-kinase iso-
forms (Fig. 2) (86).

Fig. 1. The RhoA/Rho-kinase signaling
pathway. Rho GTPases are small GTP-bind-
ing proteins that act as molecular switches
and regulate many intracellular signaling
pathways. RhoA cycles between an inactive
GDP-bound and an active GTP-bound con-
formation, interacting with downstream tar-
gets, including Rho-kinase. The activity of
RhoA is controlled by the guanine nucleotide
exchange factors (GEFs) that catalyze ex-
change of GDP for GTP. GTPase-activating
proteins (GAPs) stimulate the intrinsic GTPase
activity and inactivate RhoA. Guanine nucle-
otide dissociation inhibitors (GDIs) block
spontaneous RhoA activation. Various sub-
strates of Rho-kinase have been identified, in-
cluding myosin phosphatase target subunit 1
(MYPT-1), myosin light chain (MLC), ezrin/
radixin/moesin (ERM) family, adducin, phos-
phatase and tensin homolog on chromosome 10
(PTEN), and LIM-kinases, etc. 5-HT, 5-hy-
droxytryptamine (serotonin); ET-1, endothelin-1;
CRMP-2, collapsin response mediator protein 2;
CPI-17, PKC-potentiated inhibitory protein 17;
IP3, inositol 1,4,5-trisphosphate; PAI-1, plasmin-
ogen activator inhibitor-1; MCP-1, monocyte
chemoattractant protein-1.

Fig. 2. Molecular structures of Rho-kinase
isoforms. There are 2 isoforms of Rho-ki-
nase, ROCK1 and ROCK2, which consist of
3 major domains, including a kinase domain
in its NH2-terminal domain, a coiled-coil
domain with Rho-binding domain in its
middle portion and a putative pleckstrin
homology (PH) domain in its COOH-ter-
minal domain. ROCK1 and ROCK2 are
highly homologous with an overall amino
acid sequence identity of 65%.

Review

H288 RHO-KINASE AND CARDIOVASCULAR DISEASE

AJP-Heart Circ Physiol • VOL 301 • AUGUST 2011 • www.ajpheart.org

 by 10.220.33.4 on M
arch 13, 2017

http://ajpheart.physiology.org/
D

ow
nloaded from

 

http://ajpheart.physiology.org/


The majority of Rho-kinase substrates have been identified
in vitro. Thus ROCK1- and ROCK2-deficient mice have been
generated to further elucidate the functions of the ROCK
isoforms (108, 130). Importantly, ROCK1-deficient mice
showed the eyelids opened at birth (108), whereas ROCK2-
deficient mice showed placental dysfunction and fetal death
(61, 79, 130, 146). Thus the role of ROCK2, the main isoform
in the cardiovascular system, remains to be fully elucidated in
vivo. To address this point, we have recently developed
VSMC-specific ROCK2-deficient mice and found the crucial
role of ROCK2 in the development of hypoxia-induced pul-
monary hypertension (107). These mutant mice revealed nor-
mal growth and body weight under physiological conditions.
However, chronic hypoxia significantly increased ROCK2 ex-
pression and ROCK activity in lung tissues from littermates,
and the development of right ventricular systolic pressure and
right ventricular hypertrophy induced by chronic hypoxia in vivo
was evident in littermates but was suppressed in the VSMC-
specific ROCK2-deficient mice. In vitro, the growth and migra-
tion of VSMCs were significantly reduced in ROCK2-deficient
VSMCs compared with control VSMCs.

Rho-Kinase and Vascular Function

Rho-kinase has been implicated in the pathogenesis of car-
diovascular disease, in part by promoting VSMC proliferation
(4, 8, 82). Changes in the vascular redox state are a common
pathway involved in the pathogenesis of atherosclerosis, aortic
aneurysms, and vascular stenosis. Vascular ROS formation can
be stimulated by mechanical stretch, pressure, shear stress,
environmental factors (e.g., hypoxia), and growth factors (e.g.,
ANG II) (32). Importantly, Rho-kinase is substantially in-
volved in the vascular effects of various vasoactive factors,
including ANG II (28, 33, 37, 123), thrombin (103, 134),
platelet-derived growth factor (54), extracellular nucleotides
(99), and urotensin (100) (Fig. 1). It has been previously shown
that statins enhance eNOS mRNA by cholesterol-independent
mechanisms involving the inhibition of Rho geranylgeranyla-

