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itric oxide (NO) research is an important academic 
field in which a huge number of scientists have 
great interest. Notably, the number of NO-related 

articles published annually still continues to increase even 
now, and more than 7000 NO-related articles are recently 
being published per year (Figure 1).

NO possesses multiple biological actions that contribute 
to the maintenance of cardiovascular homeostasis.1–6 NO is 
formed from its precursor L-arginine by a family of NO 
synthases (NOSs) with stoichiometric production of L-citrul-
line. The NOS system consists of 3 distinct NOS isoforms, 
encoded by 3 distinct NOS genes, including neuronal (nNOS; 
also known as NOS-1), inducible (iNOS; also known as 
NOS-2) and endothelial NOS (eNOS; also known as NOS-
3).

Initial studies indicated that nNOS and eNOS are con-
stitutively expressed mainly in the nervous system and the 
vascular endothelium, respectively, synthesizing a small 
amount of NO in a calcium-dependent manner both under 
basal conditions and upon stimulation, and that iNOS is 
induced only when stimulated by microbial endotoxins or 
certain proinflammatory cytokines, producing a greater 

amount of NO in a calcium-independent manner.1–6 However, 
recent studies have revealed that both nNOS and eNOS are 
subject to expressional regulation,7–11 and that iNOS is con-
stitutively expressed even under physiological conditions.12,13 
It has also become apparent that in addition to eNOS and 
iNOS, nNOS also plays important roles in the cardiovascular 
system. Thus, NO research is taking a new turn.

Genetically engineered animals are a powerful experimen-
tal tool for studying the function of target genes in vivo. All 
types of NOS gene-knockout (KO) animals, including singly, 
doubly, and triply NOS-KO mice, have been generated 
(Table 1).14–24 Furthermore, various types of NOS gene-trans-
genic (TG) animals, including conditional and non-condi-
tional TG mice with endothelium-specific or cardiomyocyte-
specific overexpression of each NOS isoform, have also been 
established (Table 2).25–34 By using those genetically modi-
fied mice, the cardiovascular roles of NOSs have been exten-
sively studied, and the findings provide important insights 
into the significance of NOSs in human cardiovascular dis-
eases. In this review, we summarize the current knowledge 
of NOSs and cardiovascular diseases on the basis of research 
outcomes obtained from the NOS gene-modified mice.

Arteriosclerosis and Atherosclerosis
In mice, arteriosclerotic vascular lesions are induced by 

either permanent ligation of the carotid artery, cuff place-
ment around the artery or cardiac transplantation, and ath-
erosclerotic vascular lesions are induced by crossing with 
apolipoprotein E (apoE)-KO mice, which manifest severe 
dyslipidemia. The atherosclerotic vascular lesion formation 
is exacerbated by a Western-type high-cholesterol diet.35,36

Role of eNOS
Endothelium-specific eNOS-TG mice with an 8-fold 
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increase in vascular NOS activity showed decreased neo-
intimal formation after carotid artery ligation,37 and another 
strain of endothelium-specific eNOS-TG mice with a 10-
fold increase in vascular NOS activity similarly exhibited  
a reduction in atherosclerotic vascular lesion formation 
induced by breeding with apoE-KO mice.34 Consistent with 
those findings, eNOS-KO mice displayed increased neo-
intimal formation, accelerated medial thickening, and 
abnormal vascular remodeling in response to carotid artery 
ligation (Figure 2)38,39 and cuff placement around the 

femoral artery.40 Furthermore, eNOS-KO/apoE-KO mice 
had worsened formation of atherosclerotic vascular lesions 
as compared with apoE-KO mice.41,42 These lines of evi-
dence indicate a vasculoprotective role of eNOS in arterio-
sclerosis and atherosclerosis.

In contrast, in endothelium-specific eNOS-TG mice with 
an 8-fold increase in vascular NOS activity, a conflicting 
progression of atherosclerotic vascular lesion formation 
elicited by crossbreeding with apoE-KO mice is reported.43 
Thus, this point needs to be examined in future studies.

