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Summary Ischemic heart disease is the leading cause of morbidity and mortality
in a worldwide epidemic. Myocardial ischemia is characterized by an imbalance
between myocardial oxygen supply and demand, causing cardiac dysfunction,
arrhythmias, myocardial infarction, and sudden death. Various clinical ischemic
manifestations are caused by obstruction of coronary blood flow by coronary plaques,
thrombosis, and/or hyperconstriction/vasospasm of epicardial and microvascular
coronary arteries, in which gender difference also is involved due in part to estro-
gen hormonal state. The coronary circulation matches blood flow with oxygen
requirements by coordinating the resistances within microvasculature, where the
endothelium plays an important role by liberating several vasodilator substances.
The impaired endothelial regulation is involved in the pathogenesis of a wide variety
of cardiovascular diseases and therefore is an important therapeutic target. Acti-
vation of Rho-kinase pathway is involved in the pathogenesis of both endothelial

dysfunction and vascular smooth muscle hypercontraction and also should be an
important therapeutic target.
© 2008 Japanese College of Cardiology. Published by Elsevier Ireland Ltd. All rights
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Introduction

Ischemic heart disease is the leading cause of
morbidity and mortality in a worldwide epi-
demic. Myocardial ischemia is characterized by
an imbalance between myocardial oxygen supply
and demand, causing cardiac dysfunction, arrhyth-
mias, myocardial infarction, and sudden death.
Various clinical ischemic manifestations are caused
by obstruction of coronary blood flow by coro-
nary stenosis, thrombosis, and/or hyperconstriction
(vasospasm) of epicardial and microvascular coro-
nary arteries.

The coronary circulation matches blood flow
with myocardial oxygen demand by coordinating
the vascular resistances within microvasculature,
where the endothelium plays an important role
[1,2]. The endothelium also regulates the tone
of the underlying vascular smooth muscle cells
(VSMC) by releasing several endothelium-derived
relaxing factors, such as nitric oxide (NO), prosta-
cyclin, and endothelium-derived hyperpolarizing
factor (EDHF) [1,2]. The cells also release sev-
eral vasoconstricting factors, such as endothelin,
superoxide anions (O2

−), and thromboxane, under
certain pathological conditions [1,2]. Endothelial
dysfunction is regarded as a clinical syndrome
that exhibits systemic manifestation of atheroscle-
rosis and resultant myocardial ischemia, and is
associated with significant morbidity and mortality
[1,2].

In this review article, we will briefly review
the current concepts and future perspectives on
myocardial ischemia, with a special reference to
endothelial dysfunction, the Rho-kinase pathway,
and microvascular angina.

Myocardial ischemia and its assessment
Myocardial ischemia is defined as an imbalance
between myocardial oxygen demand and supply
[3]. In patients with ischemic heart disease, the
presence of myocardial ischemia is an important
determinant of prognosis [4] and several diagnostic
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ethods are currently used to detect myocardial
schemia in the clinical setting (Table 1).

Myocardial ischemia is clinically indicated by
ransient ST-segment electrocardiogram (ECG)
hanges on exercise or pharmacological stress
est and reversible perfusion defects on stress
yocardial scintigraphy. Metabolic changes, includ-

ng myocardial lactate production, coronary sinus
xygen desaturation, and pH reduction in the coro-
ary sinus, are also important objective proof of
yocardial ischemia. Myocardial release of lipid
eroxide products in the coronary circulation is a
arker of myocardial ischemia with a high sensitiv-

ty even for brief and/or mild myocardial ischemia
5]. Myocardial phosphorus-31 nuclear magnetic
esonance (31P NMR) spectroscopy is another sen-
itive method to identify myocardial ischemia
y measuring myocardial high-energy phosphates
hosphocreatine and adenosine triphosphate [6]. In
ddition to those ischemic metabolites, left ven-
ricular wall motion abnormalities, detected by
wo-dimensional stress echocardiography, is a use-
ul diagnostic method [7].