tion (124). We have also demonstrated that statins and Rho-
kinase inhibitors completely block the secretion of CyPA from
VSMCs (93, 120). Rho-kinase plays an important role in
mediating various cellular functions, not only VSMC contrac-
tion (109, 111) but also actin cytoskeleton organization (5, 34),
adhesion, and cytokinesis (117). Thus Rho-kinase plays a crucial
role for the development of cardiovascular disease through ROS
production, inflammation, EC damage, and VSMC contraction
and proliferation. Rho-kinase inhibitors have excellent vasodilator
activity and can induce vasodilation when vasoconstrictor tone is
increased by a variety of mechanisms, including the activation of
G-coupled receptors-enhanced calcium entry, ventilatory hypoxia,
NOS inhibition, and other mechanisms (14, 20, 21, 137).

Rho-Kinase, Inflammation, and Oxidative Stress

Rho-kinase augments inflammation by inducing proinflam-
matory molecules, including IL-6 (83), monocyte chemoattrac-
tant protein-1 (28), macrophage migration inhibitory factor
(MIF) (35, 36), and sphingosine-1-phosphate (136). In ECs,
Rho-kinase downregulates eNOS (125) and substantially acti-
vates proinflammatory pathways, including an enhanced ex-
pression of adhesion molecules. The expression of Rho-kinase
is accelerated by inflammatory stimuli, such as ANG II and
IL-1� (38), and by a remnant lipoproteins in human coronary
VSMCs (80). Rho-kinase also upregulates NAD(P)H oxidases
(nox1, nox4, gp91phox, and p22phox) and augments ANG II-
induced ROS production (37). Several growth factors are
known to be secreted from VSMCs in response to oxidative
stress. We have recently demonstrated that ROS activate a
pathway containing vesicles that results in the secretion of
CyPA (45, 120). Secreted extracellular CyPA stimulates
ERK1/2, Akt, and JAK in VSMCs that contribute to ROS
production and compose a vicious cycle for ROS augmentation
(94, 97). CyPA is secreted from VSMCs via a highly regulated
pathway that involves vesicle transport and plasma membrane
binding (Fig. 3) (120). Rho GTPases, including RhoA, are key
regulators in signaling pathways linked to actin cytoskeletal

Fig. 3. Rho-kinase and reactive oxygen spe-
cies (ROS) production. Intracellular signal-
ing pathways for Rho-kinase activation,
ROS production, and cyclophilin A (CyPA)
secretion are closely linked through vesicle-
associated membrane protein 2 (VAMP2)
vesicle formation. Secreted extracellular
CyPA activates ERK1/2, Akt, and JAK, pro-
moting ROS production and Rho-kinase ac-
tivation again. VSMC, vascular smooth
muscle cell.
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rearrangement (66). RhoA plays a central role in vesicular
trafficking pathways by controlling the organization of actin
cytoskeleton. It has been reported that active participation of
Rho GTPases is required for secretion. We showed that the
expression of dominant-negative mutants of RhoA inhibited
ROS-induced CyPA secretion, suggesting that RhoA-depen-
dent signaling events regulate CyPA secretion (120). Myosin II
is involved in the secretory mechanisms as a motor for vesicle
transport (77). ROCKs, downstream effectors of RhoA, medi-
ate myosin II activation via phosphorylation and inactivation of
myosin II light chain phosphatase (53). We have also recently
demonstrated that Rho-kinase inhibitor reduced ROS-induced
CyPA secretion (95, 120) (Fig. 4). These results suggest that
myosin II-mediated vesicle transport is required for CyPA
secretion from VSMCs. CyPA is transported to the plasma
membrane and colocalized with vesicle-associated membrane
protein 2 in response to ROS stimulation (Fig. 3).