Figure 1.    The annual number of nitric oxide 
(NO)-related articles published. The annual 
number of NO-related articles published still 
continues to increase even now, and more than 
7,000 NO-related articles are recently being 
published per year.

Table 1.    Mice Lacking the NOS Genes That Have Thus Far Been Established

 KO mice Site of gene deletion Reference

 nNOS-KO Exon 2 (#1) 16
  Exon 6 15
 iNOS-KO Proximal 585 bases of promoter plus exons 1–4 (#2) 19
  Near exons 1–5 24
  Exons 12 and 13 and a part of exon 11 (#3) 18
 eNOS-KO Exons 24–26 (#4) 17
  Exon 12 (#5) 21
  Exons 24 and 25 14
 n / iNOS-KO #1 and #3 23
  #1 and #2 20
 n /eNOS-KO #1 and #4 22
  #1 and #5 23
  #1 and #4 20
 i /eNOS-KO #3 and #5 23
  #2 and #4 20
 n /i /eNOS-KO #1, #2 and #4 20

NOS, nitric oxide synthase; KO, knockout; nNOS, neuronal NOS; iNOS, inducible NOS; eNOS, endothelial NOS.

Table 2.    Mice Overexpressing the NOS Genes That Have Thus Far Been Established

 TG mice Overexpression site Promoter used Reference

 nNOS-TG Myocardium (conditional)  α-MHC 26
  Myocardium (conditional)  α-MHC 29
  Brain CaMKIIα 32
 iNOS-TG Myocardium (conditional)  α-MHC 30
  Myocardium  α-MHC 27
  Pancreatic β cell Insulin 33
 eNOS-TG Endothelium Preproendothelin-1 31
  Endothelium eNOS 34
  Myocardium  α-MHC 25
  Myocardium  α-MHC 28

TG, transgenic; MHC, myosin heavy chain; CaMKII, calcium-calmodulin multifunctional kinase II. Other abbreviations see in Table 1.
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Role of iNOS
The role of iNOS in arteriosclerosis and atherosclerosis 

seems to be complicated. Deletion of the iNOS gene in mice 
exacerbated pathological vascular remodeling in a carotid 
artery ligation model (Figure 2)39 and in a cardiac transplant 
model;44 however, it conversely ameliorated neointimal 
formation in a carotid cuff placement model,45 and lipid-
rich atherosclerotic vascular lesion formation in apoE-KO 
mice.46 Thus, iNOS appears to have 2 faces. This discrep-
ancy may be explained in part by the oxidant and antioxidant 
properties of iNOS,47 because NOS produce superoxide 
anions rather than NO, with resultant production of a potent 
oxidant peroxynitrite, under certain conditions such as  
deficiency of a substrate (eg, L-arginine) or a cofactor (eg, 
tetrahydrobiopterin) (which phenomenon is referred to as 
‘NOS uncoupling’).48,49

Role of nNOS
Expression of nNOS is upregulated in the neointima, 

endothelial cells and macrophages in both early and advanced 
human atherosclerotic lesions.50 Although the regulatory 
roles of eNOS and iNOS in vascular lesion formation have 
been widely studied, little has been known about the role  
of nNOS. We addressed this point in nNOS-KO mice and 
demonstrated that nNOS gene deficiency caused a wors-
ening of neointimal formation and constrictive vascular 
remodeling (a reduction in vascular cross-sectional area) 
following carotid artery ligation (Figure 2).51 In agreement 
with our evidence, nNOS-KO/apoE-KO mice showed accel-
erated atherosclerotic vascular lesion formation as compared 
with apoE-KO mice.52 These results suggest that nNOS also 
plays a role in suppressing arteriosclerotic/atherosclerotic 
vascular lesion formation.11 Upregulation of nNOS may 
play a compensatory role in the presence of reduced eNOS 
activity (eg, inflammation and arteriosclerosis) to maintain 
vascular homeostasis.11

The regulatory mechanisms for vascular nNOS expres-
sion remained to be elucidated. We revealed that inflamma-
tory and proliferative stimuli (angiotensin II, interleukin-
1β, and platelet-derived growth factor) and a statin increase 

vascular nNOS expression.9,10,51 It has been also reported 
that hypoxic conditions53 and hypertensive situations54,55 
upregulate vascular nNOS expression.

