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Abstract
Introduction: Structural and functional abnormalities of coronary microvasculature, referred to as coronary microvascular
dysfunction (CMD), have been implicated in a wide range of cardiovascular diseases and have gained growing attention in patients
with chest pain with no obstructive coronary artery disease, especially in females. The central mechanisms of coronary
vasomotion abnormalities encompass enhanced coronary vasoconstrictive reactivity (ie, coronary spasm), reduced endothelium-
dependent and -independent coronary vasodilator capacities, and increased coronary microvascular resistance. The 2 major
endothelium-derived relaxing factors, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors, modulate
vascular tone in a distinct vessel size–dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels,
while EDH factors in small resistance vessels. Endothelium-dependent hyperpolarization–mediated vasodilatation is more pro-
minent in female resistance arteries, where estrogens exert beneficial effects on endothelium-dependent vasodilatation via
multiple mechanisms. In the clinical settings, therapeutic approaches targeting NO are disappointing for the treatment of various
cardiovascular diseases, where endothelial dysfunction and CMD are substantially involved. Significance: In this review, we will
discuss the current knowledge on the pathophysiology and molecular mechanisms of endothelial function and coronary vaso-
motion abnormalities from bench to bedside, with a special reference to gender differences. Results: Recent experimental and
clinical studies have demonstrated distinct gender differences in endothelial function and coronary vasomotion abnormalities with
major clinical implications. Moreover, recent landmark clinical trials regarding the management of stable coronary artery disease
have questioned the benefit of percutaneous coronary intervention, supporting the importance of the coronary microvascular
physiology. Conclusion: Further characterization and a better understanding of the gender differences in basic vascular biology
as well as those in cardiovascular diseases are indispensable to improve health care and patient outcomes in cardiovascular
medicine.
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Introduction

Over the last 2 decades, we have seen a growing body of

evidence that has revealed gender differences in coronary phy-

siology and endothelial function in health and disease. Distinct

gender differences have been identified in a wide range of

cardiovascular diseases, such as heart failure, pulmonary

hypertension, atherosclerotic vascular remodeling, sponta-

neous coronary artery dissection, and coronary functional

abnormalities like vasospastic angina (VSA), as well as in the

underlying risk factors.1-6 Recently, structural and functional

abnormalities of coronary microvasculature, referred to as cor-

onary microvascular dysfunction (CMD), have been implicated

in a wide spectrum of cardiovascular diseases, including heart

failure with preserved ejection fraction (HFpEF), a common

and globally recognized form of heart failure that occurs more

frequently in females.7 Moreover, CMD has gained increasing

attention in view of its unexpectedly high prevalence and sig-

nificant prognostic impact in patients with chest pain regardless

of the presence or absence of epicardial obstructive coronary

artery disease (CAD), especially in females.1,2,5,6,8-10 The
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underlying mechanisms of CMD may be heterogeneous,

including several structural and functional alterations. The

central mechanisms of coronary vasomotion abnormalities are

3-fold: enhanced coronary vasoconstrictive reactivity (ie, cor-

onary spasm) at epicardial and microvascular levels, reduced

endothelium-dependent and -independent coronary vasodilator

capacities, and increased coronary microvascular resistance, all

of which can cause myocardial ischemia due to CMD and often

coexist in various combinations even in the absence of obstruc-

tive CAD.11-13 The term “ischemia and no obstructive coronary

artery disease (INOCA)” has been coined for this clinical con-

dition14 and is increasingly recognized as an important clinical

entity, particularly in females.15

Endothelial function has been recognized as an important

surrogate of vascular risk. The endothelium plays a pivotal role

in modulating vascular tone by synthesizing and releasing

endothelium-derived relaxing factors (EDRFs), including vaso-

dilator prostaglandins (PGs), nitric oxide (NO), and

endothelium-dependent hyperpolarization (EDH) factors in a

distinct vessel size–dependent manner; NO mainly mediates

vasodilatation of relatively large, conduit vessels (eg, aorta and

epicardial coronary arteries), while EDH factors in small

resistance vessels (eg, arterioles and coronary microvessels;

Figure 1).16,17 Endothelium-dependent hyperpolarization–

mediated vasodilatation is more predominant in female

resistance arteries as compared with male counterparts.17,18

In addition, estrogens have various vasoactive properties as

discussed later and exert protective effects on endothelium-

dependent vasodilatation via multiple mechanisms.17,18

In this review, we will give an outline of the pathophysiol-

ogy and molecular mechanisms of endothelial function and

coronary vasomotion abnormalities from bench to bedside with

a special reference to gender differences.