We demonstrated that extracellular CyPA stimulates proin-
flammatory signals in ECs, including the expression of E-
selectin and vascular cell adhesion molecule-1 (44). In addition
to the effects on vascular cells, CyPA has been shown to be a
direct chemoattractant for inflammatory cells (16, 52), promot-
ing matrix metalloproteinases (MMPs) activation (138, 144).
All of these roles of CyPA derive from the activation of
Rho-kinase in the cardiovascular system (Fig. 4). Recently, we
have demonstrated that the extracellular CyPA activates Rho-
kinase in human pulmonary VSMCs from patients with pul-
monary hypertension (91). Thus CyPA may be a key mediator
of Rho-kinase that generates a vicious cycle for ROS augmen-
tation, affecting ECs, VSMCs, and inflammatory cell functions
(Fig. 4) (94, 97).

Rho-Kinase and Arteriosclerosis/Restenosis

As mentioned above, Rho-kinase plays a crucial role in the
ROS augmentation and vascular inflammation. ROS have been
implicated in the pathogenesis of neointima formation in part
by promoting VSMC growth (8, 84) and by stimulating pro-

inflammatory events (40, 59, 62, 87). Accumulating evidence
indicates that Rho-kinase inhibitors have broad pharmacolog-
ical properties (111, 115, 117). The beneficial effects of the
long-term inhibition of Rho-kinase for the treatment of cardio-
vascular disease have been demonstrated in various animal
models, such as coronary vasospasm, arteriosclerosis, resteno-
sis, ischemia-reperfusion injury, hypertension, pulmonary hy-
pertension, stroke, and cardiac hypertrophy/heart failure (111,
115, 117). Gene transfer of dominant-negative Rho-kinase
reduced the neointimal formation in pigs (24). Long-term
treatment with a Rho-kinase inhibitor suppressed neointima
formation after vascular injury in vivo (101, 105), monocyte
chemoattractant protein-1-induced vascular lesion forma-
tion (72), constrictive remodeling (113, 114), in-stent reste-
nosis (70) and the development of cardiac allograft vascu-
lopathy (36).

Arteriosclerosis is a slowly progressing inflammatory pro-
cess of the arterial wall that involves the intima, media, and
adventitia (111, 117). Accumulating evidence indicates that
Rho-kinase-mediated pathway is substantially involved in EC
dysfunction (125, 134), VSMC contraction (46), VSMC pro-
liferation and migration in the media (143), and accumulation
of inflammatory cells in the adventitia (72). Those Rho-kinase-
mediated cellular responses led to the development of vascular
disease. In fact, the mRNA expression of ROCKs is enhanced
in the inflammatory and arteriosclerotic arterial lesions in
animals (46) and humans (48). In the context of atherosclero-
sis, Rho-kinase should be regarded as a proinflammatory and
proatherogenic molecule. Thus Rho-kinase is an important new
therapeutic target for the treatment of atherosclerosis.

Rho-Kinase and Coronary Vasospasm

It has been demonstrated that Rho-kinase is substantially in-
volved in the pathogenesis of coronary vasospasm. Coronary
vasospasm plays an important role in variant angina, myocardial
infarction, and sudden death (121). It was demonstrated that the
serum level of cortisol, one of the important stress hormones,

Fig. 4. Roles of the Rho-kinase/CyPA sys-
tem. CyPA is secreted from VSMCs through
a process requiring Rho-kinase activity and
generates a vicious cycle for ROS augmen-
tation. Extracellular CyPA induces Rho-ki-
nase activation. CyPA and Rho-kinase aug-
ment ROS production and promote VSMC
proliferation/migration, inflammation, ma-
trix metalloproteinase (MMP) activation, en-
dothelial dysfunction, endothelial nitric ox-
ide synthase downregulation, and adhesion
molecules expression. EC, endothelial cell.
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causes coronary hyperreactivity through the activation of Rho-
kinase in pigs in vivo (39). The activity and the expression of
ROCKs are enhanced at the inflammatory/arteriosclerotic cor-
onary lesions (47). Accumulating evidence indicates that Rho-
kinase plays a crucial role in the pathogenesis of coronary
vasospasm. Intracoronary administration of fasudil (49) and of
hydroxyfasudil (116) inhibited coronary spasm in pigs in vivo
(113). We have demonstrated that fasudil is effective in pre-
venting coronary vasospasm and resultant myocardial ischemia
in patients with vasospastic angina (68). Thus fasudil is useful
for the treatment of ischemic coronary syndromes caused by
coronary artery spasm. Fasudil is also effective in treating
patients with microvascular angina (73). The clinical trials of
the effects of fasudil in Japanese patients with stable effort
angina demonstrated that the long-term oral treatment with the
Rho-kinase inhibitor is effective in ameliorating exercise tol-
erance in those patients (112). We also have recently demon-
strated that Rho-kinase activity in circulating neutrophils is a
useful biomarker for the diagnosis and disease activity assess-
ment in patients with vasospastic angina (51).

