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A proteomic surrogate for cardiovascular  
outcomes that is sensitive to multiple mechanisms 
of change in risk
Stephen A. Williams1*†, Rachel Ostroff1, Michael A. Hinterberg1, Josef Coresh2,  
Christie M. Ballantyne3, Kunihiro Matsushita2, Christian E. Mueller4, Joan Walter4,5, 
Christian Jonasson6, Rury R. Holman7, Svati H. Shah8, Naveed Sattar9, Roy Taylor10,  
Michael E. Lean11, Shintaro Kato12, Hiroaki Shimokawa13,14, Yasuhiko Sakata13, Kotaro Nochioka13, 
Chirag R. Parikh2, Steven G. Coca15, Torbjørn Omland16, Jessica Chadwick1, David Astling1, 
Yolanda Hagar1, Natasha Kureshi1, Kelsey Loupy1, Clare Paterson1, Jeremy Primus1, 
Missy Simpson1, Nelson P. Trujillo17, Peter Ganz18†

A reliable, individualized, and dynamic surrogate of cardiovascular risk, synoptic for key biologic mechanisms, could 
shorten the path for drug development, enhance drug cost-effectiveness and improve patient outcomes. We used 
highly multiplexed proteomics to address these objectives, measuring about 5000 proteins in each of 32,130 archived 
plasma samples from 22,849 participants in nine clinical studies. We used machine learning to derive a 27-protein 
model predicting 4-year likelihood of myocardial infarction, stroke, heart failure, or death. The 27 proteins en-
compassed 10 biologic systems, and 12 were associated with relevant causal genetic traits. We independently 
validated results in 11,609 participants. Compared to a clinical model, the ratio of observed events in quintile 5 to 
quintile 1 was 6.7 for proteins versus 2.9 for the clinical model, AUCs (95% CI) were 0.73 (0.72 to 0.74) versus 0.64 
(0.62 to 0.65), c-statistics were 0.71 (0.69 to 0.72) versus 0.62 (0.60 to 0.63), and the net reclassification index was 
+0.43. Adding the clinical model to the proteins only improved discrimination metrics by 0.01 to 0.02. Event rates 
in four predefined protein risk categories were 5.6, 11.2, 20.0, and 43.4% within 4 years; median time to event was 
1.71 years. Protein predictions were directionally concordant with changed outcomes. Adverse risks were 
predicted for aging, approaching an event, anthracycline chemotherapy, diabetes, smoking, rheumatoid arthri-
tis, cancer history, cardiovascular disease, high systolic blood pressure, and lipids. Reduced risks were predicted for 
weight loss and exenatide. The 27-protein model has potential as a “universal” surrogate end point for cardio-
vascular risk.

INTRODUCTION
In its seminal report in 2004, “Innovation or Stagnation; Challenge or 
Opportunity on the Critical Path to New Medical Products” (1), the 
Food and Drug Administration (FDA) recognized that a key cause of 
the increasing time and cost of drug development was that clinical 
efficacy and safety claims depended on empirical outcomes testing, 

using “20th century tools in the 21st century.” For cardiovascular 
disease, they specifically recommended developing and qualifying 
biomarkers “to improve innovation in a field affecting millions of 
Americans” and “in clinical practice to evaluate patient risk and to 
assist physicians and patients in developing treatment strategies.” 
Since that report 17 years ago, although therapeutic options for re-
ducing cardiovascular events in high-risk populations have expanded 
(2–8), all clinical trials for safety and all cardiovascular efficacy trials 
other than cholesterol and blood pressure lowering remain in the 
same empirical state as they were 20 or more years ago, dependent on 
counting events, hospitalizations, and deaths. It is hard to avoid the 
conclusion that dependency on outcome measures as lone pivotal 
end points led to the too-late finding of the adverse cardiovascular 
effect of torcetrapib that caused excess deaths and events during its 
phase 3 trial (9), created years of uncertainty around rosiglitazone, 
leading to the FDA requiring cardiovascular outcome safety studies 
for all new antidiabetic agents (10), and delayed the translation of 
unexpected cardiovascular and mortality benefits of sodium-glucose 
cotransporter-2 inhibitors (SGLT2i), which manifested only in late 
development, into approved claims.