Measurement of coronary blood flow is use-
ul, but only provides information associated with
yocardial ischemia. Positron-emission tomogra-
hy (PET) allows the quantitative calculation of
oronary blood flow [8]. Magnetic resonance imag-
ng (MRI) with intravenous infusion of contrast
edia can also be used for the quantification of
yocardial blood flow [9]. Coronary flow reserve is

xpressed by the ratio of blood flow during max-
mal hyperemia (e.g. adenosine or papaverine) to
hat at rest. Coronary flow reserve can be mea-
ured invasively by the thermodilution or Doppler
echnique [10] and is considered abnormal when
t is less than 2.0. Trans-thoracic color Doppler
chocardiography enables noninvasive assessment
f coronary flow/velocity reserve, especially in
he territory of the left anterior descending coro-
ary artery [11,12]. Since flow resistance is mainly

etermined at the microvascular level, especially in
atients with angiographically normal arteries, the
eduction in coronary flow reserve reflects coronary
icrovascular dysfunction.
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Table 1 Diagnostic tools for myocardial ischemia and coronary blood flow

Myocardial ischemia
ECG Exercise stress test, Holter ECG
Scintigraphy Thallium-201, Technetium-99m
Metabolic markers Myocardial lactate production, coronary sinus O2 desaturation, pH reduction,

lipid peroxides
31P NMR High-energy phosphates phosphocreatine, adenosine triphosphate

Coronary blood flow
PET Oxygen-15, nitrogen-13, rubidium-82
MRI Perfusion and diffusion imaging
Coronary flow reserve Thermodilution method, Doppler method (intracoronary, transthoracic)
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ECG, electrocardiography; 31P NMR, myocardial phosphorus-31
MRI, magnetic resonance imaging.

elevance of microvascular dysfunction
n the pathogenesis of myocardial
schemia

ecently, it has become increasingly apparent that
linical manifestations of myocardial ischemia are
ssociated not only with epicardial coronary flow,
ut also with downstream microcirculatory flow
t the level of coronary microvessels [13,14].
he recognition of microvascular dysfunction could
ause a paradigm shift in clinical practice.
or instance, in patients with acute myocardial
nfarction, coronary microvascular dysfunction is
esponsible for the so-called ‘‘no-reflow’’ phe-
omenon, which is associated with a worse outcome
s compared with those without it [15,16]. There-
ore, in patients with acute myocardial infarction
ndergoing reperfusion therapy, careful attention
hould be paid not only to achieve epicardial
oronary artery patency, but also to improve
icrovascular perfusion status [17]. It is also noted

hat, even in the absence of epicardial coronary
rtery disease, myocardial perfusion abnormality
ould develop due to microvascular dysfunction in
atients with hypercholesterolemia, hypertension,
nd diabetes mellitus [18].

ndothelium-dependent modulation of
oronary tone

n pathological conditions, the balance between
ndothelium-dependent relaxation and direct VSMC
onstriction plays an important determinant role

n vascular tone [1,2]. Among the endothelium-
erived relaxing factors, NO was originally found in
he relaxation of isolated rabbit aorta in response
o acetylcholine (ACh) [19]. NO binds to guanylyl
yclase and increases cyclic guanosine monophos-
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lear magnetic resonance; PET, positron-emission tomography;

hate (cGMP), resulting in VSMC relaxation. When
he endothelium is removed, vasodilatation to ACh
s converted to vasoconstriction, reflecting the
ffect of muscarinic VSMC contraction. Importantly,
ndothelial cells also play an important role in mod-
lation of vascular tone of coronary microvessels.
owever, the response to physical forces (e.g. shear
tress) and paracrine mediators varies depending on
he vessel size [1,2,20]. Indeed, endothelial cells
re substantially involved in regulating both epicar-
ial and resistance coronary arteries.

ndothelium-derived NO

O is formed in endothelial cells from L-arginine to
itrulline by constitutive endothelial NO-synthase
eNOS) [21,22]. This reaction is controlled by cal-
ium and calmodulin and is dependent on molecular
xygen, nicotinamide adenine dinucleotide phos-
hate (NADH) and its reduced form (NADPH),
etrahydrobiopterin (BH4), adenosine diphosphate
ADP), flavin adenine dinucleotide (FAD), and flavin
ononucleotide (FMD). NO diffuses to VSMC and

auses relaxation mainly by stimulating soluble
uanylate cyclase, which catalyzes the produc-
ion of cGMP. NO mediates vascular relaxation of
elatively large, conduit arteries (i.e. aorta and epi-
ardial coronary arteries), which is enhanced by
yclical or pulsatile changes in coronary shear stress
Figs. 1 and 2) [23]. NO-mediated vasodilatation is
mpaired in patients with risk factors for coronary
rtery disease due to reduced NO production and/or
nhanced inactivation of NO [21,22].

