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muscle cells (VSMC) plays an important role in regulating cardio�

vascular homeostasis. Endothelial cells synthesize and release

endothelium�derived relaxing factors (EDRFs), including vasodilator

prostaglandins, nitric oxide (NO), and endothelium�dependent

hyperpolarization (EDH) factors. Importantly, the contribution of

EDRFs to endothelium�dependent vasodilatation markedly varies in

a vessel size�dependent manner; NO mainly mediates vasodilatation

of relatively large vessels, while EDH factors in small resistance

vessels. We have previously identified that endothelium�derived

hydrogen peroxide (H2O2) is an EDH factor especially in micro�

circulation. Several lines of evidence indicate the importance of

the physiological balance between NO and H2O2/EDH factor. Rho�

kinase was identified as the effectors of the small GTP�binding

protein, RhoA. Both endothelial NO production and NO�mediated

signaling in VSMC are targets and effectors of the RhoA/Rho�kinase

pathway. In endothelial cells, the RhoA/Rho�kinase pathway nega�

tively regulates NO production. On the contrary, the pathway

enhances VSMC contraction with resultant occurrence of coronary

artery spasm and promotes the development of oxidative stress

and vascular remodeling. In this review, I will briefly summarize

the current knowledge on the regulatory roles of endothelium�

derived relaxing factors, with special references to NO and H2O2/

EDH factor, in relation to Rho�kinase, in cardiovascular health and

disease.
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IntroductionThe endothelium plays important roles in modulating the
tonus of underlying vascular smooth muscle cells (VSMC)

by synthesizing and releasing endothelium-derived relaxing factors
(EDRFs), including vasodilator prostaglandins (e.g., prostacyclin),
nitric oxide (NO), and endothelium-dependent hyperpolarization
(EDH) factors (Fig. 1).(1,2) Since the discovery of endothelium-
dependent hyperpolarization in 1988,(3,4) several candidates have
been proposed as the nature of EDH factors. Importantly, the con-
tribution of EDRFs to endothelium-dependent vasodilatations
markedly varies as a function of vessel size; endothelium-derived
NO mainly mediates vasodilatation of relatively large, conduit
vessels, while EDH factors that of resistance arteries (Fig. 2).(1,5)

This vessel-size-dependent contribution of NO and EDH factors
is well preserved among species, from rodents to humans, in order
to maintain a physiological balance between them.(1,2) Endothelial
dysfunction is characterized by impaired production and/or action
of EDRFs, reflecting the hallmark and potential predictor for
atherosclerotic cardiovascular diseases.(2) Various risk factors
(e.g., smoking, diabetes mellitus, hypertension, and dyslipidemia)
cause endothelial dysfunction, initiating the step toward athero-

sclerotic cardiovascular diseases.(1,2)

Rho-kinases (Rho-kinase a/ROKa/ROCK2 and Rho-kinase b/
ROKb/ROCK1) were identified as the effector of the small GTP-
binding protein, RhoA, independently by 3 research groups in
1996.(6–8) Hereafter, both Rho-kinase a/ROKa/ROCK2 and Rho-
kinase b/ROKb/ ROCK1 are collectively referred to as Rho-
kinase.(1) Accumulating evidence indicates that Rho-kinase plays
important roles in the pathogenesis of oxidative stress and cardio-
vascular diseases.(1,9,10)

In this review, I will briefly summarize the current knowledge
on the two endothelium-derived relaxing factors, NO and H2O2/
EDH factor, and Rho-kinase in cardiovascular health and disease.

Physiological Balance between NO and EDH

EDH factors cause hyperpolarization and subsequent relaxation
of underlying VSMC with resultant vasodilatation of small resis-
tance vessels, finely tuning blood pressure and tissue perfusion
instantaneously in response to diverse physiological demands.(1,2)