Medical practice faces a different risk assessment problem: indi-
vidualizing residual cardiovascular risk assessment to enable precision 
allocation and monitoring of the benefit of cardioprotective therapies 
(11). However, traditional risk assessment tools are only modestly 
prognostic in individuals most eligible for new drug classes, including 
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people with known cardiovascular disease [who may remain at risk 
despite adequately controlled low-density lipoprotein (LDL)–cholesterol 
and blood pressure] (12), multimorbid groups (13), or the elderly 
without confirmed cardiovascular disease (14).

Last, the insensitivity to improvements of many traditional risk 
factors (age, sex, race, diabetes status, and hypertension history) and 
imaging measures (coronary artery calcium score and carotid and 
coronary imaging) is a problem for both clinical trials and medical 
practice. This is important because recently developed agents, such as 
SGLT2i, glucagon-like peptide 1 receptor agonists (GLP-1 RAs), or 
anti-inflammatory drugs such as canakinumab, reduce cardiovascu-
lar risk independently of changes in these factors (3, 4, 6).

These unmet needs led an expert commentary for the American 
College of Cardiology to conclude that “new cardiovascular risk 
models incorporating novel risk markers are needed” (15), echoing 
the FDA’s comments made 15 years earlier. The idealized require-
ments of precise, sensitive prognostics that respond agnostically and 
reliably to all changes in outcomes regardless of intervention mecha-
nism are key features of a surrogate end point (16)—a biomarker that 
is intended to substitute for a clinical end point. Fortunately, one 
issue that has been addressed as part of the FDA’s Critical Path initia-
tive is the development of an evidentiary framework for biomarker 
qualification (16). Because previous studies suggested that blood pro-
tein patterns may have some of the desired characteristics of a surrogate 
end point (17–20), we proposed the hypothetical design of the proteomic 
program described herein at the “Framework for Defining Evidentiary 
Criteria; Surrogate Endpoint Qualification Workshop” in 2018, co-
sponsored by the FDA and Foundation for the National Institutes 
of Health.

The aims of this research program were therefore to derive and 
validate a proteomic prognostic test that predicted all major cardio-
vascular outcomes and deaths in a time scale consistent with clinical 
outcome trials, encompassed all detectable biologic mechanisms re-
lating to changes in risk, and was reliably directionally sensitive to all 
adverse and beneficial changes in outcome. The proposed two con-
texts of use for a validated test would be as a candidate surrogate end 
point for phase 2 studies in cardiovascular disease and diabetes and 
subsequently as a reasonably likely surrogate end point for accelerated 
drug approval of breakthrough products. In medical practice, it ideally 
would also be used as a test for individualized and cost-effective car-
dioprotective drug allocation and for monitoring of responses.

RESULTS
Development of the proteomic prognostic model
Using machine learning applied to the 5000 proteins measured in each 
plasma sample, a fully parametric accelerated failure time (AFT) 
Weibull prognostic model was developed in secondary disease subsets 
from The Trøndelag Health Study (HUNT) and visit 5 of the Atherosclerosis 
Risk in Communities (ARIC) study, hypothesized to be enriched for 
the biologic mechanisms of risk and with well-adjudicated outcomes, as 
shown in the top half of Fig. 1. The final model was subsequently ap-
plied to a number of independent cohorts of multimorbid populations: 
Biochemical and Electrocardiographic Signatures in the Detection of 
Exercise-induced Myocardial Ischemia (BASEL VIII), Chronic Heart 
Failure Analysis and Registry in the Tohoku District 2 Trial (CHART-2), 
Exenatide Study of Cardiovascular Event Lowering (EXSCEL), the Action 
to Control Cardiovascular Risk in Diabetes (ACCORD), the Diabetes 
Remission Clinical Trial (DiRECT), Prevention of Cardiac Dysfunction 

