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Endothelial dysfunction and the resultant upregulation of 
adhesion molecules on inflammatory cells lead to the de-

velopment of vascular diseases.1–3 Inflammatory cells secrete 
cytokines/chemokines and growth factors, induce endothelial 
dysfunction, and promote the proliferation of vascular smooth 
muscle cells.4 In turn, activated endothelial cells (ECs) and 
vascular smooth muscle cells secrete multiple factors, which 
activate platelets and the coagulation-fibrinolysis system.5–7 
These factors also affect the vascular cells themselves in an 
autocrine/paracrine manner.8,9 During the secretion of vasoac-
tive factors, excessive and continuous activation of the Rho-
kinase system plays a crucial role in the production of reactive 
oxygen species.10–12 Additionally, excessive reactive oxygen 
species production (oxidative stress) causes endothelial dys-
function,13 enhances expression of adhesion molecules, and 
activates platelets and the coagulation system.8,14–24 Together 
with the authors’ previous works on cardiovascular diseases, 
many studies have recently provided evidence for the impor-
tance of platelets and the coagulation-fibrinolysis systems in 
the development of vascular diseases.25,26 The objective of this 
review is to highlight novel research about thrombosis in the 
field of vascular medicine.

Venous Thromboembolism
Venous thromboembolism (VTE) consists of deep 
vein thrombosis and pulmonary thromboembolism.27,28 
Pulmonary thromboembolism is a life-threatening manifes-
tation of venous thromboembolism with a high recurrence 
rate after cessation of anticoagulation therapy.29 Deep vein 
thrombosis is often associated with pulmonary thromboem-
bolism and hospitalized patients are at high risk of VTE.29 
There are several risk factors, including genetic conditions, 
obesity, drugs, pregnancy, aging, trauma, and malignancy.30 
In a mechanistic study, Stark et al28 demonstrated that pan-
creatic cancer cell–derived microvesicles induce thrombosis 
in mice. Moreover, they demonstrated that the tumor-derived 
microparticles express TF (tissue factor). 28 Another study 
suggested a novel pathway through which microvesicles 
induce thrombosis.31 Additionally, premenopausal women 
taking hormonal contraception are at high risk of VTE.32 

Predictors of VTE recurrence include advanced age, obe-
sity, male sex, active cancer, proximal deep vein thrombosis, 
elevated D-dimer levels after cessation of anticoagulation, 
antiphospholipid syndrome, antithrombin, protein C or pro-
tein S deficiency, pregnancy, and <3-month duration of an-
ticoagulant treatment.29 Endothelial damage, stasis, and 
blood hypercoagulability are important in the development 
of venous thrombosis.27 Proinflammatory cytokines/chemo-
kines play a crucial role in endothelial activation, damage, 
and adhesion molecule expression, promoting thrombus 
formation.33–35 The mechanisms for the development of ve-
nous or arterial thrombi are different.36 In particular, the 
development of venous thrombi is mainly attributable to 
venous stasis.37 Recently, Nosaka et al36 demonstrated that 
the absence of TNF-Rp55 (tumor necrosis factor receptor 
p55) delayed the resolution of venous thrombosis. In a mu-
rine venous thrombus model, they demonstrated that the 
TNFα-TNF-Rp55 axis could have an antithrombotic role 
in venous thrombosis by enhancing fibrinolysis and colla-
genolysis. Anticoagulant therapy is mainly used to prevent 
pulmonary thromboembolism and also to prevent the growth 
of the deep vein thrombosis, but it increases the incidence 
of bleeding complications.28,38 In contrast, Nosaka et al’s36 
study implied that the TNFα-TNF-Rp55 axis might be a 
novel target for thrombus resolution. However, in a recent 
issue of Arteriosclerosis, Thrombosis, and Vascular Biology, 
Lehmann et al39 demonstrated that platelets drive thrombus 
propagation in a hematocrit and glycoprotein VI–dependent 
manner in an in vitro venous thrombosis model. Importantly, 
those authors developed an in vitro experimental system that 
leverages the conventional advantages of microfluidic mod-
els using several key advances.39,40