Current Views on Ischemic CAD and Gender-
Specific Considerations

Classically, atherosclerotic CAD was considered to be a pre-

dominantly male issue and the clinical impact of the disease

burden in females is limited because previous randomized clin-

ical trials of revascularization therapy exclusively enrolled

male patients. A latest nationwide large-scale cohort study in

the United States identified a total of 12 062 081 revascular-

ization hospitalizations19; among them, female patients not

only remained underrepresented, merely accounting for one-

third of the total cohort, but also their trend to undergo percu-

taneous coronary intervention (PCI) and coronary artery bypass

grafting continued to decrease.19 Moreover, as exemplified in

the PROspective Multicentre Imaging Study for Evaluation of

chest pain (PROMISE) trial, the prevalence of statin use was

lower in female patients and they were less likely to be referred

for coronary angiography compared with male counterparts.20

Female patients with ischemic heart disease (IHD) are charac-

terized by atypical anginal symptoms (eg, dyspnea, fatigue, and

Figure 1. Vessel size–dependent roles of endothelial nitric oxide synthases system. BH4 indicates tetrahydrobiopterin; cGMP, cyclic GMP; Cu,
Zn-SOD, copper-zinc superoxide dismutase; EDH, endothelium-dependent hyperpolarization; eNOS, endothelial nitric oxide synthase; H2O2,
hydrogen peroxide; iNOS, inducible NOS; KCa, calcium-activated potassium channel; nNOS, neural NOS; NO, nitric oxide; NOSs, nitric oxide
synthases; PGs, prostaglandins; VSMC, vascular smooth muscle cells.
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reduced activities of daily living), less prevalence of obstruc-

tive CAD on coronary angiography albeit suspected clinically,

and lower rates of coronary revascularization.21 Although there

have been marked reductions in cardiovascular disease mortal-

ity in females over the last decade,22 a recent large-scale retro-

spective cohort study showed that female patients have a higher

mortality rate after PCI than male counterparts due to death

from noncardiac causes, suggesting the need for gender-

specific clinical care in the management of patients undergoing

PCI.23

The mechanisms underlying the gender differences in the

characteristics of IHD appear to be multifactorial, including

differences in sex hormone effects, autonomic regulation, and

susceptibility to proatherogenic mediators, such as oxidative

stress, endothelin-1, and angiotensin II. An autopsy study by

Virmani et al of patients who died suddenly of CAD demon-

strated that postmenopausal females more frequently have a

ruptured plaque than do premenopausal counterparts, indicat-

ing that estrogens play protective roles against plaque destabi-

lization through an anti-inflammatory effect on atherosclerotic

plaques.24 Considering that approximately 10 years are

required for females to develop CAD to the same extent as

males after menopause,2 the aforementioned protective effects

of endogenous estrogens against the development of coronary

atherosclerosis might be protracted in the late postmenopausal

period, leading to more advanced coronary plaque characteris-

tics in postmenopausal females. Moreover, recently published

gender-specific analyses of longitudinal blood pressure mea-

sures over 40 years revealed that compared with males females

develop a steeper increase in blood pressure as early as in their

20s that persists through the life course.25 This premature rise

in blood pressure in females may affect the different presenta-

tion of various cardiovascular diseases between genders.

Previous studies focused on functional and structural

abnormalities of epicardial coronary arteries; however, those

of coronary microvasculature have recently gained increasing

attention in many clinical settings. The Women’s Ischemic

Syndrome Evaluation (WISE) study funded by the National

Heart, Lung, and Blood Institute was conducted to facilitate

gender-specific research on IHD, yielding significant insight

into the clinical characteristics of the disorder in females.1,2

One of the major findings of the WISE study was that the

etiology of myocardial ischemia in female patients with chest

pain who were found to have no obstructive CAD was attrib-

uted to the coronary microvasculature, and thus, the diagnostic

evaluation of CMD and endothelial dysfunction is important

using invasive or noninvasive coronary reactivity testing.