rostacyclin
etabolism of arachidonic acid via cyclooxygenase
an produce prostacyclin, which causes relaxation
f certain VSMC by activating adenylate cyclase and
ncreasing the production of cyclic 3′,5′-adenosine
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Figure 1 Different roles of endothelial NO synthases system depending on vessel size. Endothelial NO synthases system
plays different roles depending on the vessel size, mainly NO generation in the conduit arteries and EDHF generation

nNO
de d
ced
in microvessels. eNOS, endothelial nitric oxide synthase;
oxide synthase; BH4, tetrahydrobiopterin; SOD, superoxi
factor; cGMP, cyclic guanosine monophosphate. (Reprodu
monophosphate (cAMP). In most resistance vessels,
the contribution of prostacyclin to endothelium-
dependent relaxation is relatively minor [2] (Fig. 1).
However, vasodilator prostaglandins are important

Figure 2 Different roles of endothelial NO synthases sys-
tem in the coronary circulation in vivo. Endothelial NO
synthases system plays an important role in modulation
of vascular tone in the epicardial coronary artery as NO-
generating system, whereas in coronary microcirculation,
it exerts several protective effects as EDHF-generating
system in collaboration with NO from the epicardial
coronary artery, including coronary autoregulation, pro-
tection against myocardial ischemia/reperfusion injury,
and metabolic coronary dilatation. PGI2, prostaglandin I2.
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S, neuronal nitric oxide synthase; iNOS, inducible nitric
ismutase; EDHF, endothelium-derived hyperpolarization
from Ref. [23] with permission.)

eterminants of coronary collateral vessel tone,
nd inhibition of cyclooxygenase reduces collateral
erfusion in dogs [24]. It is also important that
rostacyclin acts synergistically with NO to cause
asodilatation [25].

DHF

eletou and Vanhoutte [26] and Chen et al. [27]
ndependently demonstrated that diffusible sub-
tance released by the endothelium causes hyper-
olarization of underlying VSMC, thus proposing the
xistence of EDHF. Several substances/mechanisms
ave been proposed for the nature of EDHF,
ncluding epoxyeisosatrienoic acids (metabolites of
rachidonic P450 epoxygenase pathway) [28,29],

ions [30,31], and electrical communications
hrough myoendothelial gap junctions [32,33]. We
ave recently demonstrated that endothelium-
erived hydrogen peroxide (H2O2) is an EDHF
n mouse [34] and human mesenteric arteries
35], and in porcine [36] and canine coronary
icrovessels [37]. Furthermore, endothelial Cu,
n-superoxide disumutase (Cu,Zn-SOD) plays an

mportant role for the synthesis of EDHF/H2O2 [38].
DHF modulates vascular tone in small, resistance
rteries in vitro [39], and in human forearm micro-
irculation in vivo [40] (Fig. 1). As in the case with
O, EDHF-mediated relaxations also are attenu-
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ted by several atherosclerotic risk factors [41,42].
mportantly, we were able to demonstrate that
ndogenous EDHF/H2O2 plays important cardiopro-
ective roles in coronary microcirculation in vivo,
ncluding autoregulation [43], protection against
schemia/reperfusion [44], and metabolic coronary
ilatation (Fig. 2) [45]. We also have recently
emonstrated that in mice lacking all three NOS iso-
orms (triply NOSs−/−), EDHF-mediated responses
re absent in addition to NO-mediated responses
23] and that myocardial infarction occurs spon-
aneously associated with metabolic syndrome
anifestations [46], indicating that endothelial
OSs system plays a pivotal role in maintaining car-
iovascular homeostasis (Fig. 2).

linical implications of endothelial
ysfunction

he clinical implications of endothelial dysfunc-
ion are well established. Risk factors, such as
moking, aging, hypercholesterolemia, hyperten-
ion, hyperglycemia, and a family history, are
ll associated with an attenuation or loss of
ndothelium-dependent vasodilatation [2,47,48]. It
s also noted that markers of systemic inflammation
re associated with endothelial dysfunction, includ-
ng increased levels of C-reactive protein, and, as
ecently recognized, obesity and metabolic syn-
rome [49—51]. More importantly, recent studies
emonstrated that the severity of endothelial dys-
unction relates to cardiovascular events, including
ardiac death, myocardial infarction, and need for
evascularization [52,53] and that future events
ere poorly predicted by the degree of angio-
raphic coronary stenosis alone [54].

