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Abstract

The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating sub-
stances, including vasodilator prostaglandins, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). Since the first
report for the existence of EDHF, several substances/mechanisms have been proposed for the nature of EDHF, including epoxyeicosatrienoic
acids (metabolites of arachidonic P450 epoxygenase pathway), K ions, and electrical communications through myoendothelial gap junctions.
We have recently demonstrated that endothelium-derived hydrogen peroxide (H,O,) is an EDHF in mouse and human mesenteric arteries and
in porcine coronary microvessels. For the synthesis of H,O, as an EDHF, endothelial Cu,Zn-superoxide dismutase plays an important role in
mesenteric arteries of mice and humans. We also have demonstrated that EDHF-mediated responses are attenuated by several arteriosclerotic
risk factors, including diabetes mellitus and hyperlipidemia and their combination in particular. Recent studies have indicated that endothelium-
derived H,O, plays an important protective role in coronary autoregulation and myocardial ischemia/reperfusion injury in vivo. Indeed, our
H,O,/EDHF theory demonstrates that endothelium-derived H,O,, another reactive oxygen species in addition to NO, plays an important role
as aredox signaling molecule to cause vasodilatation as well as cardioprotection. In this review, we summarize our knowledge on H,O,/EDHF

regarding its identification, mechanisms of synthesis, and clinical implications.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Endothelium; Endothelium-derived hyperpolarizing factor; Membrane potential; Hydrogen peroxide

1. Introduction

The endothelium synthesizes and releases several vasodi-
lator substances, including vasodilator prostaglandins, nitric
oxide (NO), and endothelium-derived hyperpolarizing factor
(EDHF) [1,2]. Although the nature of EDHF has not been
fully elucidated, different EDHFs could exist depending on
species, blood vessels, and the size of blood vessels with dif-
ferent hyperpolarizing mechanisms involved [1,2]. Since the
first report for the existence of EDHF [3,4], several candi-
dates have been proposed for the nature of EDHF. Currently,
the major candidates for EDHF include epoxyeicosatrienoic
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acids (EETs), metabolites of arachidonic P450 epoxygenase
pathway [5,6], K ions [7,8], and electrical communication
through myoendothelial gap junctions [9,10] (Fig. ). We have
demonstrated that endothelium-derived hydrogen peroxide
(H,0,) is an EDHF in mouse [11] and human [12] mesen-
teric arteries and in porcine [13] and canine [14] coronary
microvessels (Fig. 1). Although not universally accepted, other
investigators also have reported that H,O, may be an EDHF
in the human coronary microvessels [15] and piglet pial arte-
rioles [16]. We also have recently demonstrated that endot-
helial Cu,Zn-superoxide dismutase (SOD) plays an impor-
tant role in the synthesis of H,O, as an EDHF synthase in
mouse [17] and human [ 18] mesenteric arteries. In this review,
we will summarize the latest knowledge on our H,O,/EDHF
theory, in terms of the identification, mechanisms of synthe-
sis and clinical implications.
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Fig. 1. Hypothesis on the nature of EDHF. Agonist stimulation and shear stress activate calcium—calmodulin complex and eNOS to produce NO, and also
activate phospholipase A, to release arachidonic acid. NO activates soluble guanylate cyclase, produces cGMP, and relaxes vascular smooth muscle. Cyclooxy-
genase (COX) produces prostacyclin (PGI,) from arachidonic acid and PGI, relaxes vascular smooth muscle in a cAMP-dependent manner. EDHF hyperpo-
larizes vascular smooth muscle by opening K channels and then elicits vasodilatation. Major candidates for the nature of EDHF include (1) epoxyeicosatrienoic
acids (EETs), metabolites of arachidonic P450 epoxygenase pathway, (2) K ions released from the endothelium through endothelial K, channels that activates
Na,K-ATPase of vascular smooth muscle, and (3) electrical communication through myoendothelial gap junctions. We also have identified that (4) endothelium-

derived H,O, is an EDHF, for which eNOS is an important source.

