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Abstract The endothelium plays an important role in
maintaining cardiovascular homeostasis by synthesizing
and releasing several vasodilating substances, including
vasodilator prostaglandins, nitric oxide (NO), and
endothelium-derived hyperpolarizing factor (EDHF). Since
the first report on the existence of EDHF, several
substances/mechanisms have been proposed for the nature
of EDHF, including epoxyeicosatrienoic acids (metabolites
of arachidonic P450 epoxygenase pathway), K ions, and
electrical communications through myoendothelial gap
junctions. We have demonstrated that endothelium-derived
hydrogen peroxide (H2O2) is an EDHF in animals and
humans. For the synthesis of H2O2/EDHF, endothelial NO
synthase system that is functionally coupled with Cu,Zn-
superoxide dismutase plays a crucial role. Importantly,
endothelium-derived H2O2 plays important protective roles
in the coronary circulation, including coronary autoregula-
tion, protection against myocardial ischemia/reperfusion
injury, and metabolic coronary vasodilatation. Indeed, our
H2O2/EDHF theory demonstrates that endothelium-derived
H2O2, another reactive oxygen species in addition to NO,
plays important roles as a redox-signaling molecule to
cause vasodilatation as well as cardioprotection. In this
review, we summarize our current knowledge on H2O2/
EDHF regarding its identification and mechanisms of
synthesis and actions.
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Introduction

The endothelium synthesizes and releases several vasodila-
tor substances, including vasodilator prostaglandins, nitric
oxide (NO), and endothelium-derived hyperpolarizing
factor (EDHF) [20, 50, 60]. Although the nature of EDHF
has not been fully elucidated, different EDHFs could exist
depending on species, blood vessels, and the size of blood
vessels tested [50, 60]. Since the first report on the
existence of EDHF [11, 16], several candidates have been
proposed for the nature of EDHF, including epoxyeicosa-
trienoic acids (EETs), metabolites of arachidonic P450
epoxygenase pathway [9, 18], K ions [13], and electrical
communication through myoendothelial gap junctions [22]
(Fig. 1). We have demonstrated that endothelium-derived
hydrogen peroxide (H2O2) is an EDHF in mouse [38] and
human [39] mesenteric arteries and in porcine [40] and
canine [62] coronary microvessels (Fig. 1). Other inves-
tigators also have reported that H2O2 is an EDHF in the
human coronary microvessels [41] and piglet pial arterioles
[31]. We also have demonstrated that endothelial Cu,Zn-
superoxide dismutase (SOD) plays an important role in
the synthesis of H2O2 in mouse [42] and human [43]
mesenteric arteries and that endothelial NO synthase
(eNOS) system plays a crucial role in the synthesis of
H2O2/EDHF [38, 55]. In this review, I will summarize
the current knowledge on our H2O2/EDHF theory in terms
of the identification and mechanisms of synthesis and
actions.
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History of EDHF research

It was known that acetylcholine induces hyperpolariza-
tion of vascular smooth muscle of isolated blood vessels
in an endothelium-dependent manner [6, 30]. In 1988,
Feletou and Vanhoutte [16] and Chen et al. [11] indepen-
dently demonstrated that a diffusible substance released by
the endothelium causes hyperpolarization of underlying
vascular smooth muscle, proposing the existence of
endothelium-derived hyperpolarizing factor, EDHF
[11, 16].

Nature and mechanisms of action of EDHF

Endothelium-derived NO mediates vascular relaxation of
relatively large, conduit arteries (i.e., aorta and epicardial
coronary arteries), while EDHF plays an important role in
modulating vascular tone in small resistance arteries in
vitro [8, 50, 51, 60] and in human forearm microcircula-
tion in vivo [28]. EDHF causes vascular relaxation by
opening K channels and then hyperpolarizing membrane
of vascular smooth muscle [8, 50, 60]. EDHF is
synthesized not only upon stimulation by agonists but
also by shear stress [56], and its synthesis and release are
stimulated by increase in intracellular calcium in the
endothelium [50, 52, 60], although calcium-independent