As a surrogate for coronary circulation with less
nvasive fashion, endothelial function of forearm
esistance vessels can be assessed by intra-arterial
nfusion of ACh. In their prospective follow-up
tudy with patients with coronary artery diseases,
eitzer et al. showed that forearm blood flow
esponse to intra-arterial ACh was an indepen-
ent predictor of cardiovascular events and that
concomitant infusion of ascorbic acid improved

ndothelial function, probably due to its anti-
xidant effects [55]. The study with high-resolution
ltrasound for the assessment of flow-mediated
asodilatation also demonstrated that endothelial

ysfunction can identify patients at increased risk
or cardiovascular events [56]. Thus, endothelial
ysfunction is an important systemic process that
ould be identified in vascular beds other than the
oronary or cerebral circulations.
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Studies on endothelial progenitor cells (EPCs)
ave demonstrated the novel aspect of the impor-
ant role of the endothelium. Indeed, the degree
f endothelial dysfunction is correlated with the
umber of EPCs [57] and the number of cir-
ulating EPCs also predicts the occurrence of
ardiovascular events and death from cardiovascu-
ar diseases [52,58]. Recently, it has been reported
hat patients with cardiac syndrome X (microvas-
ular angina) have a significantly increased number
f circulating EPCs, suggesting endothelial dysfunc-
ion as an underlying mechanism in this disorder
59].

icrovascular angina (cardiac syndrome
)

p to 20—30% of patients with angina-like chest
ain who undergo coronary angiography have no
ow-limiting epicardial coronary stenosis or spasm
60,61]. These patients are often defined as car-
iac syndrome X [62] or microvascular angina [63],
hich is an important clinical entity. The cause(s)
f this syndrome appears to be heterogeneous, in
hich coronary microvascular dysfunction appears

o be involved, reflecting an inadequate coronary
asodilator capacity and/or enhanced coronary
asoconstrictor responses [64].

In patients with microvascular angina, lim-
ted mircovascular vasodilator reserve to various
ypes of physiological and pharmacological stimuli
as been repeatedly observed, including exer-
ise, adenosine, dipryridamole, and atrial pacing
65—68]. Myocardial ischemia in those patients can
e detected by pacing-induced myocardial lactate
roduction [69] or regional myocardial perfusion
efects on single photon emission computed tomog-
aphy or PET imaging [70,71], for which inadequate
ncrease in coronary blood flow appears to be
nvolved.

As an underlying mechanism of the impaired
ircovascular vasodilator reserve in microvascu-

ar angina, several lines of evidence suggest the
nvolvement of blunted NO-dependent microvascu-
ar dilatation [68]. Indeed, long-term (4 weeks) oral
upplementation with L-arginine improved exercise
olerance in those patients with the disorder [72].
t has been recently suggested that an increased
ynthesis of asymmetric dimethylarginine, which is
nown to reduce the bioavailability of L-arginine

or NO synthase, contributes to the impaired NO
ctivity in those patients [73]. Although it is highly
ossible that impaired EDHF responses also are
nvolved in the pathogenesis of miscrovascular
ngina based on experimental findings [43—45], this
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Figure 3 Pathogenetic mechanisms of coronary microvascular dysfunction. The pathogenetic mechanisms of coronary
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microvascular dysfunction may be heterogeneous, and m
and VSMC hyperconstriction, where activated Rho-kinas
ET-1, endothelin-1.

issue remains to be confirmed in patients with the
disorder.

Several pathogenetic mechanisms and functional
abnormalities may be involved in the pathogene-
sis of coronary microvascular dysfunction (Fig. 3).
Increased plasma levels of endothelin-1 (ET-1) were
reported in patients with microvascular angina
[74—76]. Moreover, ET-1 levels have been reported
to increase in the coronary circulation in response
to atrial tachypacing in patients with the disorder
[77].