Rho-Kinase and Myocardial Ischemia-Reperfusion Injury

ROS production and Rho-kinase activation play a crucial
role in myocardial damage after ischemia-reperfusion. We
have demonstrated that pretreatment with fasudil before
reperfusion prevents endothelial dysfunction and reduces
the extent of myocardial infarction in dogs in vivo (142).
The beneficial effect of fasudil has been also demonstrated
in a rabbit model of myocardial ischemia induced by an
intravenous administration of endothelin-1 (89), a canine
model of pacing-induced myocardial ischemia (132), and a
rat model of vasopressin-induced chronic myocardial isch-
emia (98).

Rho-Kinase and Aortic Aneurysms

Aortic aneurysm is formed by chronic inflammation of the
aortic wall, associated with decreased medial VSMCs and
progressive destruction of structural components, particularly
the elastic lamina (63). Key mechanisms include VSMC se-
nescence (57), oxidative stress (31, 127), increased local pro-
duction of proinflammatory cytokines (13), and increased ac-
tivities of MMPs that degrade extracellular matrix (119, 145).
Chronic ANG II infusion into apolipoprotein E-deficient mice
promotes aortic aneurysm formation (17, 18). In animal models
of aortic aneurysm, the genetic and pharmacological inhibition
of ROS production (29, 128) and MMPs (67, 129) suppressed
the development of aneurysms. A chronic inhibition of Rho-
kinase by fasudil has been reported to reduce ANG II-induced
aortic aneurysm formation (140). The activation of Rho-kinase
promotes CyPA secretion from VSMCs and extracellular
CyPA stimulates VSMC migration, proliferation, and MMP
activation (45, 60) (Fig. 4). Extracellular CyPA is also a
chemoattractant for inflammatory cells (45, 50, 120) and fur-
ther activates vascular Rho-kinase (Fig. 4). Recently, we have
demonstrated that CyPA augments ANG II-induced ROS pro-
duction, MMP activation, and inflammatory cell recruitment
into the aortic VSMCs, contributing to the aortic aneurysm
formation (95). CyPA is highly expressed in the aorta of
patients with aortic aneurysm (95). Our findings suggest that
Rho-kinase/CyPA signaling pathway is a novel therapeutic

target for aortic aneurysm. All these data are a proof of concept
that both Rho-kinase and CyPA play a crucial role in VSMCs
by augmenting ROS generation. ANG II induces Rho-kinase
activation and promotes CyPA secretion (Fig. 3). Secreted
extracellular CyPA augments Rho-kinase activity in a syner-
gistic manner (91) (Fig. 4). Secreted CyPA, acting as a proin-
flammatory cytokine, then synergistically augments ANG II-
mediated ROS production, contributing to the onset of vascular
inflammatory cell migration and aortic aneurysm formation
(128, 141).

Rho-Kinase, Cardiac Hypertrophy, and Heart Failure

ANG II plays a key role in many physiological and patho-
logical processes in cardiac cells, including cardiac hypertro-
phy (71). Understanding the molecular mechanisms for ANG
II-induced myocardial disorders is important to develop new
therapies for cardiac dysfunction (88). One important mecha-
nism now recognized to be involved in ANG II-induced car-
diac hypertrophy is ROS production (3, 76); however, the
precise mechanism by which ROS cause myocardial hypertro-
phy and dysfunction still remains to be fully elucidated (106).
It has been demonstrated that cardiac troponin is a substrate of
Rho-kinase (133). Rho-kinase phosphorylates troponin and
inhibits tension generation in cardiac myocytes. We have
recently demonstrated that Rho-kinase inhibition with fasudil
suppresses the development of cardiac hypertrophy and dia-
stolic heart failure in Dahl salt-sensitive rats (26). Furthermore,
our recent study provides strong mechanistic evidence of
synergy between CyPA and Rho-kinase to increase ROS gen-
eration (95). Since ROS stimulates myocardial hypertrophy,
matrix remodeling, and cellular dysfunction (126), Rho-kinase
and CyPA may work together to promote ROS production and
ANG II-induced cardiac hypertrophy (Fig. 4). In fact, CyPA
was required for ANG II-mediated cardiac hypertrophy by
directly potentiating ROS production, stimulating proliferation
and migration of cardiac fibroblasts, and promoting cardiac
myocyte hypertrophy in mice (96). In patients with heart
failure, intra-arterial infusion of fasudil caused a preferential
increase in forearm blood flow compared with that in control
subjects, suggesting an involvement of Rho-kinase in the
increased peripheral vascular resistance in patients with heart
failure (55).