Role of NOS System
 Because all NOSs play a role in the vascular system, we 

next conceived a project to investigate the roles of the whole 
NOS system in vivo. The roles of the NOS system in the 
human body have been investigated in pharmacological 
studies with non-selective NOS inhibitors and in studies with 
NOS isoform-KO mice. However, because of both the non-
specificity of agents and compensation among NOS isoforms, 
the authentic roles of the NOS system were still poorly 
understood. To address this important issue, we have recently 
developed mice in which the entire NOS system is com-
pletely disrupted (triply nNOS/iNOS/eNOS-KO mice).20,56 
The triply n/i/eNOS-KO mice, but not any singly NOS-KO 
mice, spontaneously develop arteriosclerotic vascular lesions 
(neointimal formation, medial thickening, and perivascular 
fibrosis) in the coronary and renal arteries, and lipid-rich 
atherosclerotic vascular lesions in the aorta, even on a 
normal chow diet.57,58 These results provided the first direct 
evidence for a vasculoprotective role of the entire NOS 
system in arteriosclerosis and atherosclerosis.

Spontaneous Myocardial Infarction (MI)
MI is the leading cause of death for both genders world-

wide.59,60 The molecular mechanisms for the pathogenesis 
of MI, however, remain to be fully elucidated.

Role of NOS System
It is well established that eNOS has powerful anti-arte-

riosclerotic and anti-atherosclerotic effects;1–6 however, 
neither deletion of the eNOS gene nor pharmacological 
inhibition of eNOS activity induces MI in animals. On the 
other hand, intriguingly, our triply n/i/eNOS-KO mice had 
spontaneous MI and sudden cardiac death (Figures 3A,B), 
which is the first in-vivo demonstration of the involvement 
of the defective NOS system in the pathogenesis of sponta-

Figure 2.    The different vasculoprotective 
roles of 3 nitric oxide synthase (NOS) isoforms 
in a mouse carotid artery ligation model. Studies 
with each NOS isoform-knockout mice have 
demonstrated that endothelial NOS (eNOS) 
inhibits neointimal formation, that inducible 
NOS (iNOS) attenuates constrictive vascular 
remodeling, and that neuronal NOS (nNOS) 
suppresses both neointimal formation and con-
strictive vascular remodeling. Thus, individual 
NOS isoforms have different vasculoprotective 
actions against vascular lesion formation in 
mice in vivo. ○– , inhibition.
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neous MI.
Arteriosclerosis is seen in most of the vasculature in the 

triply NOS-KO mice, whereas atherosclerosis is observed 
in the aorta alone. Human MI results not only from coronary 
atherosclerosis, but also from other causes, including coro-
nary intimal hyperplasia, medial thickening, and coronary 
vasospasm.59,61 In the triply n/i/eNOS-KO mice that died of 
MI, marked coronary intimal hyperplasia and medial thick-
ening were noted (Figures 3B,C). Furthermore, in the dead 
triply n/i/eNOS-KO mice, marked infiltration of mast cells 
at the coronary artery adventitia was also observed (Figure 
3D). Histamine released from adventitial mast cells is 
thought to cause coronary vasospasm with resultant MI in 
humans.62 It is thus possible that coronary arteriosclerosis 
and coronary vasospasm are involved in the cause of death 
in the triply NOS-KO mice (Figure 4).

In our triply n/i/eNOS–/– mice, endothelium-dependent 
relaxation to acetylcholine, which is a physiological eNOS 
activator, was completely lacking, and contraction to phen-
ylephrine, which is an α1 adrenergic agonist, was markedly 
potentiated.57 These vascular dysfunctions could also be 
involved in the pathogenesis of MI in the triply NOS-KO 
mice (Figure 4).