Chronic Thromboembolic Pulmonary 
Hypertension

Although chronic thromboembolic pulmonary hypertension 
(CTEPH) and acute pulmonary embolism share some clinical 
manifestations, a limited proportion of patients with CTEPH 
have a history of acute pulmonary embolism.41 Moreover, the 
risk factors of the development of CTEPH are different from 
the traditional risk factors of acute pulmonary embolism. 
Endothelial dysfunction seems to be involved in the patho-
genesis of CTEPH.42 Additionally, patients with CTEPH show 
distal pulmonary artery remodeling, which is similar to pul-
monary arterial hypertension.43 Recently, we demonstrated 
that the TAFI (thrombin-activatable fibrinolysis inhibitor) 
is a novel biomarker for patients with CTEPH.42,44 CTEPH 
is one type of pulmonary hypertension categorized as group 
IV by the World Health Organization.45–48 During the past 
10 years, balloon pulmonary angioplasty has significantly 
improved the prognosis of CTEPH patients.49–52 However, the 
pathogenesis of CTEPH remains to be fully elucidated. Thus, 
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we have tried to elucidate the pathogenesis of this disorder. 
Importantly, plasma levels of TAFI (also known as carboxy-
peptidase B2, coded by CPB2) are significantly elevated in 
CTEPH patients.42,44 Additionally, we found that the minor 
allele CPB2 is present in those patients.44 TAFI is a glyco-
protein that is cleaved and activated by the interaction with 
thrombin and thrombomodulin in vascular beds. The TAFIa 
(activated TAFI) reduces plasmin activity and inhibits fibri-
nolysis (Figure). We found that the plasma levels of TAFI 
are positively correlated with the clot lysis time in CTEPH 
patients.44 Thus, we hypothesized that TAFI is directly in-
volved in the pathogenesis of thrombus formation in pulmo-
nary arteries, promoting the development of CTEPH. To test 
this hypothesis, we used 3 genetically modified mice models 
for TAFI, including systemic knockout, systemic overexpress-
ing, and liver-specific overexpressing mice, in combination 
with a bone marrow transplantation technique.42 Importantly, 
TAFI levels are markedly increased not only in the plasma 
but also in the pulmonary arteries of CTEPH patients. Plasma 
TAFI was locally activated by thrombomodulin in pulmo-
nary vascular beds, inhibiting fibrinolysis and promoting both 
thrombus formation and pulmonary hypertension in mice 
(Figure). Thus, we performed an in silico screening using the 
Life Science Knowledge Bank database and found several 
TAFIa inhibitors that ameliorated the development of pul-
monary hypertension in mice.42 Among them, we found that 
PPARα (peroxisome proliferator-activated receptor-α) ago-
nists significantly reduced liver TAFI synthesis and amelio-
rated pulmonary hypertension in mice and rats.42 Thus, TAFIa 
could be a novel and promising therapeutic target in CTEPH.

Roles of Platelets in Arterial Thrombosis
Arterial thrombosis is the underlying cause of heart attacks 
and strokes, which are the leading cause of morbidity and 
mortality worldwide.53–55 Platelets play a crucial role in the de-
velopment of arterial thrombosis at the sites of atherosclerotic 

plaque rupture.56 Binding of ADP and thromboxane A
2
 to their 

receptors (P2Y
1
 and P2Y

12
, and thromboxane receptor, respec-

tively) induce aggregation of platelets.57,58 In clinical settings, 
antiplatelet agents, such as clopidogrel, prasugrel, ticagre-
lor, and acetylsalicylic acid, are used to exert antithrombotic 
effects.59–61 Based on this background, Ni et al62 sought to elu-
cidate the effect of different doses of acetylsalicylic acid on 
the antithrombotic activity of clopidogrel in a mouse model 
of arterial thrombosis. Those researchers provided in vivo ev-
idence that acetylsalicylic acid potentiates the antithrombotic 
effect of clopidogrel when it is given at doses that do not im-
pair prostacyclin formation; if administered in doses that re-
duce prostacyclin formation, acetylsalicylic acid attenuated 
the antithrombotic effect of clopidogrel.