endothelial cell hyperpolarization has also been reported
[57]. NO and vasodilator prostaglandins elicit hyperpolar-
ization of underlying vascular smooth muscle and NO
may activate large conductance KCa channels in some
blood vessels [5]; however, those responses to NO and
vasodilator prostaglandins are largely inhibited by the
inhibition of ATP-sensitive potassium (KATP ) channels
[8, 60]. Importantly, substantial endothelium-dependent
hyperpolarization exists even after the blockade of the
synthesis of NO and vasodilator prostaglandins [8, 50,
60]. Thus, EDHF appears to be different from vasodilator
prostaglandins or NO, and EDHF-mediated responses are
classically defined as the endothelium-dependent
responses (relaxations and hyperpolarizations) after the
blockade of the synthesis of vasodilator prostaglandins
and NO [50, 52, 60].

H2O2/EDHF hypothesis

NO and EDHF share many similarities in terms of the
influence by atherosclerotic risk factors and the synthesis
pathway. Indeed, various atherosclerotic risk factors atten-
uate both NO- and EDHF-mediated responses [50, 59, 60],
and the treatment of those risk factors improve both NO-
and EDHF-mediated responses [17, 50, 60]. In various
pathological situations, the production of reactive oxygen

Fig. 1 H2O2/EDHF hypothesis on the nature of EDHF. EDHF
hyperpolarizes vascular smooth muscle by opening K channels and
then elicits vasodilatation. Major candidates for the nature of EDHF
include (1) epoxyeicosatrienoic acids (EETs), metabolites of arach-
idonic P450 epoxygenase pathway, (2) K ions released from the
endothelium through endothelial KCa channels that activates Na,K

ATPase of vascular smooth muscle, and (3) electrical communication
through myoendothelial gap junctions. We also have identified that (4)
endothelium-derived H2O2 is an EDHF, for which eNOS that is
functionally coupled with Cu,Zn SOD is an important source. In
contrast, our findings suggest that other endothelial oxidases may not
play a major role for the EDHF-mediated responses
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species (ROS) is increased, while NO-mediated relaxations
are attenuated. EDHF-mediated relaxations are temporarily
enhanced to compensate the reduced NO-mediated relaxa-
tions; however, the EDHF-mediated responses also are
subsequently reduced during the pathological process
[50, 52]. The calcium/calmodulin pathway is involved in
endothelial synthesis of both NO and EDHF [46]. These
lines of evidence led us to hypothesize that EDHF is a non-
NO vasodilator substance (possibly ROS other than NO)
derived from eNOS [50, 52].

The endothelium produces several kinds of ROS,
including superoxide, hydrogen peroxide (H2O2), NO,
peroxynitrite, and hydroxyl radicals [14, 33, 34, 49]. ROS
modulate vascular tone by several mechanisms, including
alteration in K channel conductance [24]. Superoxide itself
attenuates endothelium-dependent relaxations by scaveng-
ing NO [48], while it also causes relaxations of cat cerebral
arteries [61]. Peroxynitrite, a potent ROS produced by the
reaction of NO with superoxide, acts as a relaxing factor at
its lower concentrations by activating sarco/endoplasmic
reticulum Ca-ATPase in rabbit carotid arteries [1] and by
activating cGMP pathway in canine coronary arteries [34].
Peroxynitrite also inhibits KCa channel activity of vascular
smooth muscle [35]. H2O2 exerts a direct hyperpolarizing
effect on vascular smooth muscle [4]. H2O2 elicits
hyperpolarization of porcine coronary microvessels by
opening large conductance KCa channels [2] and relaxes
bovine pulmonary arteries by activating guanylate cyclase
[7]. Thus, we examined the possible involvement of each
ROS in the EDHF-mediated responses and finally were
able to identify that endothelium-derived H2O2 is an EDHF
[38, 52].