Metabolic Syndrome (MetS)
MetS is defined as a constellation of interrelated cardio-

vascular risk factors of metabolic origin, including visceral 
obesity, hypertension, hypertriglyceridemia, impaired glucose 
tolerance, and insulin resistance.63,64 Notably, accumulation 
of 3 or more risk factors dramatically increases the risk of 
morbidity of arteriosclerotic cardiovascular diseases by 11-
fold, indicating that MetS is an important therapeutic target 
for the prevention and treatment of cardiovascular dis-
eases.63,64

Roles of eNOS and NOS System
eNOS-KO and our triply n/i/eNOS-KO mice manifested 

phenotypes that closely resemble MetS in humans. The 
extent of each of hypertension, hypertriglycemia, and vis-
ceral obesity was comparable in the 2 genotypes, whereas 
the extent of impaired glucose tolerance and of insulin 
resistance was greater in the triply n/i/eNOS-KO than in the 
eNOS-KO genotype, and hyper-low-density-lipoproteinemia 
was observed only in the triply n/i/eNOS-KO genotype. It 
is thus possible that the NOS system and eNOS play impor-
tant roles in the prevention of MetS.

Figure 3.    Decreased survival, spontaneous myocardial infarction (MI), coronary arteriosclerosis and mast cell infiltra-
tion in male triply n/i/eNOS-KO mice. (A) Survival rate (n=29–57). A red line represents markedly reduced survival in 
the triply n/i/eNOS-KO mice. *, †, #P<0.05 between wild-type (WT) C57BL/6J vs singly, doubly, and triply NOS-KO, 
respectively. (B) Acute MI and coronary arteriosclerotic lesion formation in the triply n/i/eNOS-KO mouse that died at  
8 months of age (Masson-trichrome staining). Blue in the heart cross-section of the dead triply n/i/eNOS-KO mouse indi-
cates antero-septal acute MI. Adjacent coronary artery shows marked luminal narrowing, wall thickening, and perivascular 
fibrosis (blue). (C) Arteriosclerotic lesion formation in serial sections of the infarct-related coronary artery. (D) Mast cell 
infiltration in the coronary artery adventitia (toluidine-blue staining) (n=10–33). Red arrows indicate mast cells. *P<0.05 
vs WT. Data from reference 57. NOS, nitric oxide synthase; nNOS, neuronal NOS; iNOS, inducible NOS; eNOS, endo-
thelial NOS; KO, knockout.
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Although metabolic risk factors were present in the 2 
genotypes, spontaneous MI was noted only in the triply  
n/i/eNOS-KO genotype. This inconsistency may be related 
to a compensatory mechanism by other NOSs that are not 
genetically disrupted.22 Indeed, in the eNOS-KO genotype, 
upregulation of vascular nNOS expression has been indi-
cated.65,66 Furthermore, we have also revealed that NOS 
activity and NOx production are fairly well preserved in 
the eNOS-KO genotype.20

Adiponectin is an anti-atherogenic adipocytokine, improv-
ing hypertriglyceridemia, glucose metabolism, and insulin 
resistance, and inhibiting the progression of arteriosclero-
sis.67–69 Under the condition of obesity with adipocyte hyper-
trophy, synthesis of adiponectin is not increased, but rather 
decreased, and in patients with MetS, the circulating levels 
of adiponectin are reduced, in contrast to the increases in 
other adipocytokine levels. The deficiency of adiponectin is 
thought to play a pivotal role in the pathogenesis of MetS 
and its vascular complications.68 In our triply n/i/eNOS-KO 
mice, plasma adiponectin levels were significantly reduced.57 
Thus, adiponectin deficiency may contribute to the develop-
ment of metabolic abnormalities and arteriosclerotic lesion 
formation in the triply n/i/eNOS-KO mice (Figure 4).