Platelets accumulate at the site of vascular injury and are 
involved in many physiological and pathophysiological pro-
cesses, including hemostasis and thrombosis.63,64 Recently, 
Abdelgawwad et al65 demonstrated that the transfusion of 
recombinant ADAMTS13 (a disintegrin and metalloprote-
ase with thrombospondin type 1 repeats 13)-loaded platelets 
are a potential therapeutic method for arterial thrombosis, 
particularly in association with congenital and acquired 
immune-mediated thrombotic thrombocytopenic purpura.66 
Those authors concluded that the transfusion of recombinant 
ADAMTS13-loaded platelets could be developed as a poten-
tial novel therapeutic strategy for arterial thrombosis. Next, 
Ral GTPases are important drivers of cell proliferation and me-
tastasis in multiple human cancers and regulate cell adhesion 
and membrane trafficking, including exocytosis.63,64 Recently, 
Wersäll et al67 demonstrated that these genes have overlapping 
and largely redundant roles in regulating P-selectin externali-
zation, suggesting a role in the regulation of α-granule secre-
tion. This may allow the development of targeted therapies 
for diseases of platelet-mediated inflammation. However, in 
a recent issue of Arteriosclerosis, Thrombosis, and Vascular 
Biology, Gotru et al68 demonstrated that TRPM7 (transient 

Figure. Increased plasma levels of activated TAFI (thrombin-activatable fibrinolysis inhibitor) and thrombosis in chronic thromboembolic pulmonary hyperten-
sion (CTEPH). The major findings of the present study: (1) plasma levels of TAFIa (activated TAFI) are markedly increased in CTEPH patients, (2) TAFI knock-
down attenuates the development of hypoxia-induced pulmonary hypertension (PH), (3) TAFI overexpression promotes the development of hypoxia-induced 
PH and thrombus formation, (4) 3-dimensional computed tomography shows multiple obstruction of pulmonary arteries in TAFI-overexpressing mice, (5) the 
plasma from patients with CTEPH enhances pulmonary artery endothelial cell (PAEC) permeability and pulmonary artery smooth muscle cell (PASMC) prolif-
eration, and (6) TAFIa inhibitor and PPARα (peroxisome proliferator-activated receptor-α) agonists reduces plasma TAFI and ameliorates the development of 
PH in mice and rats. TM indicates thrombomodulin; tPA, tissue-type plasminogen activator; and VE-cadherin, vascular endothelial cadherin.
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receptor potential cation channel, subfamily M, member 7) 
kinase controls calcium responses in arterial thrombosis and 
stroke in mice. Additionally, Schwertz et al69 provided the first 
evidence that platelets possess LINE-1 (long interspersed nu-
clear element-1)-encoded eRT (endogenous reverse transcrip-
tase) activity. The authors also demonstrated that platelet eRT 
activity regulates platelet hyperreactivity and thrombosis.69 
However, regulated secretion is an essential part of platelet 
function in hemostasis and thrombosis processes. Classically, 
platelets contain 3 types of secretory granules: α-granules, 
dense granules, and lysosomes. Several regulators of the 
fusion machinery in secretory granule exocytosis have been 
identified in platelets. Recently, Adam et al70 demonstrated 
that kinesin-1 is a new actor involved in platelet secretion and 
thrombus stability. Their study provided in vitro and in vivo 
evidence showing that the Kif5b (kinesin-1 heavy-chain iso-
form) is a new element in the mechanisms of α-granule and 
dense granule secretion.70 Adam et al70 further demonstrated 
that, independent of platelet activation, kinesin-1 links micro-
tubules to α-granules and dense granules via the molecular 
machinery composed of granule-associated Rab27 protein 
and Slp4 adaptor protein.