Microvascular spasm and Rho-kinase

Enhanced Rho-kinase activity plays an important
role in the pathogenesis of not only epicardial
coronary spasm, but also microvascular spasm
[78,79] (Fig. 3). Rho-kinase has been identified
as one of the effectors of the small GTP-
binding protein Rho. As a pharmacological inhibitor
of Rho-kinase, fasudil [80] and hydroxyfasudil
[81] have been developed. Intracoronary admin-

istration of fasudil or hydroxyfasudil markedly
inhibits epicardial coronary spasm in porcine mod-
els with various inflammatory stimuli in vivo
[82—85]. Indeed, the inhibition of Rho-kinase with
fasudil/hydroxyfasudil is associated with the sup-
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confounding factors cause both endothelial dysfunction
thway may play an important role. CV, cardiovascular;

ression of enhanced myosin light chain (MLC)
hosphorylations (both MLC monophosphorylations
nd diphosphorylations) at the spastic coronary seg-
ents in those models (Figs. 3 and 4) [81,83].

urthermore, activated Rho-kinase down-regulates
ndothelial NO synthase, causing endothelial dys-
unction [86]. Thus, Rho-kinase activation is the
entral mechanism for vascular dysfunction with
ndothelial dysfunction and VSMC hypercontraction
Fig. 3).

We have previously demonstrated that in
atients with rest angina, ischemic ECG changes
nd myocardial lactate production can be induced
y intracoronary ACh without large epicardial
tenosis or spasm (Fig. 5) [87]. Hasdai et al. also
emonstrated that coronary blood flow, when eval-
ated with the Doppler flow guidewire system, was
cutely decreased by intracoronary ACh without
arge epicardial coronary spasm [71]. Microvascular
pasm is the underlying cause of myocardial necro-
is in the cardiomyopathic Syrian hamster [88].
n patients with microvascular angina/spasm, pre-
reatment with intracoronary infusion of fasudil
yocardial ischemia (myocardial lactate produc-
ion), indicating that Rho-kinase activation plays an
mportant role in the pathogenesis of this disorder
89].
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Figure 4 Role of Rho/Rho-kinase signaling pathway in VSMC hyperconstriction. Contraction is induced by the increased
phosphorylation of MLC. The agonist-induced activation of G-protein-coupled receptors leads to the stimulation of
MLCK through an increase in intracellular Ca2+ concentration, and inhibition of MLCPh. Following stimulation by various
agonists, the Rho/Rho-kinase-mediated pathway is activated, resulting in the inhibition of MLCPh (through phosphory-
lation of its MBS), with a resultant increase in MLC phosphorylation. This Rho-kinase-mediated contraction of VSMC can
occur independently of intracellular Ca2+ levels and is known as ‘‘calcium sensitization’’. Rho-kinase can also increase
MLC phosphorylation and contractility by inactivating MLCPh after phosphorylation of CPI-17 or by direct phospho-
rylation of MLC. Ach, acetylcholine; Ang II, angiotensin II; Cat, catalytic subunit; ET-1, endothelin-1; IP3, inositol
(1,4,5)-trisphosphate; M20, 20-kDa subunit; NE, norepinephrine; PLC, phospholipase C; PDGF, platelet-derived growth
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otential involvement of estrogen in the
ender difference of microvascular
ysfunction

ince most patients (approximately 70%) with
icrovascular angina are women during or after
enopuase [90—93], it has been suggested that

strogen deficiency plays a pathogenic role in
his disorder [94,95]. During menopause, estrogen
evels are reduced to ∼10% of pre-menopausal lev-
ls [96]. Estrogen receptors are widely expressed
n the cardiovascular system [97] and modulate
ndothelial function [98]. Indeed, acute adminis-

ration of exogenous estradiol increases peripheral
lood flow [99] and improves endothelial func-
ion in menopausal women with microvascular
ngina [100,101]. Furthermore, it was demon-