 Importantly, the renin–angiotensin system is markedly 
activated in the triply n/i/eNOS-KO mice, and long-term 
treatment with an angiotensin II type 1 (AT1) receptor 
blocker, olmesartan, potently inhibited coronary arterioscle-
rotic lesion formation, adventitial mast cell infiltration, and 
the occurrence of MI in the mice, with a resultant improve-
ment in prognosis.57 Furthermore, long-term treatment with 
olmesartan reversed all the abnormal metabolic pheno-
types, together with amelioration of hypoadiponectinemia.57 
These results suggest that the AT1 receptor pathway is 
involved in the pathogenesis of MI in our triply n/i/eNOS-
KO mice (Figure 4).

Angina Pectoris (AP)
Role of NOS System

We were unable to find any articles in which AP was 
studied in NOS gene-modified mice. However, as men-
tioned earlier, coronary arteriosclerosis and mast cell infil-
tration in the coronary adventitia were noted in our triply 

n/i/eNOS-KO mice, suggesting a potential linkage between 
AP (both vasospastic and organic types) and a defective 
NOS system. In line with our findings, a clinical study 
reported that NOS activity is deficient in the spasm arteries 
of patients with coronary spastic AP.70

Aortic Diseases
Role of eNOS

When 12 eNOS-KO/apoE-KO mice were fed a Western-
type diet for 16 weeks, 3 mice spontaneously developed 
abdominal aortic aneurysms and 2 developed aortic dissec-
tions (Stanford type B).42 These results suggest that eNOS 
deficiency induces abdominal aortic aneurysms and aortic 
dissections in the presence of severe hyperlipidemia.

Role of iNOS
Aortic aneurysms can be induced in animals by perfus-

ing the aorta with elastase. The extent of elastase-induced 
abdominal aneurysmal dilatation was comparable between 
male iNOS-KO and wild-type mice, whereas it was greater 
in female iNOS-KO than in female wild-type mice, the 
effect of which was reversed by previous ovariectomy.71 It 
is thus likely that iNOS deficiency also leads to the occur-
rence of abdominal aortic aneurysms induced by elastase 
solely in the female.

Heart Failure (HF)
Congestive HF can be induced by permanent ligation of 

the coronary artery (ie, MI) and by transverse aortic con-
striction (ie, pressure overload), respectively, in animals.

Role of eNOS
Cardiomyocyte-restricted eNOS-TG mice with a 30-fold 

increase in cardiac NOS activity showed protection against 
detrimental left ventricular (LV) remodeling after coronary 
artery ligation, exhibiting improved LV systolic and dia-
stolic function and attenuation of LV hypertrophy.28 Endo-
thelium-specific eNOS-TG mice with a 12-fold increase in 
vascular NOS activity also exhibited improved survival, 
LV dysfunction, and pulmonary edema following coronary 
ligation without affecting LV remodeling.72 Consistent with 

Figure 4.    Mechanisms for spontaneous myocar-
dial infarction (MI) caused by the defective nitric 
oxide synthase (NOS) system in mice in vivo. 
Genetic disruption of all NOSs caused metabolic 
syndrome, hypoadiponectinemia, hyper-low-
density-lipoprotein (LDL)-emia, coronary adventi-
tial mast cell infiltration, and vascular dysfunction. 
Those factors could contribute to the pathogenesis 
of spontaneous MI. Importantly, long-term phar-
macological blockade of the angiotensin II type 1 
(AT1) receptor significantly reduced the incidence 
of MI, along with amelioration of those risk factors. 
It is therefore possible that the AT1 receptor 
pathway is involved in its molecular mechanism.
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these findings, eNOS-KO mice with HF due to either MI73 
or pressure overload74 had reduced survival, and exacerba-
tion of LV remodeling and LV dysfunction. It has also been 
reported that the presence of eNOS mediates the beneficial 
cardiovascular protective effects of statins,75 angiotensin-
converting enzyme inhibitors,76 AT1 receptor blockers,76 and 
corticosteroids77 in experimental HF. Thus, it is evident 
that eNOS exerts a protective role in HF.78,79