Roles of the von Willebrand Factor  
in Arterial Thrombosis

Thrombosis is a localized clotting of blood that disturbs ar-
terial or venous circulation, which is induced by alterations 
in the vascular wall, blood content, and blood flow.71 When 
subendothelial matrix proteins are exposed by arterial injury, 
the vWF (von Willebrand factor) plays a crucial role in hemo-
stasis via adhesion and spreading of platelets.37,72–76 vWF is a 
large multidomain adhesive glycoprotein that is synthesized 
by ECs and megakaryocytes and is stored in the endothelial 
Weibel-Palade bodies or platelet α-granules. vWF binds to 
platelet glycoproteins Ibα and αIIbβ3, and subendothelial 
collagens, which induces platelet aggregation. Platelets in-
teract with collagen through glycoprotein VI and α2β1, lead-
ing to platelet activation, spreading, and secretion, which in 
turn leads to thrombus formation.64 The molecular mecha-
nisms linking glycoprotein Ib/vWF interaction to platelet ac-
tivation remain to be fully characterized. In a recent issue in 
Arteriosclerosis, Thrombosis, and Vascular Biology, Laurent 
et al64 demonstrated the importance of downstream signal-
ing of integrin αIIbβ3 to permit stationary adhesion contact. 
Using both a genetic approach and pharmacological inhibi-
tors, the investigators provided new mechanistic insights into 
the role of phosphoinositide 3-kinase α in platelet activation 
and arterial thrombosis.64

Roles of ECs and TF in the Coagulation 
Cascade

The coagulation cascade is triggered by the binding of coagula-
tion factor VII to the TF or by the contact system activation via 
factor XII, followed by a common pathway that leads to fibrin 
formation.71 TF activates the extrinsic coagulation system and 
triggers both arterial and venous thrombosis. ECs form a bar-
rier that protects blood clotting factors from exposure to sub-
endothelial prothrombotic extracellular matrix components. 

Additionally, ECs secrete vasoactive factors that modulate 
platelet function, coagulation, fibrinolysis, and vascular func-
tion, which affect thrombotic formation.71 Many factors, in-
cluding nitric oxide, prostacyclin, vWF, and thrombomodulin, 
play crucial roles in the regulation of EC function and throm-
bosis formation. Thus, ECs have a pivotal role in modulating 
thrombosis and are an important target against thrombosis.71 
Superficial erosion of arterial plaques often causes throm-
bosis and induces acute coronary syndromes. On the surface 
of plaque rupture, platelets rapidly deposit at the site of sub-
endothelial exposure. Additionally, thrombin is generated by 
the coagulation cascade that is triggered by exposed subendo-
thelial TF. However, there are no therapies targeting superfi-
cial erosion. In a recent issue in Arteriosclerosis, Thrombosis, 
and Vascular Biology, Folco et al77 demonstrated that NETs 
(neutrophil extracellular traps) can amplify and propagate 
local processes that lead to endothelial injury by eliciting EC 
activation and increased adhesivity; moreover, NETs induce 
TF expression and accelerate plasma clotting by ECs. Thus, 
they demonstrated a novel mechanism by which NETs can 
aggravate thrombosis at the sites of superficial erosion of ath-
erosclerotic plaques.77 The TF pathway activates coagulation, 
which triggers platelet activation and induces acute coronary 
syndromes. Although dual antiplatelet therapy is effective in 
secondary prevention, combining antiplatelet therapy with 
low-dose aspirin and oral coagulation FXa (factor Xa) antago-
nist rivaroxaban has a synergistic benefit over monotherapy.78 
However, thrombin functions as a key driver of clotting by 
promoting platelet activation via PAR1 (protease-activated re-
ceptor-1) and PAR4 and by cleaving fibrinogen for fibrin po-
lymerization.79 Blood clotting on a procoagulant surface under 
flow involves complex reactions among the activating platelets 
and coagulating factors. In a recent study, Zhu et al79 measured 
the intrathrombus fibrin concentrations and revealed that fresh 
fibrinogen substrate can continuously enter the clot and is con-
verted to fibrin monomer and incorporated into fibrin.