2. History

It was known that acetylcholine induces hyperpolariza-
tion of vascular smooth muscle of rabbit mesenteric arteries
[19] and that those hyperpolarizations are achieved in an
endothelium-dependent manner [20]. In 1988, Feletou and
Vanhoutte [3] and Chen et al. [4] independently demon-
strated that a diffusible substance released by the endothe-
lium causes hyperpolarization of underlying vascular smooth
muscle, thus proposing the existence of EDHF [3.4].

2.1. Nature of EDHF

NO mediates vascular relaxation of relatively large, con-
duit arteries (i.e. aorta and epicardial coronary arteries), while
EDHEF plays an important role in modulating vascular tone in
small, resistance arteries in vitro [21,22] and in human fore-
arm microcirculation in vivo [23]. EDHF causes vascular
relaxation by opening K channels and then hyperpolarizes
membrane of vascular smooth muscle [1,2,22]. EDHF is syn-
thesized not only upon stimulation by agonists but also by
shear stress [24] and its synthesis and release are stimulated
by increase in intracellular calcium in the endothelium [2,25],
although calcium-independent endothelial cell hyperpolar-
ization has also been reported [26]. Although NO and vasodi-
lator prostaglandins elicit hyperpolarization of underlying vas-
cular smooth muscle and NO may activate BK, channels in
some blood vessels [27], those responses to NO and vasodi-

lator prostaglandins are largely inhibited by the inhibition of
ATP-sensitive potassium (K,rp) channels [2]. Importantly,
substantial endothelium-dependent hyperpolarization exists
even after the blockade of the synthesis of NO and vasodila-
tor prostaglandins [2]. Thus, EDHF is apparently different
from vasodilator prostaglandins or NO, and EDHF-mediated
responses are classically defined as the endothelium-
dependent responses (relaxations and hyperpolarizations) after
the blockade of the synthesis of vasodilator prostaglandins
and NO [2,25].

2.2. Vasodilating effect of reactive oxygen species (ROS)

Both NO- and EDHF-mediated responses are attenuated
by various atherosclerotic risk factors [1,28], and the treat-
ment of those risk factors improve both NO- and EDHF-
mediated responses [1,29]. In various pathological situa-
tions, the production of ROS is increased while NO-mediated
relaxations are attenuated. EDHF-mediated relaxations are
temporarily enhanced to compensate the reduced NO-
mediated relaxations, however, the EDHF-mediated responses
also are subsequently reduced during the pathological pro-
cess [1]. The endothelial synthesis of NO via eNOS activa-
tion is calcium/calmodulin-dependent and a similar require-
ment for calcium/calmodulin has been described for the
EDHF-mediated response in the canine coronary artery [30].
These lines of evidence led us to hypothesize that EDHF is a
non-NO vasodilator substance (possibly ROS) mainly derived
from endothelial NO synthase (eNOS) [11].
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The endothelium produces several kinds of ROS, includ-
ing superoxide, hydrogen peroxide (H,O,), NO, peroxyni-
trite, and hydroxyl radicals [31,32]. ROS modulate vascular
tone by several mechanisms, including alteration in K chan-
nels conductance [33]. Superoxide itself attenuates
endothelium-dependent relaxations by scavenging NO [34],
while it also causes relaxations of cat cerebral arteries [35].
Peroxynitrite, a potent ROS produced by the reaction of NO
with superoxide, acts as a relaxing factor at its lower concen-
trations by activating sarco/endoplasmic reticulum Ca-ATPase
(SERCA) in rabbit carotid arteries [36] and by activating
c¢GMP pathway in canine coronary arteries [37]. Peroxyni-
trite also inhibits K, channels activity of vascular smooth
muscle [38]. H,O, exerts a direct hyperpolarizing effect on
vascular smooth muscle [39]. H,O, elicits hyperpolarization
of porcine coronary microvessels by opening large conduc-
tance K, channels [40] and relaxes bovine pulmonary arter-
ies by activating guanylate cyclase [41]. We examined each
ROS as a possible candidate for EDHF and demonstrated that
endothelium-derived H,O, is an EDHF [11].