Role of nNOS
Conditionally targeted cardiomyocyte-specific nNOS-TG 

mice with a 5-fold increase in cardiac NOS activity showed 
delayed transition toward HF in response to pressure over-
load.29 In agreement with this evidence, 2 strains of nNOS-
KO mice with MI-induced HF similarly showed reduced 
survival, and exacerbation of pathological LV remodeling 
or LV dysfunction after coronary artery ligation, although 
the findings were not totally identical in the 2 strains.80,81 It 
is thus possible that in addition to eNOS, nNOS also exerts 
a protective role in HF.82

Role of iNOS
Increased iNOS expression is noted in cardiomyocytes 

in septic shock, myocarditis, ischemia, and dilated cardio-
myopathy, and has been implicated in the development of 
HF. However, cardiomyocyte-specific iNOS overexpres-
sion per se (in 2 different strains with either a 10-fold30 or 
40-fold increase27 in cardiac NOS activity) did not result in 
HF, suggesting that increased iNOS expression is not the 
triggering factor in HF. On the other hand, iNOS-KO mice 
with HF induced by MI83–85 and by pressure overload86 
showed improved survival, less LV remodeling and dys-
function, and decreased myocardial apoptosis. Furthermore, 
iNOS-KO mice with HF induced by cardiospecific over-
expression of tumor necrosis factor-α exhibited improved 
 β-adrenergic inotropic responsiveness. It is thus possible 
that, in contrast to eNOS and nNOS, iNOS exerts an oppo-
site, unfavorable role in HF. The underlying mechanisms 
for the contrasting roles among NOS isoforms in HF are 
unclear, but may relate to differences in spatial localiza-
tion, expressional regulation, NO-generating capacity, and 
peroxynitrite generation.79,87,88

Arrhythmia
Role of iNOS

The occurrence of drastic malignant arrhythmia has been 
reported in conditional, cardiomyocyte-specific iNOS-TG 
mice with a 10-fold increase in cardiac NOS activity.30 The 
iNOS-TG mice displayed 2nd-degree (Mobitz type II) and 
3rd-degree atrioventricular block and ventricular tachycar-
dia, resulting in sudden cardiac death. These results indicate 
an arrhythmogenic role of iNOS. Because iNOS-derived 
superoxide-dependent peroxynitrite generation is enhanced 
in the iNOS-TG mice, the oxidative property of iNOS may 
elicit a proarrhythmic effect.

Role of eNOS
Cardiomyocyte-restricted eNOS-TG mice have a lower 

incidence of ectopic beats.89 In line with this finding, eNOS-
KO mice have a higher incidence of digoxin-induced ven-
tricular tachycardia90 and an increased susceptibility to the 
development of triggered activity.91 It is thus conceivable 
that eNOS may protect the heart against arrhythmia.

Congenital Heart Disease
Role of eNOS

It has been reported that eNOS-KO mice develop con-
genital heart diseases, including atrial and ventricular septal 
defects,92 a bicuspid aortic valve,93 and defective pulmonary 
vasculature and airway.94 These findings are in agreement 
with a clinical study showing that a single nucleotide poly-
morphism of the eNOS gene (894G>T) is associated with 
an increased risk of congenital heart diseases.95 However, 
although the congenital abnormalities are seen in only one 
strain among three distinct eNOS-KO strains, these results 
should be interpreted with caution.

Conclusion
The mouse is the most ideal genetically modifiable mam-

malian presently available.87 Studies in both KO and TG 
overexpression models provide pivotal insights into the 
cardiovascular pathophysiology of NOSs at the molecular 
level. These studies have demonstrated that, in general, 
eNOS and nNOS exert protective roles, while iNOS has 
dual roles in the cardiovascular system, and that the NOS 
system in its entirety plays salutary roles in a variety of 
cardiovascular diseases. Furthermore, the studies have indi-
cated that the NOS uncoupling under conditions of tetra-
hydrobiopterin or L-arginine deficiency is an important 
determinant of whether or not NOSs are beneficial. Thus, 
observations in the genetically modified animals have 
greatly advanced (and will continue to improve) our under-
standing of the roles of NOSs in the pathogenesis of human 
cardiovascular diseases. Further studies are certainly needed 
to clarify whether these outcomes can be translated to human 
patients with cardiovascular diseases.
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