Vasodilating effect of H2O2

H2O2 causes vasodilatation through several mechanisms,
including cGMP in bovine pulmonary arteries [7], cyclo-
oxygenase and cyclic AMP in canine cerebral arteries [27],
and phospholipase A2 in porcine coronary microvessels [3].
Exogenous H2O2 also causes vasodilatation by opening
several K channels, including KATP channels in cat cerebral
[61] and rabbit mesenteric arteries [26] and KCa channels in
rat cerebral arteries [53]. It has been reported that H2O2

causes both vasodilatation and vasoconstriction (when
hyperpolarization is compromised) of perfused mouse
mesenteric arteries [37] and may be distinct from EDHF
in rabbit femoral arteries [10] and that H2O2 stimulates the
release of a chemically distinct EDHF in human submuco-
sal intestinal microvessels [25]. H2O2 has also been
reported to induce endothelium-dependent vasodilatation
through COX-1-mediated release of PGE2 and to directly
relax smooth muscle by hyperpolarization through KCa

channel activation [58].

Identification of endothelium-derived H2O2 as an EDHF

We have demonstrated that EDHF-mediated relaxations and
hyperpolarizations are inhibited by catalase, a specific
inhibitor of H2O2, in mesenteric arteries of normal mice
and are significantly reduced in eNOS−/− mice [38]. The
specific inhibitory effect of catalase on H2O2 was con-
firmed as it lost its inhibitory effect when inactivated by
aminotriazole [38]. We also have demonstrated that
exogenous H2O2 elicits relaxations and hyperpolarizations
of vascular smooth muscle of mouse mesenteric arteries by
opening KCa channels and that acetylcholine causes
endothelial H2O2 production in mouse mesenteric arteries
[38]. Thus, we concluded that H2O2 fulfills the criteria for
an EDHF in mouse mesenteric arteries [38] (Fig. 1). We
subsequently confirmed that H2O2 is an EDHF in human
mesenteric arteries [39] and porcine [40] and canine [62]
coronary microvessels. Furthermore, we were able to
directly demonstrate endothelial H2O2 production in por-
cine coronary microvessels by using electron spin reso-
nance imaging [40]. The estimated concentration of
endothelium-derived H2O2 is in micromolar range, which
is consistent to its concentrations to cause EDHF-mediated
responses [38, 40]. Subsequently, other investigators
reported that endothelium-derived H2O2 also is an EDHF
in human coronary microvessels [41] and piglet pial
arterioles [31], although other mechanisms for
endothelium-dependent and endothelium-independent re-
laxation in response to H2O2 have been reported [10, 25,
58]. We also have recently demonstrated that endothelium-
derived H2O2 plays important cardioprotective roles in the
canine coronary microcirculation in vivo, including coro-
nary autoregulation [62], myocardial protection against
ischemia/reperfusion injury [63], and metabolic coronary
vasodilatation [64]. Thus, we have confirmed that
endothelium-derived H2O2 acts as an EDHF, especially in
microvessels [50, 52, 56], although the mechanisms for the
endothelial production of H2O2/EDHF remains to be
elucidated.

Mechanisms for endothelial synthesis of H2O2/EDHF

Several previous studies have addressed the mechanisms
for the synthesis of EDHF (Fig. 1). In porcine epicardial
coronary arteries, cytochrome P450 2C has been reported to
act as an EDHF synthase to synthesize EETs as an EDHF
[8, 18]. cAMP is reported to enhance gap junctional
electrical communication for EDHF-mediated responses
[21]. It also is reported that agonist stimulation opens
endothelial KCa channels with a resultant release in K ion
into myoendothelial space as an EDHF [13].
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In the endothelium, H2O2 is synthesized by either
spontaneous dismutation from superoxide or dismutation
of superoxide by SOD [15]. In blood vessels, there are three
SOD isoforms that dismutate superoxide into H2O2 [48]
(Fig. 2). Cu,Zn-SOD is located mainly in the cytosol,
nucleus, and, to a lesser extent, in mitochondria [15],
dismutating superoxide and prolonging the half-life of NO
[45] (Fig. 2). The Cu,Zn-SOD activity approximately
accounts for 50–80% of all SOD activities in vascular wall
[12]. Mn-SOD is located in mitochondria and dismutates
superoxide derived from respiratory chains [15] (Fig. 2).
Extracellular SOD (ecSOD) is located extracellularly and

dismutates extracellular superoxide to protect the diffusion
of NO [19] (Fig. 2). As mentioned above, we have
demonstrated that eNOS is one of the major contributors
for the synthesis of H2O2 as an EDHF [38]. eNOS produces
superoxide when it synthesizes NO from L-arginine, while
Cu,Zn-SOD dismutates those superoxide anions into H2O2