As mentioned above, endothelium-derived NO and EDH factors
share the important roles in modulating vascular tonus in a distinct
vessel size-dependent manner (Fig. 2).(1,5) In this scope, vasodilator
prostaglandins play a small but constant role, independent of
vessel size in general. In contrast, NO predominantly regulates the
tonus of relatively large conduit vessels (e.g., aorta and epicardial
coronary arteries), while the importance of EDH factors increases
as vessel size decreases (e.g., small mesenteric arteries and
coronary microvessels).(1,5) Thus, EDH-mediated vasodilatation is
especially important in microcirculation, where blood pressure
and tissue perfusion are critically determined. Moreover, such
redundant mechanisms in endothelium-dependent vasodilatations
are advantageous for maintaining cardiovascular homeostasis
with compensatory interactions.(11–14) Indeed, in various patho-
logical conditions with atherosclerotic risk factors, NO-mediated
relaxations are easily impaired, where EDH-mediated responses
are fairly preserved or even enhanced to serve as a compensatory
vasodilator system.(11–14) Multiple mechanisms appear to be involved
in the enhanced EDH-mediated responses in small resistance
vessels as discussed later.(15)

Endothelium�derived H2O2 as an EDH Factor

Identification of endothelium�derived H2O2 as an EDH
factor. Several EDH factors appear to exist depending on
the vascular bed, vessel size, and species studied, including
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epoxyeicosatrienoic acids, metabolites of arachidonic P450
epoxygenase pathway,(16,17) electrical communication through gap
junctions,(18) K+ ions,(19) and as we demonstrated in 2000, endo-
thelium-derived hydrogen peroxide (H2O2) (Fig. 1).(20,21) Indeed,
endothelium-derived H2O2 at physiologically low concentrations
is one of the major EDH factors in mouse and human small
mesenteric arteries and human, porcine, and canine coronary
arteries.(20–27) Thus, endothelium-derived H2O2 attracts increasing
attention in view of its emerging relevance for cardiovascular
disease.(1,2,20–29) In the clinical settings, it has been repeatedly
reported that chronic nitrate therapy has neutral or even harmful
effects in patients with cardiovascular diseases and that anti-
oxidant treatments are also ineffective to prevent cardiovascular
events.(30–33) These lines of evidence indicate the importance of
the physiological balance between NO and EDH factors in
maintaining cardiovascular homeostasis and in curing diseases
associated with endothelial dysfunction.(1,11)

H2O2 is an important physiological signaling molecule serving
especially in microcirculation, for blood pressure, coronary micro-
circulation, and metabolic functions.(25–27,34–36) Reactive oxygen
species (ROS) have been considered to be harmful in general
because of their highly-damaging effects on cells and tissues and
pathological implications in various cardiovascular diseases,
including atherosclerosis, hypertension, heart failure, and coro-
nary artery disease.(34–37) However, as exemplified by endothelium-
derived H2O2/EDH factor, a growing evidence has demonstrated

that physiological levels of ROS can serve as crucial signaling
molecules in health and disease.(38) The following 4 sets of early
observations led us to hypothesize that a putative EDH factor
might be a non-NO vasodilator substance (likely ROS) derived
from endothelial NO synthases (NOSs) system. First, both NO-
mediated and EDH-mediated responses are susceptible to vascular
injuries caused by various atherosclerotic factors, and conversely,
the treatment of those risk factors can restore both responses.(1,2,39)

Second, it was previously demonstrated that endothelium-derived
free radicals exert relaxing or contracting effects in an endothelium-
dependent manner in canine coronary arteries.(40) Third, both endo-
thelial NOS (eNOS)-derived NO generation and EDH-mediated
responses are dependent on calcium/calmodulin.(41) Fourth, a
simple molecule (like NO) rather than complex substances may
be favorable in instantaneously modulating vascular tone in
response to physiological demands in the body. Finally, in 2000,
we were able to demonstrate for the first time that eNOS-derived
H2O2 is an EDH factor in mouse mesenteric arteries, using eNOS-
knockout (KO) mice.(20) Subsequently, this was also confirmed
in other blood vessels, including human mesenteric and coronary
arteries, porcine and canine coronary arteries, and piglet pial
arterioles.(21–29,39,42,43)

Endothelial source of H2O2/EDH factor.  Endothelium-derived 
H2O2 could be generated by the dismutation of superoxide anions,
which are derived from various sources in the endothelium,
including eNOS, NADPH oxidase, mitochondrial electron transport

