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Abstract Nitric oxide (NO) is produced in almost all
tissues and organs, exerting a variety of biological actions
under both physiological and pathological conditions. NO
is synthesized by three distinct NO synthase (NOS)
isoforms (neuronal, inducible, and endothelial NOS), all
of which are expressed in the human cardiovascular system.
Although the regulatory roles of NOSs in cardiovascular
diseases have been described in pharmacological studies
with selective and non-selective NOS inhibitors, the
specificity of the NOS inhibitors continues to be an issue
of debate. To overcome this issue, genetically engineered
animals have been used. All types of NOS gene-deficient
animals, including singly, doubly, and triply NOS-deficient
mice, and various types of NOS gene-transgenic (TG)
animals, including conditional and non-conditional TG
mice bearing endothelium-specific or cardiomyocyte-
specific overexpression of each NOS gene, have thus been
developed. The roles of individual NOS isoforms as well as
the entire NOS system in the cardiovascular system have
been extensively investigated in those mice, providing
pivotal insights into an understanding of the pathophysiol-
ogy of NOSs in human cardiovascular diseases. Based on
studies with the murine NOS genetic models, this review
briefly summarizes the latest knowledge of NOSs and
cardiovascular diseases.
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Introduction

Nitric oxide (NO) plays an important role in maintaining
cardiovascular homeostasis through multiple biological
actions [12, 21, 48, 65, 76, 78]. NO is formed from its
precursor L-arginine by a family of NO synthases (NOSs)
with stoichiometric production of L-citrulline. The NOS
system consists of three distinct isoforms, including
neuronal (nNOS or NOS-1), inducible (iNOS or NOS-2),
and endothelial NOS (eNOS or NOS-3).

It was initially demonstrated that nNOS and eNOS are
constitutively expressed mainly in the nervous system and
the vascular endothelium, respectively, synthesizing a small
and physiological amount of NO in a calcium-dependent
manner both under basal conditions and upon stimulation,
whereas iNOS is induced only when stimulated by
microbial endotoxins or certain proinflammatory cytokines,
producing a greater amount of NO in a calcium-
independent manner [12, 21, 48, 65, 76, 78]. However, it
was subsequently demonstrated that nNOS and eNOS are
also subject to expressional regulation [9, 11, 51, 52, 73]
whereas iNOS also could be constitutively expressed even
under physiological conditions [4, 57].

Genetically engineered animals are a powerful experi-
mental tool to study the function of target genes in vivo. All
types of NOS gene-deficient animals, including singly,
doubly, and triply NOS-deficient mice, have been devel-
oped (Table 1) [13, 14, 18, 19, 35, 38, 44, 56, 64, 68, 72,
83]. Furthermore, various types of NOS gene-transgenic
(TG) animals, including conditional and non-conditional
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TG mice with endothelium-specific or cardiomyocyte-
specific overexpression of each NOS isoform, have also
been established (Table 2) [3, 5, 16, 22, 37, 46, 53, 55, 70,
77]. By using those genetically modified mice, the
cardiovascular roles of NOSs have been extensively
studied, and the findings provide important insights into
the significance of NOSs in human cardiovascular diseases.
In this review, we briefly summarize the current knowledge
of NOSs and cardiovascular diseases on the findings
obtained from the NOS gene-modified mice.

Vascular lesion formation

Role of eNOS

Endothelium-specific eNOS-TG mice with an 8-fold in-
crease in vascular NOS activity showed decreased neo-

intimal formation after carotid artery ligation [25] and
another strain of endothelium-specific eNOS-TG mice with
a 10-fold increase in vascular NOS activity similarly
exhibited a reduction in atherosclerotic vascular lesion
formation induced by breeding with ApoE−/− mice [77].
Consistent with these findings, eNOS−/− mice showed
increased neointimal formation, accelerated medial thick-
ening, and abnormal vascular remodeling in response to
permanent carotid artery ligation (Fig. 1) [45, 85] and cuff
placement around the femoral artery [59]. Furthermore,
eNOS−/−/ApoE−/− mice had accelerated formation of ath-
erosclerotic vascular lesions as compared with ApoE−/−

mice [26, 30]. These lines of evidence indicate vasculopro-
tective roles of eNOS in the pathogenesis of atherosclerotic
vascular lesion formation. In contrast, in endothelium-
specific eNOS-TG mice with an 8-fold increase in vascular
NOS activity, atherosclerotic vascular lesion formation is
accelerated when crossbred with ApoE−/− mice, where