During Adjuvant Breast Cancer Therapy (PRADA), and the fraction of 
the ARIC visit 5 cohort over 65 without known coronary disease. 
Longitudinal change was assessed in paired samples from EXSCEL, 
ACCORD, PRADA, and DiRECT. Cross-sectional relation to predic-
tions with known elevated cardiovascular risks was evaluated in the 
entire ARIC visit 3 cohort. Table 1 shows the breakdown of the 13,167 
participants in the nine studies or study fractions used for training and 
validation with known 4-year outcomes; further details of the parent 
studies are described in Materials and Methods and tables S1 to S6. 
Table 1 also shows how the six independent validation study fractions 
with 4-year outcomes were combined into a single validation meta- 
cohort of 11,609 participants, with an overall 4-year event rate of 21.9%. 
There were 2540 events: 972 deaths (38%), 622 hospitalizations for 
heart failure (24.5%), 601 myocardial infarctions (23.6%), and 
345 strokes (13.6%).

The model consisted of 27 proteins and predicted the absolute 
likelihood within 4 years of any component of the composite end 
point after the blood sample: myocardial infarction, stroke, hospital-
ization for heart failure, and all-cause death. The proteins included in 
the model are listed in Table 2, with their proportionate contribution 
to the model output, along with the coefficients of variation for each 
analyte. Fourteen of the proteins were positively correlated with risk, 
and 13 were negatively correlated. Although the population average 
contribution of each protein ranged from 1 to 23%, within individuals, 
this varied.

Biologic relevance of the 27 proteins and inferences 
of causality
A formal statistical biologic pathway enrichment analysis would not 
be valid because of intentional biases in machine learning, which limit 
the inclusion of correlated features. Nevertheless, we approximated 
thematic biologic groupings across at least 10 biological processes: blood 
volume and natriuresis [natriuretic peptides B (NTproBNP) and atrial 
natriuretic factor (ANP)], vesicle biogenesis [adenosine 5′-diphosphate 
(ADP)–ribosylation factor-like protein 11 (ARL11)], matrix/tissue 
modeling, growth, angiogenesis or adhesion [anthrax toxin receptor 
2 (ANTR2), cartilage intermediate layer protein 2 (CILP2), mucin-16 
(CA125*), Golgi membrane protein 1 (GOLM1), spondin-1*, Sushi 
von Willebrand factor type A (SVEP1*), receptor-type tyrosine- protein 
phosphatase eta (PTRPJ), inter-alpha-trypsin inhibitor heavy-chain H2 
(ITI heavy-chain 2*), protein kinase C–binding protein NELL1 (NELL1), 
and growth/differentiation factor 11/8 shared epitope (GDF11/8*)], cellular 
immunity [macrophage metalloelastase (MMP12*), receptor tyrosine- 
protein kinase erbB-3 (ERBB3), and neural cell adhesion molecule 1, 
120-kDa isoform (NCAM-120*)], calcium channel modulation [voltage- 
dependent calcium channel subunit alpha-2/delta-3 (CA2D3*)], glo-
merular filtration rate [trefoil factor 3 (TFF3)], immunoglobulins/
receptors [immunoglobulin superfamily DCC subclass member 4 
(IGDC4), junctional adhesion molecule B (JAM-B), and triggering 
receptor expressed on myeloid cells (sTREM1*)], metabolism and 
lipids [nicotinamide adenine dinucleotide (NAD)–dependent protein 
deacetylase sirtuin-2 (SIRT2), protein phosphatase 1 regulatory sub-
unit 1A (PPR1A), and LDL receptor–regulated protein 11 (LRP11*)], 
inflammation [urokinase plasminogen activator surface receptor (suPAR*) 
and bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1 
(NDST1)], and coagulation [A disintegrin and metalloproteinase with 
thrombospondin motifs 13 (ATS13*)]. The potential causal rela-
tionship between these proteins and cardiovascular disease and its 
risk factors was explored through Mendelian randomization analysis 
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available for 989 proteins in the PheWAS database (21). Sixteen of 
the 27 model proteins were included in the database, 12 of which 
were associated with at least one cardiovascular disease–related trait, 
denoted by the asterisks in the list above and detailed in Table 2 and 

table S7. Table S7 also shows their relation to cardiovascular disease 
in the literature, where known.