Fig. 1. Endothelium�derived relaxing factors. Endothelial cells synthesize and release nitric oxide and endothelium�dependent hyperpolarization
(EDH) factors. Endothelium�derived H2O2 is one of the major EDH factors. AMPKa1, a1�subunit of AMP�activated protein kinase; CaM, calmodulin;
CaMKKb, Ca2+/CaM�dependent protein kinase b; cAMP, cyclic AMP; cGMP, cyclic GMP; COX, cyclooxygenase; EETs, epoxyeicosatrienoic acids; eNOS,
endothelial NO synthase; EOX, epoxygenase; HETEs, hydroxyeicosatetraenoic acids; H2O2, hydrogen peroxide; IP3, inositol trisphosphate; KCa,
calcium�activated potassium channel; KIR, inwardly rectifying potassium channel; LOX, lipoxygenase; LTs, leukotrienes; NO, nitric oxide; ONOO-,
peroxynitrite; PGI2, prostacyclin; PKG1a, 1a�subunit of protein kinase G; PLA2, phospholipase A2; PLC, phospholipase C; SOD, superoxide dismutase.
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chain, xanthine oxidase, and lipoxygenase (Fig. 1).(44) There are 3
NOS isoforms; eNOS (NOS3), neuronal NOS (nNOS, NOS1),
and inducible NOS (iNOS, NOS2). Using singly-eNOS-KO,
doubly-n/eNOS-KO, and triply-n/i/eNOS-KO mice, we have
previously demonstrated that EDH-mediated relaxations are
progressively reduced as the number of deleted NOS genes
increased.(45) Collectively, these results indicate that the 3 NOSs
isoforms compensate each other to maintain H2O2-mediated EDH-
type relaxations (Fig. 2). Thus, in large conduit vessels, NOSs
mainly serve as a NO-generating system to cause soluble guanylate
cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-mediated
vasodilatation, whereas in small resistance vessels, they act as a
superoxide-generating system to evoke H2O2/EDH factor-mediated
responses (Fig. 2).(45–47) In addition, among superoxide dismutase
(SOD) isoforms, Cu,Zn-SOD plays a key role in the synthesis of
H2O2/EDH factor in the endothelium (Fig. 1).(48) Indeed, eNOS
produces superoxide anions under physiological conditions when
synthesizing NO from L-arginine and oxygen, while Cu,Zn-SOD
dismutates those superoxide anions into H2O2. Moreover, Cu,Zn-
SOD-KO mice show markedly impaired EDH-mediated hyper-
polarizations and relaxations in mesenteric arteries and coronary
circulation without VSMC dysfunction.(48) Importantly, super-
oxide anions relevant to H2O2/EDH factor are not derived from
pathologically uncoupled eNOS because H2O2-mediated EDH-
type responses are not suppressed by NOS inhibitors and upregu-
lation of eNOS co-factor tetrahydrobiopterin had no effects on
the responses.(44) Other sources of superoxide anions in H2O2-
mediated vasodilatation, such as mitochondrial respiratory chain
and NADPH oxidase, have also been identified in human coronary
arterioles.(49,50)

A recent study has demonstrated the potential regulatory mecha-
nisms underlying the physiologically relevant H2O2 in the endo-

thelium.(51,52) Indeed, local subcellular concentrations at micro-
domains rather than net cellular concentrations may be critical to
determine whether the effects of ROS can be detrimental or bene-
ficial for cellular signaling and co-localization of the source and
target of H2O2 may help to avoid non-specific harmful oxida-
tions.(51,52) One good example of this notion is that only a minor
increase in ROS caused by caveolar localization of NADPH
oxidase-1 in hypertension is enough to interfere with NO-mediated
signaling.(53)

Mode of action of H2O2/EDH factor. Oxidative modification
of cGMP-dependent protein kinase G (PKG) is a central mecha-
nism by which H2O2 induces hyperpolarization and relaxation of
underlying VSMC,(43,54) although other modes of action of H2O2/
EDH factor have also been proposed (Fig. 1).(55) Briefly, H2O2

induces dimerization of 1a-isoforms of PKG (PKG1a) through an
interprotein disulfide bond formation between them to enhance the
kinase activity through phosphorylation. The activated PKG1a
subsequently stimulates K+ channels with resultant hyperpolariza-
tion and vasodilatation in mouse mesenteric arteries and human
coronary arterioles.(43,54,56) H2O2 also promotes the translocation
of PKG1a from cytoplasm to membrane in human and porcine
coronary arteries.(54,57) Such reversible post-translational modifica-
tion, like phosphorylation, may be favorable for the fine control of
vascular tone in response to demand fluctuation in vivo.(58)