2.3. Vasodilator effect of H,0,

H,0, has been reported to cause vasodilatation by several
mechanisms, including cGMP in bovine pulmonary arteries
[41], cyclooxygenase and cyclic AMP in canine cerebral arter-
ies [42], and phospholipase A, in porcine coronary microves-
sels [43]. Exogenous H,0O, also causes vasodilatation by open-
ing several K channels, including K,p channels in cat
cerebral [35] and rabbit mesenteric arteries [44] and K-, chan-
nels in rat cerebral arteries [45]. It has been reported that H,O,
is arelaxing factor distinct from EDHF in rabbit femoral arter-
ies [46] and that H,O, stimulates the release of a chemically
distinct EDHF in human submucosal intestinal microvessels
[47]. H,0, has also been reported to induce endothelium-
dependent vasodilation through COX-1-mediated release of
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PGE, and to directly relax smooth muscle by hyperpolariza-
tion through K, channel activation [48].

3. Identification of endothelium-derived H,O, as
an EDHF

We have demonstrated that EDHF-mediated relaxations
and hyperpolarizations are inhibited by catalase, a specific
inhibitor of H,O,, in mesenteric arteries of normal mice
(Fig. 2) and are significantly reduced in eNOS™" mice [11].
The specific inhibitory effect of catalase on H,O, was con-
firmed as it lost its inhibitory effect when inactivated by ami-
notriazole [11]. We also have demonstrated that exogenous
H,0, elicits relaxations and hyperpolarizations of vascular
smooth muscle of mouse mesenteric arteries by opening K,
channels and that acetylcholine causes endothelial H,O, pro-
duction in mouse mesenteric arteries [11]. Thus, we con-
firmed that H,O, fulfills the criteria for an EDHF in mouse
mesenteric arteries [11] (Fig. 2). We subsequently confirmed
that H,0O, is an EDHF in human mesenteric arteries [12] and
porcine [13] and canine [14] coronary microvessels (Fig. 2).
We were able to directly demonstrate endothelial H,O, pro-
duction in porcine coronary microvessels by using electron
spin resonance imaging [13]. The estimated concentration of
endothelium-derived H,O, is in micro molar order, which is
consistent to its concentrations to cause EDHF-mediated
responses [11,13]. Subsequently, other investigators reported
that endothelium-derived H,O, also is an EDHF in human
coronary microvessels [15] and piglet pial arterioles [16],
although other mechanisms for endothelium-dependent and
endothelium-independent relaxation in response to H,O, have
been reported [46-48]. We also have recently demonstrated
that endothelium-derived H,O, plays an important cardiopro-
tective role in coronary autoregulation [14] and myocardial
ischemia/reperfusion injury in dogs in vivo [49]. Thus, we
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Fig. 2. Endothelium-derived H,O, as an EDHF. EDHF-mediated relaxations in the presence of indomethacin and L-NNA are significantly attenuated by
pretreatment with catalase, a specific scavenger of H,O,, in mouse (A, N =5, Ref. [12]) and human (B, N =4, Ref. [13]) mesenteric arteries and in porcine
coronary microvessels (C, N = 5, Ref. [14]). I; indomethacin, L; L-NNA, ACh; acetylcholine, BK; bradykinin. * P < 0.05 ** P <0.01 (Modified from Refs.
[12—14] with permissions from American Society for Clinical Investigation (A), Elsevier (B) and American Heart Association, Inc. (C)).
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have confirmed that endothelium-derived H,O, acts as an
EDHEF, especially in microvessels [25], although the mecha-
nisms for the endothelial production of H,O,/EDHF remains
to be elucidated.

4. Mechanisms for endothelial synthesis of H,O,/EDHF

Several previous studies have addressed the mechanisms
for the synthesis of EDHF (Fig. 1). In porcine epicardial coro-
nary arteries, cytochrome P450 2C has been reported to act
as an EDHF synthase to synthesize EETs as an EDHF [5].
cAMP is reported to enhance gap junctional electrical com-
munication for EDHF-mediated responses [50]. It also is
reported that agonist stimulation opens endothelial K, chan-
nels with resultant release of K ion into myoendothelial space
as an EDHF [8].