Rho-Kinase and Hypertension

Short-term administration of Y-27632, another Rho-kinase
inhibitor, preferentially reduces systemic blood pressure in a
dose-dependent manner in rat models of systemic hyperten-
sion, suggesting an involvement of Rho-kinase in the patho-
genesis of hypertension (131). The expression of Rho-kinase
was significantly increased in spontaneously hypertensive rats
(74). Rho-kinase may be also involved in the central mecha-
nisms of sympathetic nerve activity (41, 42).

Rho-Kinase and Pulmonary Hypertension

Pulmonary hypertension is associated with hypoxic expo-
sure, endothelial dysfunction, VSMC hypercontraction and
proliferation, enhanced ROS production, and inflammatory cell
migration, for which Rho-kinase may also be substantially
involved. Indeed, a long-term treatment with fasudil suppresses
the development of monocrotaline-induced pulmonary hyper-
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tension in rats (1) and of hypoxia-induced pulmonary hyper-
tension in mice (2). Recently, we were able to obtain direct
evidence for Rho-kinase activation in patients with pulmonary
arterial hypertension (PAH) (22). Because the secretion of
CyPA is regulated by Rho-kinase (95, 120), we tested the
hypothesis that CyPA contributes to Rho-kinase activation
and pulmonary vascular remodeling in PAH patients and
noted enhanced CyPA expression on the �-smooth muscle
actin-positive cells in the lung from patients with PAH (91).
Additionally, statins and Rho-kinase inhibitor reduced the
secretion of CyPA from VSMCs (95, 120) and pravastatin
ameliorated hypoxia-induced pulmonary hypertension in mice
(90, 92). Thus it is possible that the inhibition of CyPA
secretion by statins (90) or Rho-kinase inhibitors (1, 43) may
contribute to the therapeutic effects of these drugs on pulmo-
nary hypertension. It has been reported that an intravenous
injection of a number of chemically different Rho-kinase
inhibitors reduces systemic and pulmonary arterial pressures
under resting baseline tone conditions (9, 14, 20, 21). These
data suggest that Rho-kinase plays a physiological role in the
maintenance of baseline vasoconstrictor tone in the pulmonary
and systemic vascular beds. Furthermore, intravenous infusion
of fasudil significantly reduced pulmonary vascular resistance
in patients with PAH, indicating an involvement of Rho-kinase
in the pathogenesis of PAH in humans (27). Therefore, fasudil
will decrease pulmonary arterial pressure in any situation in
which vasoconstrictor tone is increased in the pulmonary
vascular bed. A most important point in clinical settings is the
chronic effects of the drugs (Fig. 4). The effects of long-acting
fasudil in patients with PAH are now under investigation.

Conclusion

The identification of Rho-kinase as a mediator of cardio-
vascular diseases associated with inflammation and oxida-
tive stress provides insight into the development of new
therapies. Accumulating evidence suggests that Rho-kinase
is substantially involved in the pathogenesis of a variety of
cardiovascular diseases and that Rho-kinase inhibitors are
useful for the treatment of those cardiovascular diseases.
Clinical studies with fasudil have suggested that the Rho-
kinase inhibitor may be useful for the treatment of a wide
range of cardiovascular diseases, as mentioned in this arti-
cle. Importantly, Rho-kinase inhibitors and statins signifi-
cantly reduce CyPA secretion from VSMCs in animals.
Blocking the malignant cycle that augments ROS produc-
tion through CyPA secretion may be partially involved in
the beneficial effect of Rho-kinase inhibitors. In conclusion,
accumulating experimental and clinical evidence indicates
that Rho-kinase is an important new target for the treatment
of cardiovascular disease.
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