Although the prevalence of CMD in this clinical entity has been

shown to be not negligible in both genders,10,11,26 the assess-

ment and diagnosis of functional rather than structural abnorm-

alities in the coronary circulation should be considered in light

of the lower prevalence of obstructive CAD and higher preva-

lence of CMD in females.27 In line with the findings from the

WISE study, the results from the 2 landmark clinical trials

regarding the management of stable CAD, the Objective Ran-

domised Blinded Investigation with optimal medical Therapy

of Angioplasty in stable angina (ORBITA) trial28 and the Inter-

national Study of Comparative Health Effectiveness with Med-

ical and Invasive Approaches (ISCHEMIA) trial,29 question

the benefit of PCI and further support the importance of the

coronary microvascular physiology, which PCI procedure

could not improve. Although similar prognostic benefits of

noninvasive computed tomography coronary angiography

guided management for both female and male patients with

suspected angina due to IHD,30 a comprehensive invasive

assessment of coronary physiology is feasible and of diagnostic

value to detect patients with endothelium-dependent or -inde-

pendent CMD (Figure 2).11,26,31

The emerging pressure-wire-based indices, instantaneous

wave-free ratio (iFR) and fractional flow reserve (FFR), are

currently the gold standard in assessing whether a coronary

stenosis can induce myocardial ischemia amenable to revascu-

larization in patients with stable CAD. A post hoc analysis of

the DEFINE-FLAIR (Functional Lesion Assessment of Inter-

mediate stenosis to guide Revascularization) study aimed to

evaluate gender differences in procedural characteristics and

clinical outcomes of iFR- and FFR-guided revascularization

strategies.32 Female patients (n ¼ 601) had a lower number

of functionally significant lesions, a higher mean FFR value,

and a comparable mean iFR value with a resultant lower rate of

revascularization than male patients.32 Although an FFR-

guided strategy was associated with a higher rate of revascu-

larization than iFR-guided strategy in males (n¼ 1891), but not

in females, there were no differences between the 2 strategies

in 1-year major adverse cardiac events in both genders.32 These

results suggest that a gender-specific cutoff value for FFR may

be needed to better detect functionally significant lesions in

female patients with obstructive CAD.

When assessed by reduced coronary flow reserve (CFR) and

increased index of microcirculatory resistance (IMR), patients

with CMD are associated with an increased risk of major

adverse cardiovascular events and worse long-term out-

comes.10,13,33 Although coronary microvascular function as

evaluated by IMR is similar between genders,34,35 CFR has

been shown to be lower in females because of a shorter resting

mean transit time, an inverse correlate with absolute flow, and

thus higher resting coronary flow than in males.34,35 Notably, a

prospective 5-year follow-up study in patients with deferred

coronary artery lesions (n ¼ 434) showed better long-term

clinical outcomes in female patients compared with male coun-

terparts.35 These results again indicate that gender differences

are important considerations when interpreting physiological

indexes using resting coronary flow.

Gender Differences in Coronary Vasomotion
Abnormalities

Vasospastic Angina and Coronary Microvascular Spasm

Along with endothelial dysfunction, endothelium-independent

mechanisms represented by impaired coronary microvascular

dilatation and enhanced coronary microvascular constriction
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can cause CMD. Coronary artery spasms at both epicardial and