In the endothelium, H,O, is synthesized by either sponta-
neous dismutation from superoxide or dismutation of super-
oxide by SOD [51]. In blood vessels, there are three SOD
isoforms that dismutate superoxide into H,O, [51] (Fig. 3).
Cu,Zn-SOD (SOD1) is located mainly in cytosol, nucleus,
and, to a lesser extent, in mitochondria [52], and dismutates
superoxide derived from eNOS and prolongs the half life of
NO [53] (Fig. 3). The Cu,Zn-SOD activity approximately
accounts for 50-80% of all SOD activities in vascular wall
[54]. Mn-SOD (SOD2) is located in mitochondria and dis-
mutates superoxide derived from respiratory chains [51]
(Fig. 3). Extracellular-SOD (ecSOD, SOD?3) is located extra-
cellularly and dismutates extracellular superoxide to protect
the diffusion of NO [55] (Fig. 3). As mentioned above, we
have demonstrated that eNOS is one of the major contributor
for the synthesis of H,O, as an EDHF [11]. eNOS produces
superoxide when it synthesizes NO from L-arginine, while
Cu,Zn-SOD dismutates those superoxide anions into H,O,
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[56]. Since heparin, which inhibits ecSOD activities, had no
effect on EDHF-mediate response, we excluded ecSOD as a
source of EDHF [17]. Mn-SOD is located in mitochondria
and does not seem to be involved in EDHF synthesis because
in mouse mesenteric arteries, endothelium-derived H,0, is
mainly derived from membrane, where Cu,Zn-SOD is located
[17] (Fig. 3). Therefore, we hypothesized that endothelial
Cu,Zn-SOD plays an important role for the synthesis of H,O,
as an EDHF synthase [17].

In Cu,Zn-SOD™ mice, EDHF-mediated relaxations and
hyperpolarizations are markedly attenuated in mesenteric
arteries and coronary microvessels compared with control
mice without alteration in vasodilator properties of vascular
smooth muscle [17]. In addition, supplement of SOD mimet-
ics, Tempol [57], restores EDHF-mediated responses [17].
These results may reflect the restoration of contribution of
H,0, as an EDHF and/or improved myoendothelial commu-
nication as a result of a reduction in ROS generation [58].
Similarly, in human mesenteric arteries, supplement of another
SOD mimetics, Tiron [59], enhances EDHF-mediated relax-
ations and hyperpolarizations [18]. H,O, also is an EDHF in
porcine coronary microvessels, where the EDHF-mediated
relaxations are enhanced by the pretreatment with Tiron [13].
In human isolated coronary arterioles, it was suggested that
H,O0, derived from mitochondria is involved in flow-mediated
dilatation [60].

Abnormalities of Cu,Zn-SOD are known to be involved in
various pathological conditions. In Cu,Zn-SOD™~ mice,
endothelium-dependent relaxations of carotid artery is attenu-
ated [54]. In those mice, the size of myocardial infarction
after coronary ligation is larger than in normal mice [61] and
cerebral injury after transient global ischemia is enhanced
[62]. When maintained on Cu-deficient diet, rats have reduced
Cu,Zn-SOD activity and NO-mediated relaxations [63]. By
contrast, overexpression of Cu,Zn-SOD protects cerebral

Confocal image

Fig. 3. SOD isoforms in the endothelium. In the endothelium, three SOD isoforms are known to be present, including Cu,Zn-SOD, Mn-SOD and ecSOD.
Cu,Zn-SOD is located mainly in cytosol and membrane, and is known to dismutate superoxide derived from eNOS and other oxidases and prolongs the half life
of NO. Mn-SOD is located in mitochondria and dismutates superoxide derived from respiratory chains. ecSOD is located extracellularly. H,O,, which is

dismutated from superoxide anions by Cu,Zn-SOD, acts as an EDHF.
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injury after transient ischemia [64]. Cu,Zn-SOD mutation is
observed in patients with familial amyotrophic lateral sclero-
sis and Parkinson’s disease [65]. Mn-SOD™~ mice are
embryo-lethal, and develop dilated cardiomyopathy and neu-
rodegeneration [66,67]. ecSOD is upregulated by exercise
training [68], and gene transfer of ecSOD reduces cerebral
vasospasm after subarachnoid hemorrhage [69] and decreases
arterial blood pressure in spontaneously hypertensive rats
(SHR) [70]. Thus, each SOD isoform has its important physi-
ological role. Our H,O,/EDHF theory has uncovered the new
and important role of endothelial Cu,Zn-SOD as an EDHF
synthase, in addition to its classical role to scavenge super-
oxide to prolong the half life of NO [17].