The equation that described the relationship of the 27 proteins 
listed in Table 2 to generate the likelihood output was generated as 

Fig. 1. Contributing clinical study fractions and their roles in the surrogate discovery and validation program. Studies and study fractions outlined in red represent 
validation studies with 4-year outcomes. These were analyzed individually and also merged into a single validation meta-cohort. CV, cardiovascular; CVD, cardiovascular 
disease; CHD, coronary heart disease; HUNT, The Trøndelag Health Study; ARIC, Atherosclerosis Risk in Communities; BASEL VIII, Biochemical and Electrocardiographic 
Signatures in the Detection of Exercise-induced Myocardial Ischemia; CHART-2, Chronic Heart Failure Analysis and Registry in the Tohoku District 2 Trial; EXSCEL, Exenati-
de Study of Cardiovascular Event Lowering; ACCORD, the Action to Control Cardiovascular Risk in Diabetes; DiRECT, Diabetes Remission Clinical Trial; PRADA, Prevention 
of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy; ARB, angiotensin receptor blocker; BB, beta blocker.
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Table 2. The 27 proteins selected by machine learning for inclusion in the model. Their contributions to the risk prediction total in the population 
(“population effect”) are shown for the HUNT3 training dataset; a negative sign indicates that increases in the analyte were negatively correlated with risk. 
Magnitudes correspond to linear predictor beta coefficients in the model, with each analyte centered and scaled to its respective distribution in the training 
data. FDR, false discovery rate, P values corrected for 5000 measurements relating to the univariate prognostic performance of each analyte in a Cox model. CV, 
coefficients of variation, derived from 6300 production runs of quality control samples included in each 96-well plate of the SomaScan assay. 

Proteins included  
in the model Abbreviation Population effect Univariate P value FDR 

corrected Analyte CV (%)

Natriuretic peptides B NTproBNP 0.23 2.60 × 10−10 7.47

ADP-ribosylation factor-like 
protein 11 ARL11 −0.22 2.94 × 10−3 4.19

Anthrax toxin receptor 2 ANTR2 −0.14 5.27 × 10−7 3.85

Macrophage metalloelastase* MMP-12 0.14 1.16 × 10−5 8.84

Cartilage intermediate layer 
protein 2 CILP2 −0.13 2.75 × 10−6 5.95

Mucin-16* CA125 0.11 5.55 × 10−4 7.43

Receptor tyrosine-protein 
kinase erbB-3 ERBB3 −0.11 9.46 × 10−4 6.1

Voltage-dependent calcium 
channel subunit alpha-2/
delta-3*

CA2D3 −0.1 6.36 × 10−4 5.7

Golgi membrane protein 1 GOLM1 0.1 1.38 × 10−3 5.89

Neural cell adhesion molecule 1, 
120-kDa isoform* NCAM-120 −0.1 4.96 × 10−3 4.8

Spondin-1* Spondin-1 0.1 1.09 × 10−5 5.15

Immunoglobulin superfamily 
DCC subclass member 4 IGDC4 −0.09 1.44 × 10−11 8.4

Trefoil factor 3 TFF3 0.09 3.00 × 10−7 7.81

Protein phosphatase 1 
regulatory subunit 1A PPR1A 0.08 3.55 × 10−4 6.31

NAD-dependent protein 
deacetylase sirtuin-2 SIRT2 −0.08 2.11 × 10−3 6.5

Atrial natriuretic factor ANP 0.07 1.24 × 10−4 5.5

Junctional adhesion molecule B JAM-B 0.07 2.29 × 10−4 6.24

Low-density lipoprotein 
receptor-related protein 11* LRP11 0.07 1.06 × 10−4 7.08

Sushi, von Willebrand factor 
type A, EGF, and pentraxin 
domain-containing protein 1*

SVEP1 0.05 1.22 × 10−7 5.01

Receptor-type tyrosine-protein 
phosphatase eta PTPRJ −0.04 3.54 × 10−5 4.98

Inter-alpha-trypsin inhibitor 
heavy-chain H2* ITI heavy-chain H2 −0.03 2.56 × 10−6 6.44