microvascular levels have been implicated in a wide variety of

IHD.16,36 The central mechanism in the pathogenesis of cor-

onary artery spasm is Rho-kinase-induced myosin light chain

phosphorylation with resultant vascular smooth muscle cells

(VSMC) hypercontraction, whereas the role of endothelial dys-

function may be minimal.16,37 Intracoronary administration of

a Rho-kinase inhibitor, fasudil, is effective not only for reliev-

ing severe coronary artery spasm refractory to nitrates or

calcium-channel blockers but also for suppressing coronary

microvascular spasm in patients with VSA and coronary micro-

vascular spasm, respectively.38-40 We have previously demon-

strated that estrogens downregulate Rho-kinase, while nicotine

cancels the inhibitory effect of estrogens on inflammatory

stimuli-induced Rho-kinase expression, which explains in part

the increasing incidence of vasospastic disorders in postmeno-

pausal females and smokers.41 In addition, enhanced epicardial

and coronary microvascular spasms are associated with

increased production of vasoconstrictive mediators, such as

endothelin42 and serotonin,43 in patients with CMD. A potent

vasoconstrictor peptide, endothelin-1, contributes to impaired

coronary vasodilator responses toward CMD. Indeed, elevated

plasma levels of endothelin-1 are associated with coronary

microvascular endothelial dysfunction, as evaluated by the per-

centage fall in coronary vascular resistance after 10 minutes of

rapid atrial pacing, in patients with chest pain and normal cor-

onary arteriograms, in particular in females.44

Coronary reactivity testing using intracoronary acetylcho-

line (ACh) provocation is useful in inducing coronary artery

spasm with high sensitivity and specificity in the cardiac cathe-

terization laboratory (Figure 2). A high prevalence of ACh-

induced coronary microvascular spasm has been reported in

one-third of patients with stable chest pain and nonobstructive

CAD.45,46 A consensus set of standardized diagnostic criteria

for microvascular angina attributable to CMD including ACh-

induced coronary microvascular spasm has been proposed by

the Coronary Vasomotion Disorders International Study Group

(COVADIS).47 The diagnostic value of these criteria has been

validated by a recent randomized clinical trial.31 When per-

forming ACh provocation test, it is important to note that gen-

der differences exist in the prevalence of coronary vasomotion

abnormalities and in the threshold dose of ACh required for a

positive result; among patients with angina and nonobstructive

CAD who undergo ACh provocation test, epicardial vasospasm

and coronary microvascular spasm are more prevalent in

female subjects with a higher sensitivity to ACh.4,5

We have previously demonstrated the gender differences in

the characteristics and outcomes of patients with VSA.3,48 For

example, gender is one of the significant prognostic factors in

patients with VSA; the younger age (<50 years) is significantly

associated with worse outcomes in females, but not in males.3

This is also confirmed in Caucasian patients with VSA, using a

prospective international multicenter cohort consisting of 1,339

Japanese patients and 118 Caucasian patients with the

disease.48

Endothelial Dysfunction

Endothelial Modulation of Vascular Tone: EDRFs

The endothelium plays a crucial role in modulating the tone of

underlying VSMC by synthesizing and releasing EDRFs in an

Figure 2. Comprehensive invasive assessment of coronary vasomotion abnormalities. ACh indicates acetylcholine; CAD, coronary artery
disease; CAG, coronary angiography; CMD, coronary microvascular dysfunction; MVS, microvascular spasm; VSA, vasospastic angina.
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autocrine and paracrine manner.16,17 These endothelial-derived