Mechanisms for the dominant role of H2O2/EDH factor in
microcirculation. Accumulating evidence has provided the
mechanistic insights into vessel size-dependent contribution of
NO and H2O2/EDH factor (Fig. 3). Previous studies have shown
that pretreatment with NO donors attenuates EDH-mediated
vasodilatation in porcine coronary arteries in vitro and canine
coronary microcirculation in vivo and that NO exerts a negative-
feedback effect on endothelium-dependent vasodilatation through

Fig. 2. Vessel size�dependent roles of endothelial nitric oxide synthases system. The contribution of EDRFs to endothelium�dependent vasodilata�
tions markedly varies as a function of vessel size; endothelium�derived NO mainly mediates vasodilatation of relatively large, conduit vessels, while
EDH factors that of resistance arteries. BH4, tetrahydrobiopterin; cGMP, cyclic GMP; Cu,Zn�SOD, copper�zinc superoxide dismutase; eNOS, endothelial
nitric oxide synthase; H2O2, hydrogen peroxide; iNOS, inducible NOS; I/R, ischemia�reperfusion; KCa, calcium�activated potassium channel; nNOS,
neuronal NOS; NO, nitric oxide; NOSs, nitric oxide synthases; VSMC, vascular smooth muscle cells.
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cGMP-mediated desensitization in canine coronary arteries
ex vivo.(59–61) Multiple mechanisms have been proposed for the
dominant role of H2O2/EDH factor in microcirculation (Fig. 3).
Among them, cGMP-dependent activation of PKG desensitizes
VSMC to H2O2 by inhibiting H2O2-induced PKG1a dimerization,
a central mechanism of H2O2/EDH factor-mediated vasodilatation,
and in turn, pharmacological inhibition of sGC sensitizes conduit
vessels, but not resistance vessels, to H2O2-induced vasodilatation
in mice.(62) Furthermore, mouse resistance vessels have less NO
production and less antioxidant capacity, predisposing PKG1a to
be more sensitive to H2O2-induced activation.(62,63) Other key
players for the dominant role of H2O2/EDH factor in resistance
vessels include endothelial caveolin-1 (a negative regulator of
eNOS) and a1-subunit of endothelial AMP-activated protein kinase
(Fig. 3).(63,64) In contrast, phosphorylation at Tyr657 of eNOS in
response to H2O2 leads to reduction in eNOS activity with resul-
tant reduced NO production.(65) Taken together, these mechanisms
are in line with the widely accepted notion that EDH-mediated
responses function as a compensatory vasodilator system when
NO-mediated relaxations are compromised.(1,2,11) It is important to

maintain the vessel size-dependent contribution of NO and EDH
factors because excessive endothelial NO production by either
caveolin-1 deficiency or eNOS overexpression disrupts the physio-
logical balance between NO and H2O2/EDH factors in endo-
thelium-dependent vasodilatation, resulting in impaired cardio-
vascular homeostasis associated with enhanced nitrative stress
in mice in vivo.(11,63,66)

Clinical significance of H2O2/EDH factor. Endothelium-
derived H2O2 plays an important role in blood pressure regulation.
Pharmacological inhibition of catalase, which decomposes H2O2

into O2 and H2O2, decreases arterial blood pressure associated
with enhanced PKG1a dimerization in vivo.(57) Moreover, the
‘redox-dead’ knock-in mice of Cys42Ser PKG1a, whose mutant
PKG1a is unable to be activated by H2O2-induced dimerization
due to the deletion in its redox-sensitive sulfur, exhibit markedly
impaired EDH-mediated hyperpolarization and relaxation in resis-
tance arteries associated with systemic arterial hypertension.(35)

Furthermore, H2O2 has potent vasodilator properties in coronary
resistance vessels and plays important roles in coronary autoregu-
lation,(25) cardioprotection against myocardial ischemia/reperfusion