NOS−/− mice Sites of gene deletion References

nNOS−/− Exon 2 (#1) [18]

Exon 6 [14]

Exon 6 [56]

iNOS−/− Proximal 585 bases of promoter plus exons 1–4 (#2) [38]

Near exons 1–5 [83]

Exons 12 and 13 and a part of exon 11 (#3) [35]

eNOS−/− Exons 24–26 (#4) [19]

Exon 12 (#5) [64]

Exons 24 and 25 [13]

n/iNOSs−/− #1 and #3 [72]

#1 and #2 [44]

n/eNOSs−/− #1 and #4 [68]

#1 and #5 [72]

#1 and #4 [44]

i/eNOSs-/- #3 and #5 [72]

#2 and #4 [44]

n/i/eNOSs−/− #1, #2 and #4 [44]

Table 1 Mice lacking the NOS
genes that have thus far been
established

(Modified from Ref. [76] with
a permission)

NOS nitric oxide synthase,
nNOS neuronal NOS, iNOS
inducible NOS, eNOS
endothelial NOS

NOS-TG mice Overexpression site Promoter used References

nNOS-TG Myocardium(conditional) α-MHC [5]

Myocardium(conditional) α-MHC [37]

Brain CaMKIIα [55]

iNOS-TG Myocardium(conditional) α-MHC [46]

Myocardium α-MHC [16]

Pancreatic β cell Insulin [70]

eNOS-TG Endothelium Preproendothelin-1 [53]

Endothelium eNOS [77]

Myocardium α-MHC [3]

Myocardium α-MHC [22]

Table 2 Mice overexpressing
the NOS gene that have thus
far been established

(Modified from Ref. [76] with a
permission)

TG transgenic, MHC myosin
heavy chain, CaMKII calcium-
calmodulin multifunctional ki-
nase II
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enhanced oxidative stress due to relative tetrahydrobiop-
terin deficiency and development of a tolerance of the
vascular smooth muscle to NO were demonstrated [54].

In eNOS−/− mice, in addition to the abolishment of
NO-mediated relaxations, endothelium-dependent re-
sponses (relaxations and hyperpolarizations) mediated by
endothelium-derived hyperpolarizing factor (EDHF) are
markedly reduced [40]. Furthermore, the EDHF-mediated
responses also are sensitive to catalase [40] and also are
markedly reduced in Cu,Zn-SOD−/− mice [42]. These lines
of evidence indicate that endothelium-derived hydrogen
peroxide (H2O2), which is formed through dismutation of
eNOS-derived superoxide anions by Cu,Zn-SOD, is an
EDHF [40, 42, 66], although it is highly possible that
several different factors and mechanisms other than
endothelium-derived H2O2 derived from NOSs are also
involved in the EDHF-mediated responses.

Role of iNOS

The role of iNOS in vascular lesion formation seems to be
complicated. Deletion of the iNOS gene in mice exacerbat-
ed pathological vascular remodeling in a carotid artery
ligation model (Fig. 1) [85] and in a cardiac transplant
model [27]. However, the iNOS deletion conversely
ameliorated neointimal formation in a carotid cuff place-
ment model [7] and lipid-rich atherosclerotic vascular
lesion formation in ApoE−/− mice [29]. Thus, iNOS appears
to have two faces, which could be explained in part by the

oxidant and antioxidant properties of iNOS. Indeed, NOSs
produce superoxide anions rather than NO, with a resultant
production of a potent oxidant peroxynitrite, under certain
pathological conditions such as deficiency of a substrate
(e.g., L-arginine) or a cofactor (e.g., tetrahydrobiopterin)
termed as pathological NOS uncoupling [80, 81].

Role of nNOS

Although the regulatory roles of eNOS and iNOS in
vascular lesion formation have been widely studied, little
has been known about the role of nNOS. However, the
expression of nNOS also is up-regulated in the neointima,
endothelial cells, and macrophages in both early and
advanced human atherosclerotic lesions [84]. We demon-
strated that in nNOS−/− mice neointimal formation and
constrictive vascular remodeling (a reduction in vascular
cross-sectional area) following carotid artery ligation are
accelerated (Fig. 1) [43]. In agreement with our finding,
nNOS−/−/ApoE−/− mice showed accelerated atherosclerotic
vascular lesion formation as compared with ApoE−/− mice
[31]. Up-regulation of nNOS may play a compensatory role
in the presence of reduced eNOS activity (e.g., inflamma-
tion and arteriosclerosis) to maintain vascular homeostasis
[73]. Furthermore, we demonstrated that inflammatory and
proliferative stimuli and statins increase vascular nNOS
expression [51, 52]. It also has been reported that hypoxic
conditions [82] and hypertension [2] up-regulate vascular
nNOS expression.