mediators include vasodilator PGs (eg, prostacyclin [PGI2]),

NO, and EDH factors, as well as endothelium-derived contract-

ing factors (EDCFs)16,17 (Figure 1). Endothelial dysfunction is

characterized by reduced production and/or action of EDRFs,

serving not only as the hallmark of atherosclerotic cardiovas-

cular diseases but also as one of the major pathogenetic

mechanisms of CMD.49-51

Vessel Size-Dependent Contribution of NO and EDH
Factors

Endothelium-derived NO and EDH factors, regardless of sex

or species, modulate vascular tone in a distinct vessel size–

dependent fashion, that is, endothelium-derived NO predo-

minantly regulates vasodilatation of relatively large, conduit

vessels (eg, aorta and epicardial coronary arteries), while

EDH factor-mediated responses are the major mechanisms

of endothelium-dependent vasodilatation of resistance

arteries (eg, arterioles and coronary microvessels; Fig-

ure 1).16,52,53 Although NO is one of the important media-

tors of microvascular flow-mediated dilation (FMD) among

various EDRFs, including the products of cyclooxygenase,54

and EDH factors such as hydrogen peroxide,55 it has been

widely accepted that EDH-mediated responses rather than

NO are the predominant mechanism of endothelium-

dependent vasodilatation in resistance arteries. For example,

the predominant effect of intracoronary nitroglycerin (an NO

donor) is on the epicardial coronary arteries with only lim-

ited effects on the coronary microcirculation and resistance

vessels.56 Thus, EDH factor-mediated vasodilatation is a

vital mechanism especially in microcirculations, where blood

pressure and organ perfusion are determined in response to

demand fluctuation in the body. On the other hand, vasodi-

lator PGs in general play a small but constant role, irrespec-

tive of vessel size. This vessel size–dependent contribution

of NO and EDH factors in endothelium-dependent vasodila-

tation is well preserved from rodents to humans, maintaining

a physiological balance between them.16,17 Moreover, such

redundant mechanisms in endothelium-dependent vasodilata-

tion are advantageous for the proper maintenance of vascular

tone and endothelial function under pathological conditions,

where one of the EDRF-mediated responses is hampered in

favor of a vasoconstrictor, procoagulant, proliferative, and

pro-inflammatory state. Indeed, in various pathological con-

ditions with atherosclerotic risk factors, NO-mediated relaxa-

tions are easily impaired, while EDH factor-mediated

responses are fairly preserved or even enhanced to serve

as a compensatory vasodilator system.53,57 Multifaceted

mechanisms are involved in the enhanced EDH factor-

mediated responses in small resistance vessels, including

negative interactions between NO and several EDH fac-

tors.58 Refer to extensive reviews for more detailed informa-

tion on the regulatory mechanisms of NO-mediated

responses.59-61

Endothelium-Dependent Hyperpolarization Factors: The
Predominant Mechanism of Vasodilatation in Small
Arteries

In 1988, Feletou and Vanhoutte62 and Chen et al63 indepen-

dently demonstrated the existence of endothelium-derived,

non-NO, nonprostanoid relaxing mediators, unforeseen EDH

factors. By definition, the contribution of EDH factors is deter-

mined only after the blockade of both vasodilator PGs and NO.

The EDH factors cause hyperpolarization and subsequent

relaxation of underlying VSMC with resultant vasodilatation

of small resistance vessels, finely regulating blood pressure and

organ perfusion instantaneously to meet changing physiologi-

cal demands in vivo.17 The nature of EDH factors varies

depending on the vascular bed, vessel size, and species, includ-

ing epoxyeicosatrienoic acids (EETs), metabolites of arachido-

nic P450 epoxygenase pathway,64,65 electrical communication

through gap junctions,66 potassium ions,67 and, as we demon-

strated, endothelium-derived hydrogen peroxide (H2O2)68 (Fig-

ure 3). Several EDH factors regulate vascular tone in the

coronary circulation. For instance, EETs take part in

EDH-mediated relaxations in bovine,64 porcine,65 and human

coronary arteries69; potassium ions in porcine70 and bovine71

coronary arteries; and H2O2, at physiologically low concentra-

tions, in human,72 porcine,73 and canine coronary arteries.74-76

Coronary vascular resistance is mostly determined by the pre-

arterioles (>100 mm in diameter) and arterioles (<100 mm),

where EDH factor-mediated responses become more promi-

nent than NO-mediated relaxations. Considering that H2O2 has

potent vasodilator properties in coronary resistance vessels,

impaired H2O2-mediated vasodilatation may lead to CMD.

Further comprehensive information on the role of EDH factors

is available elsewhere.77,78

Although EDH factor-mediated responses are the major

mechanism of endothelium-dependent vasodilatation in resis-

tance arteries, EDH-mediated vasodilatation is more predomi-

nant in female resistance arteries.79-86 Mechanistically, a major

female sex hormone, 17b-estradiol, enhances the activity of

intermediate conductance calcium-activated potassium chan-

nels in endothelial cells and that of the senescence-associated

proteins, silent information regulator T1, and adenosine

monophosphate-activated protein kinase (AMPK) to augment

EDH-mediated responses.84,85,87,88 An indirect activator of

AMPK, metformin, improves endothelial dysfunction as eval-

uated by digital reactive hyperemia index (RHI) in patients

with polycystic ovary syndrome.89

Effects of Estrogens on Endothelium-Dependent
Vasodilatation

Endothelium-dependent vasodilatation is more pronounced in

arteries from premenopausal female than in male animals and

humans, while endothelial dysfunction is less prominent in

premenopausal females than in males and postmenopausal

females.90,91 Multiple mechanisms are involved in the protec-

tive effects of estrogens on endothelium-dependent
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vasodilatation. For example, endothelial production and release