Fig. 3. Molecular mechanisms of enhanced H2O2/EDH factor�mediated responses in microvesseles. Multiple mechanisms are involved in the
enhanced EDH�mediated responses in microvessels. AMPKa1, a1�subunit of AMP�activated protein kinase; CaM, calmodulin; CaMKKb, Ca2+/CaM�
dependent protein kinase b; CaMK2, Ca2+/CaM dependent protein kinase II; cGMP, cyclic GMP; Cu,Zn�SOD, copper�zinc superoxide dismutase; EDH,
endothelium�dependent hyperpolarization; H2O2, hydrogen peroxide; IP3, inositol trisphosphate; I/R, ischemia�reperfusion; KCa, calcium�activated
potassium channel; NO, nitric oxide; NOSs, NO synthases; P, phosphorylation; PKG1a, 1a�subunit of protein kinase G; PLC, phospholipase C; sGC,
soluble guanylate cyclase; TRPV4, transient receptor potential vanilloid 4, VSMC; vascular smooth muscle cells.
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injury,(26) and tachycardia-induced metabolic coronary vasodilata-
tions(27) in dogs in vivo. Since coronary vascular resistance is mainly
determined by the prearterioles and arterioles,(67) where the effect
of EDH-mediated relaxations outweigh that of NO-mediated ones,
it is important to maintain the vessel size-dependent contribution of
NO and EDH factors for the treatment of coronary artery disease
(CAD). Thus, endothelium-derived H2O2 functions as an important
endogenous second messenger at its physiological low concentra-
tions to elicit EDH-meditated vasodilatations and to maintain
vascular homeostasis in the coronary circulation.(1,11,21,39,46,47)

Clinical Implications for Endothelial Functions (H2O2/EDH)

Endothelial function tests. Assessment of endothelial func-
tions has been acknowledged as a useful surrogate marker of
cardiovascular events in many clinical settings, although it is
challenging to accurately assess EDH-mediated responses, espe-
cially in humans in vivo, because the contribution of EDH factors
could be determined only after the blockade of both vasodilator
prostaglandins and NO by its definition.(1,2) EDH-mediated vaso-
dilatation can be enhanced to compensate for impaired NO-mediated
responses in the early stage of atherosclerotic conditions.(13,21)

However, after prolonged exposure to atherosclerotic risk factors,
this compensatory role of EDH-mediated responses is finally
disrupted to cause metabolic disturbance.(68) Indeed, endothelial
dysfunction, as reflected by impaired flow-mediated dilatation
(FMD) of the brachial artery or digital reactive hyperemia index
(RHI) in peripheral arterial tonometry, is associated with future
cardiovascular events in patients with coronary artery disease and
one SD decrease in FMD or RHI is associated with doubling of
cardiovascular event risk.(69)

H2O2/EDH factor and coronary artery disease. Previous 
studies focused structural and functional abnormalities of
“epicardial” coronary arteries in CAD patients because they are
easily visible on coronary angiography and amenable to procedural
intervention (e.g., percutaneous coronary intervention). However,
those of coronary microvasculature, referred to as coronary micro-
vascular dysfunction (CMD), have recently attracted increasing
attention due to their unexpectedly high prevalence and significant
prognostic impacts in this population.(70) The etiologies of CMD
still remain largely unknown and may be heterogeneous, for which
several structural (e.g., vascular remodeling, vascular rarefaction,
and extramural compression) and functional abnormalities (e.g.,
endothelial dysfunction, VSMC dysfunction, and microvascular
spasm) have been demonstrated.(67,71) Given that H2O2 has potent
vasodilator properties in coronary resistance vessels where EDH
factors play relatively dominant roles than NO, it is highly possible
that impaired H2O2/EDH factor-mediated vasodilatation is involved
in the pathogenesis of CMD. Indeed, in eNOS-KO mice, CMD
caused by reduced H2O2/EDH factor is substantially involved in
the pathogenesis of cardiac diastolic dysfunction.(66) Thus, for the
treatment of CAD, it is essential to maintain the physiological
balance between NO and H2O2/EDH factor, which notion is
supported by the fact that significant negative interactions exist
between NO and several EDH factors and that nitrates as NO
donors are not beneficial for the treatment of CMD.(11,63,66)

Lessons from clinical trials targeting NO: it is a time to
change our mind. Although the role of CMD has been impli-
cated in patients with obstructive CAD who underwent successful
revascularization,(72) the effects of isosorbide-5-mononitrate were
unexpectedly neutral in patients with microvascular ischemia
despite successful percutaneous coronary intervention.(33) Besides
CAD, recent studies highlighted the high prevalence and patho-
physiological relevance of CMD in patients with heart failure with
preserved ejection fraction (HFpEF).(73–75) Contrary to the premise
that enhancing NO-mediated vasodilatation should exert beneficial
effects on patients with HFpEF, the results of systemic and long-
term administrations of inorganic nitrite in those patients were