Roles of PARs in Thrombosis
The 4 members of the PAR family (PAR1-4) are ubiquitously 
expressed in the vascular system and are activated by prote-
olytic cleavage of their N-terminal domains.78 PAR1, PAR3, 
and PAR4 are preferentially cleaved by the serine protease 
thrombin, which is an essential enzyme in hemostasis and 
thrombosis.80 PAR1 is classically activated by thrombin via 
proteolysis. The binding of thrombin to PAR1 can also result 
in transactivation of PAR2. This activation induces a major 
conformational change and transmembrane signaling to intra-
cellular G proteins.81 As a result, PAR1 signaling in the vas-
cular wall plays a crucial role in the development of intimal 
hyperplasia, endothelial injury–induced restenosis, and the 
endothelial barrier function.78 In contrast, thrombin is inac-
tivated by ATIII (antithrombin III) and heparin, resulting in 
the formation of the TAT (thrombin-ATIII) complex.78 In a 
recent issue of Arteriosclerosis, Thrombosis, and Vascular 
Biology, Rana et al81 demonstrated that MMP1 (matrix metal-
loprotease-1) can activate PAR1 via noncanonical signaling 
at a site distinct from thrombin. They showed that targeting 
the MMP1-PAR1 system with inhibitors of either MMP1 or 
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PAR1 significantly decreased the total atherosclerotic burden, 
macrophage infiltration, and plaque angiogenesis in mouse 
models of atherosclerosis.81 Moreover, the plasma levels of 
MMP1, but not those of thrombin, were significantly corre-
lated with the total coronary atherosclerotic burden in patients 
with coronary artery disease.81 Rana et al81 concluded that the 
PAR1 activator MMP1 promotes the development of ather-
osclerosis and that preventing PAR1 inflammatory signaling 
downstream of MMP1 may be effective for suppressing ath-
erosclerotic plaque formation and progression.81 In contrast, 
van den Eshof et al82 demonstrated that thrombin-induced 
EC phosphoregulation is mediated exclusively by PAR1, that 
thrombin and thrombin-tethered ligand peptide induce similar 
phosphoregulation, and that only canonical PAR1 cleavage 
by thrombin generates a tethered ligand that potently induces 
early signaling.

PAR2-dependent signaling also plays a crucial role 
in enhanced inflammation in the pathogenesis of autoim-
mune conditions.78,83 In a recent issue of Arteriosclerosis, 
Thrombosis, and Vascular Biology, Jones et al83 demonstrated 
that PAR2 deficiency is associated with attenuation of ather-
osclerosis and may reduce lesion progression by preventing 
monocyte infiltration. The authors confirmed the presence of 
PAR1 and PAR2 in both mouse and human atherosclerotic 
lesions.83 Importantly, they found that PAR2 deficiency, but 
not PAR1 deficiency, is associated with decreased early- and 
late-stage atherosclerosis.83 In contrast, the difference in PAR4 
signaling by ethnicity is partially explained by a single-nucle-
otide variant in PAR4. Thus, Tourdot et al59 sought to deter-
mine whether the difference in PAR4 signaling by this PAR4 
variant was due to biased Gq signaling and whether the differ-
ence in PAR4 activity resulted in resistance to traditional anti-
platelet intervention. Importantly, they demonstrated that the 
rate of Gα

13
 activation after PAR4 stimulation was enhanced 

in membranes expressing the PAR4-Thr120 variant relative 
to those expressing the PAR4-Ala120 variant.59 Additionally, 
activation of the Gα

13
 effector RhoA occurred earlier and was 

elevated in PAR4-stimulated platelets from patients express-
ing the PAR4-Thr120 variant compared with those express-
ing the PAR4-Ala120 variant.59 Moreover, RhoA-dependent 
platelet shape change was enhanced after PAR4 stimulation 
in platelets expressing the PAR4-Thr120 variant.59 Tourdot 
et al59 concluded that the signaling difference induced by the 
PAR4-120 variant results in an enhancement of both Gq and 
G