5. Clinical implications

5.1. Influence of atherosclerotic risk factors
on EDHF-mediated responses

Atherosclerotic risk factors, such as hypertension, diabe-
tes mellitus, hyperlipidemia, smoking, and aging, cause endot-
helial dysfunction [1]. Especially, NO-mediated relaxations
are prone to be attenuated by various risk factors [1]. Impor-
tantly, EDHF-mediated relaxations also are attenuated by vari-
ous risk factors [28,29]. Indeed, in mesenteric arteries of SHR
[71] and those of streptopzotocin-induced diabetic rats,
EDHF-mediated responses are attenuated [29,72]. EDHF-
mediated responses also are attenuated with aging and hyper-
lipidemia in human mesenteric arteries [28]. Acetylcholine-
induced relaxations and hyperpolarizations are attenuated in
mesenteric arteries of ovariectomized female rats [73]. On
the other hand, EDHF-mediated relaxations were enhanced

Endothelium

in cerebral circulation of ovariectomized animals [74,75]. In
apolipoprotein E-deficient (ApoE ") mice, EDHF-mediated
responses of mesenteric arteries are fairly preserved, whereas
in streptozotocin-induced diabetic mice, the responses are sig-
nificantly attenuated [76]. In streptozotocin-induced diabetic
ApoE™~ mice, EDHF-mediated responses are markedly
reduced while NO-mediated relaxations are rather enhanced
[76]. Thus, the combination of diabetes mellitus and hyper-
lipidemia significantly attenuates EDHF-mediated responses
[76] (Fig. 4). The detailed mechanisms for the reduced EDHF-
mediated responses, including eNOS and Cu,Zn-SOD func-
tion, remain to be examined in future studies.

5.2. Treatment of impaired EDHF-mediated responses

Several treatments are known to improve endothelial dys-
function, including impaired EDHF-mediated responses
[1,25,29]. Estrogen replacement therapy significantly im-
proves EDHF-mediated responses in ovariectomized female
rats [77]. Estrogen also has an acute enhancing effect on both
NO-mediated and EDHF-mediated responses of forearm cir-
culation of postmenopausal women [78]. In mesenteric arter-
ies of SHR rats, reduced EDHF-mediated responses are sig-
nificantly ameliorated by long-term administration of ACE
inhibitors [71]. Recently, we have demonstrated that this
enhancing effect of ACE inhibitors on EDHF-mediated
responses are indeed mediated by endothelium-derived H,O,
as an EDHF [79]. In diabetic rats, insulin therapy signifi-
cantly ameliorates EDHF-mediated responses [72]. Long-
term administration of eicosapentaenoic acid (EPA), a major
component of fish oil, improves both NO-mediated and
EDHF-mediated relaxations in humans [80,81]. Nifedipine,
a Ca”* channel blocker, improves EDHF-mediated responses

0, D Y
'02' m @

Hyperpolarization

Fig. 4. Identification, mechanisms of synthesis, and influence of risk factors of EDHF. Endothelium-derived H,O, dismutated from superoxide by Cu,Zn-SOD
acts as an EDHF in animals and humans. Atherosclerotic risk factors significantly attenuate EDHF-mediated responses. The mechanisms involved in the
reduced EDHF-mediated responses remain to be examined in detail in future studies.
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in porcine coronary arteries [82]. Exercise training also sig-
nificantly enhances both NO-mediated and EDHF-mediated
responses [83,84]. Thus, several drugs and life-style modifi-
cation (e.g. dietary EPA, exercise) improve EDHF-mediated
responses, contributing to the maintenance of vascular homeo-
stasis.

6. Conclusion

Endothelium-derived H,O, is an EDHF in animals and
humans, and endothelial Cu,Zn-SOD plays an important role
for the synthesis of H,O, as an EDHF (Fig. 4). Several risk
factors significantly attenuate EDHF-mediated responses,
while their combination markedly attenuate the responses
(Fig. 4). Several drugs (e.g. ACE inhibitors and estrogen) and
life-style modification (e.g. dietary EPA and exercise) effec-
tively improve EDHF-mediated responses (Fig. 4).
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