disappointing or even harmful in randomized clinical trials.(76) In a
recent animal study, genetic ablation of endothelial arginase-1, an
inhibitor of NO production, did not improve vasomotor function
of resistance arteries in diabetic mice.(77) Similarly, antioxidant
therapies for patients with cardiovascular diseases had no
benefits.(78) These lines of evidence indicate that we need to
change our mind to avoid excessive NO supplementation and to
pay more attention to the potential harmful effects of non-specific
elimination of ROS by antioxidants.(79,80) Multiple mechanisms
may be involved in the failure of antioxidant therapies, including
inadequate dose, short treatment duration, and pro-oxidant
effects of antioxidants upon supplementation and thus so-called
“antioxidant paradox” in clinical trials requires further investiga-
tions.(81) An alternative explanation for such “paradox” of NO-
targeted therapy may be nitrosative stress induced by an excessive
amount of NO,(63,81) again suggesting the importance of physio-
logical balance between NO and EDH factors in endothelium-
dependent vasodilatation. Further research is warranted to address
how to modulate CMD to improve clinical outcomes of patients
with cardiovascular diseases.

Roles of Rho�kinase in the Cardiovascular System

Molecular regulation of Rho�kinase. Rho-kinase (ROCKs)
is an important downstream effector of the small GTP-binding
protein RhoA (Fig. 4). During the past 20 years, significant
progress has been made regarding the molecular mechanisms
and therapeutic importance of Rho-kinase in cardiovascular
medicine.(1,82–87) The Rho family of small G proteins includes 20
members of ubiquitously expressed proteins, including RhoA,
Rac1, and Cdc42.(1,82–87) Among them, RhoA acts as a molecular
switch that cycles between an inactive GDP-bound and an active
GTP-bound conformation interacting with downstream targets
(Fig. 4). RhoA is activated by the guanine nucleotide exchange
factors (GEFs) that catalyze exchange of GDP for GTP and is
inactivated by the GTPase activating proteins (GAPs).(88) There
are 2 isoforms of Rho-kinase, Rho-kinase a/ROCK a/ROCK2
and Rho-kinase b/ROCK b/ROCK1, which were identified as
the effector of Rho and have been shown to play important roles in
the pathogenesis of cardiovascular diseases.(1,9,10) Phosphorylation
of myosin light chain (MLC) is crucial for VSMC contraction.
MLC is phosphorylated by Ca2+/calmodulin-activated MLC kinase
(MLCK) and is dephosphorylated by MLC phosphatase (MLCP)
(Fig. 4).(89) Agonists bind to G-protein–coupled receptors and
induce contraction by increasing both cytosolic Ca2+ concentration
and ROCK activity through mediating GEF.(88–92) The substrates
of ROCK include MLC, myosin phosphatase target subunit
(MYPT)-1, ezrin/radixin/moesin family, adducin, phosphatase
and tensin homolog, eNOS, Tau, and LIM-kinases (Fig. 4).(88–92)

Recently, functional differences between ROCK1 and ROCK2
have been reported in vitro. ROCK1 is specifically cleaved by
caspase-3, whereas granzyme B cleaves ROCK2.(93,94)

Negative interactions between NO and Rho�kinase. The
RhoA/Rho-kinase pathway negatively regulates NO production
in endothelial cells, while it enhances contraction of VSMC by
MLC phosphorylation through inhibition of MYPT-1 of MLCP
and promotes VSMC contraction (Fig. 4).(82–87) Rho-kinase has
opposing activities in the regulation of the endothelial barrier
function at the cell margins and contractile F-actin stress fibers.(95)

Thus, disruption of the endothelial barrier results in increased
endothelial permeability, promoting organ damage in various
diseases.(1,86,87) The RhoA/Rho-kinase signaling pathway is involved
in the mechano-transduction mechanism for the adherence junc-
tion strengthening at endothelial contacts.(96) This endothelial
mechanosensing is important for endothelial alignment along the
flow direction, which contributes to vascular homeostasis. Indeed,
a disturbed flow promotes endothelial dysfunction and the devel-
opment of atherosclerosis.(97,98) Several studies demonstrated that
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NO and Rho-kinase have opposing effects.(99,100) Rho-kinase-KO
mice showed preserved endothelial functions in a diabetic model.(100)