of NO can be augmented by estrogens in a pleiotropic man-

ner.17,18,92-94 Oral administration of tetrahydrobiopterin, an

essential cofactor of NOS and a scavenger of oxygen-derived

free radicals, improves FMD in estrogen-deficient postmeno-

pausal females but has no effect in premenopausal females.91

Activation of endothelial estrogen receptor a by estrogens also

enhances the production of PGI2,95 as well as EDH-mediated

responses.81,85,86 Estrogens also reduce the production of oxi-

dative stress96 and an endogenous inhibitor of endothelial nitric

oxide synthase (eNOS), asymmetric dimethylarginine,97 with a

resultant increase in NO bioavailability. Moreover, estrogens

reduce the production of EDCFs by endothelial

cyclooxygenase-1 and vascular smooth muscle thromboxane

receptors. Furthermore, estradiol induces subcellular transloca-

tion of eNOS to stimulate NO production in vascular endothe-

lium,98 suggesting a possible mechanism for postmenopausal

endothelial dysfunction. Taken together, it is highly possible

that these beneficial effects of estrogens on endothelial func-

tion as well as the braking effect of them on EDCF-mediated

responses help to protect premenopausal females against the

development of atherosclerotic cardiovascular diseases.

Clinical Implications and Therapeutic
Approaches

Endothelial Function as a Surrogate of Vascular Risk

The assessment of endothelial function has been utilized as an

excellent surrogate marker of future cardiovascular events in

many clinical settings.99 Endothelial dysfunction is manifested

as reduced production and/or action of EDRFs. Although EDH

factor-mediated vasodilation can be temporarily enhanced to

compensate for impaired NO-mediated responses in the early

stage of atherosclerotic conditions,100 after prolonged exposure

to atherosclerotic risk factors, this compensatory role of EDH

factor-mediated responses is finally disrupted to cause meta-

bolic disturbance.101 Endothelial dysfunction, as determined by

impaired FMD of the brachial artery or digital RHI in periph-

eral arterial tonometry, is associated with future cardiovascular

events in patients with CAD and 1 standard deviation decrease

in FMD or RHI is associated with doubling of cardiovascular

event risk.99 Moreover, patients with coronary vasomotion

abnormalities are often complicated with peripheral endothe-

lial dysfunction, where CMD manifests as systemic vascular

dysfunction beyond the heart.102,103 It may be speculated that

Figure 3. Endothelium-dependent hyperpolarization factors AMPKa1 indicates a1-subunit of AMP-activated protein kinase; CaM, calmodulin;
CaMKKb, Ca2þ/CaM-dependent protein kinase b; cAMP, cyclic AMP; cGMP, cyclic GMP; COX, cyclooxygenase; EETs, epoxyeicosatrienoic
acids; eNOS, endothelial NO synthase; EOX, epoxygenase; HETEs, hydroxyeicosatetraenoic acids; H2O2, hydrogen peroxide; IP3, inositol
trisphosphate; I/R, ischemia–reperfusion injury; KCa, calcium-activated potassium channel; KIR, inwardly rectifying potassium channel; LOX,
lipoxygenase; LTs, leukotrienes; NO, nitric oxide; ONOO�, peroxynitrite; PGI2, prostacyclin; PKG1a, 1a-subunit of protein kinase G; PLA2,
phospholipase A2; PLC, phospholipase C; SOD, superoxide dismutase.
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female patients may benefit more from early aggressive med-

ical management aimed at improving endothelial function and

risk factors upon detection of endothelial dysfunction.