Role of the whole NOSs system

Because all NOSs play a role in the vascular system, we
next conceived a project to investigate the roles of the
whole NOS system in vivo. The roles of the NOS system in
the human body have been investigated in pharmacological
studies with non-selective NOS inhibitors and in studies
with NOS isoform-deficient mice. However, because of
both the non-specificity of the NOS inhibitors and
compensation among the three NOS isoforms, the authen-
tic roles of the NOS system were still poorly understood.
To address this important issue, we have recently
developed mice in which the entire NOS system is
completely disrupted (triply nNOS/iNOS/eNOS-deficient
mice) [44, 50]. The triply n/i/eNOS−/− mice, but not any
singly NOS−/− mice, spontaneously develop arterioscle-
rotic vascular lesions (neointimal formation, medial
thickening, and perivascular fibrosis) in the coronary and
renal arteries, and lipid-rich atherosclerotic vascular
lesions in the aorta, even on a normal chow diet [50,
74]. These results provided the first direct evidence for a
vasculoprotective role of the entire NOS system in
atherosclerosis.

Adventitial inflammatory
cells (mainly neutrophils)

Constrictive remodeling

NO

Vascular smooth
muscle cells

Endothelial cells

Neointimal formation

NO

i NOS

i NOS

nNOS

nNOS

eNOS nNOS

NO NO

NONO

Fig. 1 The different vasculoprotective roles of three nitric oxide
synthase (NOS) isoforms in a mouse carotid artery ligation model.
Studies with each NOS isoform-deficient mice demonstrated that
endothelial NOS (eNOS) inhibits neointimal formation, that inducible
NOS (iNOS) attenuates constrictive vascular remodeling, and that
neuronal NOS (nNOS) suppresses both neointimal formation and
constrictive vascular remodeling. Thus, individual NOS isoforms have
different vasculoprotective actions against vascular lesion formation in
mice in vivo.–inhibition. (Modified from Ref. [76] with a permission)
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Spontaneous myocardial infarction

Myocardial infarction (MI) is the leading cause of death for
both genders worldwide [1, 28]. However, the molecular
mechanisms for the pathogenesis of MI remain to be fully
elucidated.

Role of the whole NOSs system

Although eNOS has potent vasculoprotective effects,
[12, 21, 48, 65, 76, 78] neither deletion of the eNOS
gene nor pharmacological inhibition of eNOS activity
induces MI in animals. In contrast, our triply n/i/eNOSs−/−

mice spontaneously develop MI and sudden cardiac
death (Fig. 2a,b) [50, 74, 75]. This is the first in vivo
demonstration of the protective roles of NOS synthases in
the pathogenesis of MI. In our triply n/i/eNOSs−/− mice,
arteriosclerosis is noted in most of the vasculature,

whereas atherosclerosis is observed in the aorta alone. In
humans, MI is caused not only by coronary atherosclero-
sis, but also by other mechanisms, including coronary
intimal inflammation and coronary vasospasm [1, 79]. In
the triply n/i/eNOSs−/− mice that died of MI, marked
coronary intimal hyperplasia and medial thickening were
noted (Fig. 2b,c). Furthermore, in the dead triply n/i/
eNOSs-/- mice, marked infiltration of mast cells at the
coronary artery adventitia was observed (Fig. 2d). Hista-
mine released from adventitial mast cells is thought to
cause coronary vasospasm with a resultant MI in humans
[32]. It is thus possible that coronary arteriosclerosis and
coronary vasospasm are involved in the cause of MI and
death in the triply NOSs−/− mice (Fig. 3) [50, 74]. In our
triply n/i/eNOSs–/– mice, not only NO-mediated but also
EDHF-mediated endothelium-dependent relaxations are
abolished [69] in addition the enhanced contractions to
phenylephrine [74]. These vascular dysfunctions may also