Moreover, NO and Rho-kinase exert opposing effects on the phos-
phorylation of AMP-activated protein kinase in lipid metabolism
and the insulin receptor substrate-1 in insulin signaling.(101–103)

Statins upregulate eNOS by cholesterol-independent mechanisms,
involving the inhibition of Rho geranyl-geranylation and hydroxy-
fasudil reversed hypoxia-induced upregulation of Rho-kinase and
eNOS downregulation in human endothelial cells.(104,105) In addition,
small GTP-binding protein dissociation stimulator (SmgGDS)
plays a central role in the pleiotropic effects of statins, indepen-
dently of the Rho-kinase pathway, through Rac1 degradation
(Fig. 4).(106) Thus, we need to consider the complex interactions
between Rho-kinase and NO signaling for vascular homeostasis
in vivo.

Role of Rho�kinase on vascular reactive oxygen species.
The balance between oxidants and antioxidants maintains redox
status equilibrium in the cardiovascular system.(107) The RhoA/
Rho-kinase pathway is one of the major intracellular pathways
that enhance the expressions of molecules for oxidative stress
(NADPH, IL-6, MCP-1, MIF, and IFN-g), thrombosis (PAI-1

and tissue factor), and tissue fibrosis (TGF-b1 and Bcl-2),
while the pathway also markedly downregulates eNOS and osteo-
genesis-related molecules (BMP-2 and osteocalcin) (Fig. 1 and
4).(85–87,105,108–112) Oxidative stress by excessive ROS damages
mitochondrial proteins and further increase intracellular ROS,
thus forming a vicious cycle of ROS augmentation. In addition to
ROS generation in mitochondria, several enzymes also generate
intracellular ROS, including NADPH that produce O2

- and H2O2.
Importantly, enhanced Rho-kinase activity downregulates eNOS,
resulting in impaired endothelial responses to NO and EDH
(Fig. 1 and 4).(1,86,87) eNOS produces NO with resultant production
of cGMP, and NO can react with O2

- to produce peroxynitrite
(ONOO-).(113) Among ROS, H2O2 can easily penetrate the cell
membrane and act as a second messenger. Peroxiredoxin is
regenerated by the antioxidant protein thioredoxin 1 and reduces
H2O2 levels, thus balancing the intracellular redox state.(114) The
details of the interactions between Rho-kinase and NO/H2O2 as an
EDH factor remain to be fully elucidated in future studies.

Fig. 4. Role of Rho/Rho�kinase pathway in the pathogenesis of cardiovascular diseases. Rho/Rho�kinase–mediated pathway plays an important role
in the signal transduction initiated by many agonists, including angiotensin II (Ang II), serotonin (5�HT), thrombin, endothelin�1 (ET�1), norepinephrine
(NE), platelet�derived growth factor (PDGF), adenosine triphosphate (ATP)/adenosine diphosphate (ADP), and urotensin II (Uro II). Through the
modulation of its target effectors, Rho�kinase is substantially involved in vascular smooth muscle contraction (via inhibition of myosin phosphatase)
and in the pathogenesis of arteriosclerosis (via activation of ERM, adducin, and other effectors). Whereas statins inhibit Rho at their relatively higher
concentrations, they simultaneously inhibit pathways mediated by other G proteins, such as Ras and Rac. By contrast, Rho�kinase inhibitors selectively
inhibit Rho�kinase pathway. Solid line indicates proven pathway and dashed line proposed pathway. DG, diacylglycerol; MLC, myosin light chain;
PKC, protein kinase C; SmgGDS, small GTP�binding protein dissociation stimulator.
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Conclusions

This review highlights the potential importance of the physio-
logical balance between NO and H2O2/EDH factor in a distinct
vessel size-dependent manner through the diverse functions of
endothelial NOSs system in maintaining cardiovascular homeo-
stasis. It remains an open question how to improve endothelial
functions without affecting the delicate balance between NO and
EDH factors. Further characterization and better understanding of
endothelium-dependent vasodilatations are important to this end,
which helps us develop novel therapeutic strategies in cardio-
vascular medicine. The identification of Rho-kinase as an impor-
tant mediator of oxidative stress in cardiovascular health and
disease provides insight into the development of new therapies.
Indeed, accumulating evidence indicates that Rho-kinase is sub-
stantially involved in the pathogenesis of a wide variety of cardio-
vascular diseases, suggesting that it is an important therapeutic
target in cardiovascular medicine.
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