Protein kinase C–binding 
protein NELL1 NELL1 0.03 4.94 × 10−7 5.97

Urokinase plasminogen 
activator surface receptor* suPAR 0.03 7.27 × 10−4 6.52

A disintegrin and 
metalloproteinase with 
thrombospondin motifs 13*

ATS13 −0.02 3.00 × 10−7 4.08

Bifunctional heparan sulfate 
N-deacetylase/N-
sulfotransferase 1

NDST1 −0.02 8.11 × 10−6 2.7

Triggering receptor expressed 
on myeloid cells 1* sTREM-1 0.02 1.31 × 10−6 7.66

continued on next page
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follows: The survival function for a Weibull AFT model could be 
expressed as

  S(t│ ) = exp { − 〖( * t)〗 ̂  a}  

where a is the shape parameter of the Weibull distribution and is es-
timated with the other parameters during model development. For 
the 27-protein test, â = 1.1, and the time t is set to 4 years to generate 
the probability of an event within 4 years.

The relationship of the 27 proteins with full names listed in 
Table 2 was a linear combination of protein measurements, as follows

  =̂ exp { − (2.83 + − 0.09 * TFF3 + − 0.23 * BNP + − 0.05 * SVEP1 +  
0.01 * "GDF − 11 / 8" + − 0.02 * “sTREM − 1” + 0.09 * IGDC4 +  

− 0.03 * NELL1 + − 0.14 * "MMP − 12" + 0.02 * ATS13 +  
− 0.03 * suPAR + 0.13 * CILP2 + 0.02 * NDST1 + − 0.1 * "Spondin − 1" +  

0.14 * ANTR2 + 0.04 * PTPRJ + − 0.07 * LRP11 +  
− 0.07 * ANP + − 0.07 * "JAM − B" + 0.08 * SIRT2 + − 0.11 * CA125 +  

0.1 * CA2D3 + 0.03 * “ITI heavy − chain H2” + 0.11 * ERBB3 +  
− 0.1 * GOLM1 + − 0.08 * PPR1A +  

 0.22 * ARL11 + 0.1 * "NCAM − 120" ) }  

Dynamic range of stratification and reclassification of risk
The dynamic range of prognostic stratification was assessed using the 
ratio of observed 4-year event rates between the highest and lowest 
quintiles of the predicted risks (Fig. 2). For proteins, these ratios were 
7.0- and 5.2-fold in the two initial validation datasets and 6.7-fold in 
the meta-cohort of 11,609 participants in all six validation datasets 
with 4-year outcomes combined.

Because the standard pooled cohort equation (PCE) was not 
qualified for our higher-risk study populations, we trained and vali-
dated a clinical model, refitting the same cardiovascular risk factors 
(age, sex, race, total cholesterol, high-density lipoprotein (HDL) 
cholesterol, blood pressure, diabetes, and smoking) in the same 
datasets as proteins, for the same time horizon, study populations, 
and composite end point. Compared to the protein model, the clin-
ical model’s dynamic range of stratification was more constrained. 
The ratios of observed events in clinical model–predicted quintile 5 
versus clinical model–predicted quintile 1 were 4.3- and 1.5-fold in 
initial validation datasets; in the subsequent validation meta-cohort, 
there were 5593 participants with all available clinical model com-
ponents, and in this subset, the ratio was 2.9-fold for the clinical 
model versus 8.4-fold for the protein model. Net continuous risk 
reclassification indexes (event-NRI [total NRI]) for proteins versus 
the clinical model were also highly positive at +61% [0.60] and +49% 
[0.53] in the two initial validation datasets and +42% [0.43] in the 
subset of the meta-cohort with available clinical model components.