Fig. 2 Decreased survival, spontaneous myocardial infarction (MI),
coronary arteriosclerosis and mast cell infiltration in male triply n/i/
eNOSs−/− mice. a Survival rate (n=29–57). A red line represents
markedly reduced survival in the triply n/i/eNOSs−/− mice. *, †, and
#P<0.05 between wild-type (WT) C57BL/6J vs. singly, doubly, and
triply NOS-KO, respectively. b Acute MI and coronary arteriosclerotic
lesion formation in the triply n/i/eNOSs−/− mouse that died at 8 months
of age (Masson-trichrome staining). Blue in the heart cross-section of

the dead triply n/i/eNOSs−/− mouse indicates antero-septal acute MI.
Adjacent coronary artery shows marked luminal narrowing, wall
thickening, and perivascular fibrosis (blue). c Arteriosclerotic lesion
formation in serial sections of the infarct-related coronary artery. d
Mast cell infiltration in the coronary artery adventitia (toluidine-blue
staining) n=10–33. Red arrows indicate mast cells. *P<0.05 vs. WT.
(Reproduced from Ref. [76] with a permission)
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be involved in the pathogenesis of MI in the triply NOSs−/−

mice (Fig. 3).

Metabolic syndrome

Metabolic syndrome (MetS) is defined as a pathological
state with accumulated cardiovascular risk factors of
metabolic origin, including visceral obesity, hypertension,
dyslipidemia, impaired glucose tolerance, and insulin
resistance [49, 71]. Importantly, accumulation of three or
more risk factors dramatically increases the risk of
morbidity of atherosclerotic cardiovascular diseases by 11-
fold, indicating that MetS is an important therapeutic target
for the prevention and treatment of cardiovascular diseases
[49, 71].

Roles of eNOS and the whole NOSs system

eNOS−/− and our triply n/i/eNOSs−/− mice manifest
phenotypes that closely resemble MetS in humans [50,
74, 76]. Although the extent of each of cardiovascular risk
factors (hypertension, dyslipidemia, and visceral obesity)
was comparable between the 2 genotypes, the extent of
impaired glucose tolerance and that of insulin resistance
were greater in the triply n/i/eNOSs−/− than in the eNOS−/−

mice, and hyper-low-density-lipoproteinemia was ob-
served only in the triply n/i/eNOSs−/− mice [50]. Thus, it
is possible that the whole NOSs system plays important

roles in the prevention of MetS [50]. Although metabolic
risk factors are present in the two genotypes, spontaneous
MI is noted only in the triply n/i/eNOSs−/− mice. This
discrepancy may be related to a compensatory mechanism
by other NOSs that are not genetically disrupted [68].
Indeed, in the eNOS−/− mice, up-regulation of vascular
nNOS expression has been reported [17, 33]. Furthermore,
we also have demonstrated that NOS activity and plasma
NOx levels are fairly well preserved in the singly eNOS−/−

mice [44].
Adiponectin is an anti-atherogenic adipocytokine, which

improves dyslipidemia, glucose metabolism, and insulin
resistance, and inhibits the progression of atherosclerosis
[24, 41, 67]. Under the condition of obesity with adipocyte
hypertrophy, the synthesis of adiponectin is decreased and
in patients with MetS, the circulating levels of adiponectin
are also reduced, in contrast to the increases in other
atherogenic adipocytokine levels. This adiponectin defi-
ciency is thought to play a pivotal role in the pathogenesis
of MetS and its vascular complications [41]. In our triply
n/i/eNOSs−/− mice, plasma adiponectin levels were signif-
icantly reduced [50]. Thus, the adiponectin deficiency may
contribute to the development of metabolic abnormalities
and arteriosclerotic lesion formation in the triply n/i/eNOS−/−

mice (Fig. 3).
Importantly, the renin-angiotensin system is markedly

activated in the triply n/i/eNOSs−/− mice, and long-term
treatment with an angiotensin II type 1 (AT1) receptor
blocker, olmesartan, potently inhibit coronary arterioscle-
rotic lesion formation, adventitial mast cell infiltration, and
the occurrence of MI in the mice, with a resultant
improvement in prognosis [50]. Furthermore, the long-
term treatment with olmesartan reverses all the abnormal
metabolic phenotypes, together with amelioration of hypo-
adiponectinemia [50]. These results suggest that the AT1
receptor pathway is substantially involved in the pathogen-
esis of MI in our triply n/i/eNOSs−/− mice (Fig. 3).