Role of H2O2 as an EDH Factor in the Pathophysiology of
CAD

As discussed above, previous studies focused on structural and

functional abnormalities of “epicardial” coronary arteries in

patients with CAD because they are easily visible on coronary

angiography and amenable to PCI procedure. However, CMD

has attracted increasing attention as a novel therapeutic and

research target in patients with IHD. It is conceivable that

impaired H2O2/EDH factor-mediated vasodilatation is

involved in the pathogenesis of CMD, given its potent vasodi-

lator properties in coronary resistance vessels where EDH

factor-mediated responses surpass NO-mediated relaxations.

We have recently demonstrated that CMD caused by impaired

H2O2/EDH factor is associated with cardiac diastolic dysfunc-

tion in eNOS-knockout mice.104 It seems essential to maintain

the physiological balance between NO and H2O2/EDH factor

for the treatment of CAD because significant negative interac-

tions exist between NO and several EDH factors105,106 and

nitrates as NO donors are not effective for the treatment of

CMD.107,108 Moreover, endothelium-dependent CMD is asso-

ciated with low endothelial shear stress, larger plaque burden,

and vulnerable plaque characteristic beyond conventional cor-

onary risk factors in patients with INOCA.109,110

Lessons From Clinical Trials Targeting NO: Too Much NO
to Relax?

Although standard medications for the treatment of CAD share

the pleiotropic effects on endothelial function by enhancing

NO-mediated vasodilatation with modest antioxidant capaci-

ties, including angiotensin-converting enzyme inhibitors,111,112

angiotensin II receptor blockers,113 and statins,112 the effects of

isosorbide-5-mononitrate are unexpectedly neutral in patients

with residual microvascular ischemia despite successful

PCI.114 Likewise, despite the high prevalence and pathophy-

siological relevance of CMD in patients with HFpEF, the

results of systemic and long-term administrations of inorganic

nitrite for those patients are neutral or even harmful in rando-

mized clinical trials.115,116 These lines of evidence suggest that

it is important to turn our attention to avoid excessive NO

supplementation. Although tachyphylaxis may be one of the

reasons why nitrite derivatives are not effective vasodilators in

the treatment of various cardiovascular diseases, an alternative

explanation for such “paradox” of NO-targeted therapy may be

nitrosative stress induced by an excessive amount of supplemen-

tal NO,117,118 again suggesting the importance of physiological

balance between NO and EDH factors in endothelium-

dependent vasodilatation. Further research is needed to address

how to modulate CMD to improve clinical outcomes of patients

with the disorder and whether decision-making under

consideration of gender-specific characteristics in the coronary

physiology and endothelial function benefits them.

Summary and Clinical Perspectives

In this review, we highlighted the pathophysiology and mole-

cular mechanisms of endothelial function and coronary vaso-

motion abnormalities with a special reference to gender

differences. Despite the high prevalence of CMD in patients

with INOCA, those patients are often underestimated and

offered no specific treatment or follow-up under the umbrella

of “normal” coronary arteries, especially in females. On the

contrary to this otherwise common practice, patients with CMD

are predisposed to future coronary events and associated worse

outcomes.33,119 Identifying CMD in this population may pro-

vide physicians with useful information for decision-making

and risk stratification beyond conventional coronary risk fac-

tors. Given that “every cell has a sex”120 and hormonal status

changes throughout life, consideration of gender differences

should be implemented into both basic research and clinical

practice in order to improve health care and patient outcomes; a

good example of this practice is available elsewhere.121 A hor-

izontally based gender-specific therapeutic strategy, as

opposed to a vertical, hierarchical structure of the medical care

for each organ, is indispensable and specialists in each field

should bear the responsibility to account for sex as a biological

variable to this end. In conclusion, further characterization and

a better understanding of the gender differences in basic vas-

cular biology as well as those in the pathophysiology, clinical

presentation, and clinical outcomes of IHD can be an important

gateway to precision medicine in cardiovascular diseases.
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96. Wassmann S, Bäumer AT, Strehlow K, et al. Endothelial dysfunc-

tion and oxidative stress during estrogen deficiency in sponta-

neously hypertensive rats. Circulation. 2001;103(3):435-441.

doi:10.1161/01.cir.103.3.435

97. Monsalve E, Oviedo PJ, Garcı́a-Pérez MA, Tarı́n JJ, Cano A,
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