Predicted and observed event rates and timing of events
Figure 2 shows the relation between predicted and observed event 
rates by decile in the training and initial validation datasets in secondary 
populations. For potential clinical applications, four protein-defined 
risk categories were created, with cutoffs that could be applied consist-
ently across studies with very different risk spectra. Four-year observed 
event rates were 5.6% (“low” risk, predicted 0 to 7.5%, n = 1677), 
11.2% (“low-medium” risk, predicted 7.6 to 25%, n = 4720), 20.0% 
(“medium-high” risk, predicted 26 to 50%, n = 3064), and 43.4% 
(“high” risk, predicted 51 to 100%, n = 2148) in the six studies in the 
validation meta-cohort. Kaplan-Meier survival estimates are also shown 
in Fig. 3. A simple recalibration process mitigated the tendency of the 
model to overpredict risk at the higher end of the prediction range, 
particularly in populations with low observed event rates; this was ap-
plied post hoc and is described in fig. S1. The median time to event for 
people who had events within the prediction period was 1.71 years 
overall, 1.48 years for the top quintile, and 1.40 years for the top decile.

Consistency of performance measured using 
discrimination metrics
Although discrimination measures are not thought to be the most 
reflective of a model’s application in clinical practice (22, 23), we used 
them to test the consistency of the protein model across ethnicities/
races, demographics, multimorbidities, age ranges, and geographic 
regions (Fig. 4). Area under the curve (AUC) values for the protein 
model in the initial validations in HUNT3 and ARIC were 0.77 and 
0.74; c-statistics were 0.73 and 0.70, respectively. For the six-study in-
dependent validation meta-cohort, the 4-year AUC for the protein 
model was 0.73 (with 95% confidence intervals of 0.72 to 0.74), and 
the c-statistic was 0.71 (0.69 to 0.72), generally consistent across all 
the different populations [men, women, Caucasian, Black, Japanese, 
those with known coronary heart disease (CHD) present or absent, 
elderly without known CHD, those with prevalent heart failure, those 
with diabetes, and those with suspected chronic coronary syndromes], 
whereas the AUC and c-statistics for the refit clinical model in the 
5593 participants with all components available were 0.64 (0.62 to 
0.65) and 0.62 (0.60 to 0.63). The discrimination performance of the 
standard PCE in these participants was similar to the optimized clin-
ical model, with AUC and c-statistics of 0.67 (0.65 to 0.68) and 0.63 
(0.62 to 0.64), respectively. Thus, refitting of the optimized clinical 
model enabled the calculation of the NRI but did not improve dis-
crimination performance versus the standard PCE.

In addition, in a post hoc analysis, combining the PCE and the 
protein model resulted in AUC and c-statistics of 0.75 (0.74 to 0.77) and 
0.73 (0.71 to 0.74)—0.02 and 0.01 incremental improvements, respec-
tively, versus the protein model alone. Furthermore, systolic blood pressure 
(in millimeters of mercury) did not vary significantly across protein- 
predicted risk categories: low, 133.7; low-medium, 132.6; medium-high, 
133.2; and high, 132.8 [analysis of variance (ANOVA), P = 0.18].

Proteins included  
in the model Abbreviation Population effect Univariate P value FDR 

corrected Analyte CV (%)

Growth/differentiation factor 
11/8 (shared epitope)* GDF-11/8 −0.01 3.00 × 10−7 3.97

*Potentially causal model proteins significantly associated with at least one cardiovascular disease–related trait.
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Sensitivity of the model to adverse, neutral, and beneficial 
changes in risk in paired samples
Table 3 shows the eight evaluations of changes in protein-predicted 
absolute risk within paired longitudinal samples, as well as by several 
commonly favored individual protein biomarkers that were available 
on the SomaScan platform. Approaching an adverse event that 
occurred after the second paired sample was correctly heralded by a 
greater increase in the calculated 27-protein model risk than in those 
without subsequent recorded events: a 2.9% greater increment over 
1 year in the EXSCEL trial (P < 0.01) and a 6% greater increment 
over 2 years in the ACCORD trial (24) (P < 0.05). Adverse changes 
were also correctly detected from anthracycline chemotherapy in the 
PRADA trial (25): an increase of +6.2% versus baseline (P  <  0.01) 
within about 3 months. In addition, the expected adverse effect of 
aging on cardiovascular risk was also manifest [+2.25% (P < 0.01) in 
1 year in the placebo group of the EXSCEL trial, +4.89% (P < 0.01) 
over 1 year in the control group in the DiRECT trial, and  +7.5% 
(P < 0.01) over 2 years in the ACCORD trial]. Neutral effects of treat-
ment were correctly predicted by the 27-protein model for the effect 
of more intensive diabetic control in the fraction of the ACCORD 
population studied here, where there was no change in observed 
event rates, and in PRADA, where angiotensin receptor blockers or 
beta blockers were neither observed nor predicted by the 27-protein 
score to individually reduce the impact of cardiotoxic anthracycline 
chemotherapy (26). Beneficial predicted changes were evident in the 
EXSCEL trial (27) where the effect of GLP-1 RA exenatide was pre-
dicted by the 27-protein model to result in an absolute 4-year risk 