[54]. Since heparin, which inhibits ecSOD activities, had no
effect on EDHF-mediated response, we excluded ecSOD as
a source of EDHF [42]. Mn-SOD is located in mitochondria
and does not seem to be involved in EDHF synthesis
because in mouse mesenteric arteries, endothelium-derived
H2O2 is mainly derived from membrane, where Cu,Zn-
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Fig. 3 Endothelium-dependent relaxations of mesenteric arteries from
normal and NOS-deficient mice. EDHF-mediated relaxations can
functionally be evaluated by the inhibitory effects of the KCa blockade
with charybdotoxin (CTx, an intermediate KCa blocker) and apamin
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progressively reduced as the number of NOS genes deleted was
increased and finally in the triply n/i/eNOSs−/− mice, EDHF-mediated
relaxations were abolished, whereas vasodilator functions of vascular
smooth muscle were fairly preserved (modified from [55] with
permission)
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SOD is located [42] (Fig. 2). Finally, in Cu,Zn-SOD−/−

mice, EDHF-mediated relaxations and hyperpolarizations
are markedly attenuated in mesenteric arteries and coronary
microvessels compared with control mice without alteration
in vasodilator properties of vascular smooth muscle [42].
Thus, we concluded that endothelial Cu,Zn-SOD plays an
important role for the synthesis of H2O2 as an EDHF
synthase [42] (Fig. 2).

Furthermore, supplement of SOD mimetics, Tempol [29],
restores EDHF-mediated responses [42]. These results may
reflect the restoration of contribution of H2O2 as an EDHF
and/or improved myoendothelial communication as a result

of a reduction in ROS generation [23]. Similarly, in human
mesenteric arteries, supplement of another SOD mimetics,
Tiron [32], enhances EDHF-mediated relaxations and hyper-
polarizations [43]. H2O2 also is an EDHF in porcine
coronary microvessels, where the EDHF-mediated relaxa-
tions are enhanced by the pretreatment with Tiron [40]. In
human-isolated coronary arterioles, it was suggested that
H2O2 derived from mitochondria is involved in flow-
mediated dilatation [36]. Thus, our H2O2/EDHF theory has
uncovered the new and important role of endothelial Cu,Zn-
SOD as an EDHF synthase, in addition to its classical role to
scavenge superoxide to prolong the half-life of NO [42, 43].
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There are three NO synthase isoforms, including
eNOS, neuronal NOS, and inducible NOS, and they
apparently compensate each other [50, 55, 60]. Indeed, in
the singly eNOS−/− mice, in addition to abolishment of
NO-mediated relaxations in the aorta, EDHF-mediated
relaxations of the mesenteric artery were markedly
reduced but not abolished, and the remaining relaxations
also were sensitive to catalase [38], suggesting some
compensatory involvement of other NOS isoform-derived
H2O2/EDHF. In order to fully understand the role of
endothelial NOSs in the H2O2/EDHF-mediated responses,
we generated mice that are deficient of all three NOS
isoforms [44]. Interestingly, the EDHF-mediated
responses were progressively impaired in accordance with
the NOS genes deleted and finally in the triply
n/i/eNOSs−/− mice, the responses were abolished while
vasodilator and hyperpolarizing functions of vascular
smooth muscle were fairly well preserved (Figs. 3 and 4)
[55]. These results have provided us with the novel
concept that endothelial NOSs system plays an important
role as the EDHF-generating system in microvessels,
while the system acts as NO-generating system in large
conduit arteries in its original meaning (Fig. 5) [55].
Recently, we have demonstrated that the triply
n/i/eNOSs−/− mice exhibit typical characteristics of meta-
bolic syndrome in humans, including visceral obesity,
hypertension, diabetes mellitus, and dyslipidemia with a
resultant reduced survival due to spontaneously myocar-
dial infarction [47]. Again, these findings indicate the
important roles of the NOSs system to maintain cardio-
vascular and metabolic homeostasis [47].

Conclusions

We have identified that endothelium-derived H2O2 is an
EDHF in animals and humans and plays an important role
as a redox-signaling molecule to cause vasodilatation as
well as cardioprotection (Fig. 5).
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