13
 activation and thrombus formation, resulting in potential 

resistance to traditional antiplatelet therapies targeting COX-
1 (cyclooxygenase-1) and the P2Y

12
 receptor. Additionally, 

Wilson et al80 demonstrated that PAR4 antagonism with 
BMS-986120 inhibits human ex vivo thrombus formation. 
BMS-986120 is a novel first-in-class oral PAR4 antagonist 
with potent and selective antiplatelet effects. Wilson et al80 
concluded that BMS-986120 is a highly selective and revers-
ible oral PAR4 antagonist that substantially reduces platelet-
rich thrombus formation under conditions of high shear stress. 
Thus, PAR4 antagonism seems to have major potential as a 
therapeutic antiplatelet strategy. Thrombin not only acts as a 
coagulation protease but also as an extremely potent agonist 
activating human platelets via proteolytic cleavage of PAR1 
and PAR4.84 Moreover, thrombin-induced platelet aggregation 

in arterial thrombotic diseases is refractory to aspirin and 
P2Y

12
 inhibitors.85 PAR1 activation leads to rapid and tran-

sient signaling, whereas PAR4 activation leads to prolonged 
signaling, which is required for stable thrombus formation.86 
To date, the majority of studies have focused on PAR1, lead-
ing to the development of 2 PAR1-specific antagonists, vora-
paxar and atopaxar. However, recent studies have started to 
shift toward the understanding of the contribution of PAR4 
to platelet activation.85 Indeed, it has been shown that PAR4-
selective inhibition has significant antithrombotic effects with 
a low bleeding tendency.87

Endothelial Glycocalyx and 
Glycosaminoglycans

EG (endothelial glycocalyx) covers the apical surface of 
ECs.88 EG is composed of proteoglycans, glycoproteins, gly-
colipids, and glycosaminoglycans, in particular, hyaluronan.88 
Hyaluronan creates a space between the blood and the endo-
thelium that allows controlling the vascular permeability, ad-
hesion of leukocytes and platelets, and endothelial response 
to blood flow. Glycosaminoglycans heparan sulfate, dermatan 
sulfate, and heparin are important anticoagulants that inhibit 
clot formation.89 Many proteins have been reported to bind 
and neutralize these glycosaminoglycans promoting clot for-
mation.89 Glycosaminoglycans have multiple functions and 
influence several physiological processes, including the con-
trol of coagulation. Additionally, glycosaminoglycans affect 
lipid metabolism, inflammation, cell adhesion, migration, in-
vasion, and differentiation.88 When coagulation needs to be 
activated, glycosaminoglycans are neutralized to enable clot 
formation. In contrast, FGF (fibroblast growth factor) need 
to bind to endothelial heparin sulfate to function. Similar to 
FGF, chemokine and cytokine activities are closely related to 
their ability to bind endothelial glycosaminoglycans. Indeed, 
glycosaminoglycans can modulate the inflammatory response 
by binding cytokines and preventing them from binding to cell 
surface receptors. Cleavage of glycosaminoglycans releases 
cytokines and increases EC activation. It is known that platelet 
factor 4, an important glycosaminoglycan-neutralizing pro-
tein, neutralizes the negative charge of glycosaminoglycans 
at the surface of ECs.90 This allows platelets to associate with 
ECs and then enhance thrombus formation.

Conclusions
Whereas many points remain to be clarified, recent basic re-
search has elucidated the precise mechanisms for the develop-
ment of thrombotic diseases. Based on this scientific progress, 
there are several ongoing clinical trials that may provide novel 
therapies for thrombotic diseases. Nowadays, translational 
research has become increasingly important. Based on the 
progress in basic research, it is expected that new therapeutic 
strategies will become available in the near future.
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