f
s
i
d

ition is denoted by −. (Reproduced from Ref. [110] with

trated that short-term supplementation with
7�-estradiol reduced the frequency of angina
pisodes in post-menopausal women with the dis-
rder [102]. However, to date, there is no direct
vidence that estrogen supplementation causes
ustained improvement in coronary microvascular
esponses in those patients. These findings indicate
he complexity of gender-related cardiovascular
iseases and heterogeneity in the pathogenesis
f microvascular angina. For example, women
ith the disorder have higher levels of anxi-
ty or stress than those with coronary artery
isease or healthy age-matched women [103]. Post-
enopausal women also have many vascular risk
actors (e.g., diabetes mellitus, obesity, hyperten-
ion, mental stress), which cluster more frequently
n women than in men [104]. We have previously
emonstrated that estrogen inhibits and nicotine
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Figure 5 Clinical findings in a patient with microvascular angina. Representative coronary angiography and ECG
recordings (left) and group data comparison of the lactate extraction ratio during acetylcholine (ACh) infusion with
(n = 13, fasudil group) and without pre-treatment of fasudil (n = 5, saline group) (right). Intracoronary administration
of ACh caused no appreciable vasoconstriction of epicardial coronary arteries, whereas ECG changes and myocardial

ial is
ISDN

F
d

lactate production indicated the occurrence of myocard
ished the ACh-induced myocardial ischemia. F, fasudil;
permission.)

enhances the expression of Rho-kinase in human
coronary VSMC in vitro [105] and that Rho-kinase is
up-regulated in coronary VSMC in a porcine model

of mental stress in vivo [106]. These results may
explain, at least in part, why microvascular angina
is frequent in women who are post-menopausal
and/or under mental stress conditions.

I
t
p
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Figure 6 Possible indications of Rho-kinase inhibitors. Rho-
wide variety of cardiovascular diseases with various etiolog
other smooth muscle cell (SMC) disorders, and others. (Repro
chemia. Intracoronary pre-treatment with fasudil abol-
, isosorbide dinitrate. (Reproduced from Ref. [89] with

uture strategies to improve vascular
ysfunction
n this review, we introduced Rho-kinase inhibi-
ion and hormone (estrogen) replacement as a
otential therapy to improve vascular dysfunc-
ion in specific clinical conditions. Although there

kinase inhibitors may be useful for the treatment of a
ies, including VSMC hypercontraction, arteriosclerosis,
duced from Ref. [110] with permission.)
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oronary circulation and myocardial ischemia

s currently no gold standard treatment, the key
harmacological agents for endothelial dysfunction
nclude statins, eicosapentaenoic acid (EPA), and
ngiotensin-converting enzyme (ACE) inhibitors.
hese agents are well known to reduce car-
iac events with less direct anti-ischemic/anginal
ffects, underscoring the role of endothelial and
SMC functions in cardiovascular events.

While reduction in serum cholesterol levels
s likely the major mechanism by which statins
mprove endothelial function, in vitro studies sug-
est that so-called pleiotropic effects of statins may
lso be involved. Statins directly enhance expres-
ion, phsophorylation state, and activity of eNOS
107,108]. Angiotensin II increases NAD(P)H oxidase
ctivity, leading to increased production of reactive
xygen species and inactivation of NO. Angiotensin
I generation also causes increased production of
T-1 and oxygen free radicals [109]. ACE inhibitors
ot only inhibit the generation of angiotensin II,
ut also inhibit the breakdown of bradykinin, a
ubstance that stimulates NO/EDHF production. It
emains to be fully elucidated whether angiotensin
eceptor blockers also could improve vascular func-
ions and if so, what mechanisms are involved.

Accumulating evidence indicates that Rho-
inase inhibitors could cover the wide range of
harmacological effects of the above-mentioned
onventional cardiovascular drugs [110]. The phase
I trial in patients with stable angina pectoris has
emonstrated that long-term oral treatment with
asudil is effective in ameliorating exercise tol-
rance with adequate safety profiles [111,112].
ndeed, Rho-kinase inhibitors may be effective
n a wide range of diseases, including coronary
nd cerebral vasospasm, hypertension, pulmonary
ypertension, stroke, and heart failure (Fig. 6).

onclusions

bnormal endothelial and VSMC functions impair
oronary circulation and cause myocardial
schemia, not only in epicardial coronary arteries,
ut also in coronary microcirculation. Rho-kinase
athway is recognized as an important regulator of
ascular function at both epicardial and microvas-
ular coronary level and therefore emerges as

novel therapeutic target in cardiovascular
edicine.
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