Heart failure

Role of eNOS

In cardiomyocyte-specific eNOS-TG mice with a 30-fold
increase in cardiac NOS activity, left ventricular (LV)
remodeling after coronary artery ligation is suppressed,
showing improved LV systolic and diastolic function and
attenuation of LV hypertrophy [22]. Endothelium-specific
eNOS-TG mice with a 12-fold increase in vascular NOS
activity also exhibit improved survival, LV dysfunction,
and pulmonary edema following coronary ligation without
affecting LV remodeling [23]. Consistent with these
findings, eNOS−/− mice with heart failure (HF) due to

Defective NOSs System

Activation of the renin-
angiotensin system

AT1 receptor

Metabolic
syndrome

Hyper-LDL-
emia

Hypoadipo-
nectinemia

Vascular 
dysfunction

Coronary mast
cell infiltration

Spontaneous Myocardial Infarction

Coronary arteriosclerosis Coronary vasospasm

Fig. 3 Mechanisms for spontaneous MI caused by the defective NOS
system in mice in vivo. Genetic disruption of all NOSs causes metabolic
syndrome, hypoadiponectinemia, hyper-low-density-lipoprotein (LDL)-
emia, coronary adventitial mast cell infiltration, and vascular dysfunction.
These factors could contribute to the pathogenesis of spontaneous MI.
Importantly, long-term pharmacological blockade of the AT1 receptor
significantly reduces the incidence of MI, along with amelioration of
these risk factors. Thus, it is possible that the AT1 receptor pathway is
substantially involved in the molecular mechanisms of the pathological
phenotypes and MI in the triply n/i/eNOSs−/− mice. (Modified from
Ref. [76] with a permission)
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either MI [63] or pressure overload [20] show reduced
survival and exacerbation of LV remodeling and LV
dysfunction. It also has been reported that eNOS mediates,
at least in part, the beneficial cardiovascular protective
effects of statins [34], angiotensin converting enzyme
inhibitors [36], AT1 receptor blockers [36], and cortico-
steroids [15] in experimental HF. Thus, it is evident that
eNOS plays important protective roles in HF [39, 58].

Role of nNOS

Conditionally targeted cardiomyocyte-specific nNOS-TG
mice with a 5-fold increase in cardiac NOS activity showed
delayed transition toward HF in response to pressure
overload [37]. In agreement with this evidence, two strains
of nNOS−/− mice with MI-induced HF similarly showed
reduced survival and exacerbation of pathological LV
remodeling or dysfunction after coronary artery ligation,
although not totally identical in the two strains [8, 62].
Thus, it is possible that in addition to eNOS, nNOS also
plays a cardioprotective role in HF [6].

Role of iNOS

Increased iNOS expression is noted in cardiomyocytes in
septic shock, myocarditis, ischemia, and dilated cardio-
myopathy, and has been implicated in the development of
HF. However, cardiomyocyte-specific iNOS overexpres-
sion per se (in two different strains with either a 10-fold
[46] or 40-fold increase [16] in cardiac NOS activity) did
not cause HF, suggesting that increased iNOS expression
per se is not the triggering mechanism in HF. In contrast,
iNOS−/− mice with HF induced by MI [10, 60] and by
pressure overload [86] showed improved survival, less LV
remodeling and dysfunction, and decreased myocardial
apoptosis. Furthermore, iNOS−/− mice with HF induced by
cardio-specific overexpression of TNF-α show improved
β-adrenergic inotropic responsiveness. Thus, it is possible
that, in contrast to eNOS and nNOS, iNOS exerts opposite
and unfavorable effects in HF. The underlying mecha-
nisms for the contrasting roles of NOS isoforms in HF are
unclear, but may relate to the differences in their spatial
localization, expressional regulation, NO-generating ca-
pacity, and peroxynitrite generation [47, 58, 61].

Other forms of cardiovascular diseases

A lines of accumulating evidence also has suggested that
the impairment of the NOSs system is involved in the
pathogenesis of other forms of cardiovascular diseases,
including aortic aneurysms, arrhythmias, and congenital
heart disease [76].

Conclusions

The mouse is the most ideal genetically modifiable
mammalian presently available. Studies with mice that are
deficient of or overexpressing NOSs provide pivotal
insights into the roles of NOSs in the pathogenesis of
cardiovascular diseases. In general, eNOS and nNOS exert
cardiovascular protective roles, while iNOS seems to exert
dual effects in the cardiovascular system. The observations
with the genetically modified animals have greatly ad-
vanced our understanding of the roles of the NOSs system
in the pathogenesis of human cardiovascular diseases.
Further studies are certainly needed to clarify whether
these observations can be translated to human patients with
cardiovascular diseases.
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