reduction compared to placebo of −1.49% at 1 year into the random-
ized study (P < 0.01), compared with observed risk reduction of −0.8% 
(P = 0.06) at a median follow-up of 3.2 years. Beneficial changes were 
also predicted in the DiRECT trial (28) where remission of type 2 
diabetes was achieved in nearly half the participants at 12 months, 
with effective caloric restriction and mean weight loss of 10 kg. The 
protein model predicted an absolute risk difference of −6.7% versus 
the standard diet group (P < 0.01). In contrast, several individual pro-
tein biomarkers that were measurable on the SomaScan platform and 
known to be prognostic for cardiovascular events showed inconsist-
ent or insensitive relations to the same interventions (Table 3). 

Detecting elevated risks from different conditions known 
to be associated with higher observed event rates
The ability of the protein model to further detect mechanistically dis-
tinct drivers of risk was evaluated for conditions that have well- 
accepted epidemiologically observed elevated cardiovascular risks 
(29, 30). In PRADA, in breast cancer survivors 1 year after follow-up, 
the predicted cardiovascular risks were 13.5 versus 4.9% from our 
earlier analysis of a subset of matched women from the Fenland study 
(31). In ARIC visit 3, not used for training or validation (n = 11,301), 
shown in Fig. 5, the protein model correctly detected elevated risks in 
people with prior events, with history of cancer, currently smoking, 
with diabetes, and with rheumatoid arthritis, although the latter 
group was too small to detect the increased observed event rates 
known epidemiologically (32), because there were only two events in 
the 39 participants with RA. In the subgroup of individuals without 

Fig. 2. Calibration and dynamic range of stratification in secondary populations for the protein model versus the clinical model. The left panels represent the 
protein model, whereas the right panels represent the clinical model. The top row shows model training in 80% of HUNT3; the middle row shows model validation in 20% 
holdout fraction of HUNT; the bottom row shows model validation in 80% of ARIC secondary (visit 5). The slightly lower participant numbers for training the clinical mod-
el arose because of some missing clinical components. HL, Hosmer-Lemeshow goodness-of-fit statistic. Significant P values denote imperfect calibration.
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diagnosed or treated hypertension, people with above-median systol-
ic blood pressure at the time of ARIC visit 3 had both higher observed 
(+2.2%, P < 0.01) and protein-predicted (+1.2%, P < 0.01) event rates 
than participants in the same subgroup with equal-to- or below-median 
systolic blood pressure; similarly, participants without diagnosed or 
treated hyperlipidemia but with above-median total cholesterol/HDL 
ratio had higher observed (+3.0%, P < 0.01) and protein-predicted 
(+2.3%, P < 0.01) event rates within 4 years. Across all these conditions, 
there was a significant relationship (r = 0.83, P < 0.04) between the ob-
served event rate differences in cases versus controls and protein-predicted 
event rate differences. This proportionality relation is shown in fig. S2.

DISCUSSION
Despite the development of lipid lowering (2, 5, 8), anti-inflammatory 
(4, 6), antithrombotic (33), dual antiplatelet (34), and antidiabetic 
(7, 35) treatments, cardiovascular disease remains the leading cause 
of death and disability worldwide (12). This suggests that there is 

considerable scope for both precision use of existing medicines and 
the continuing development of further mechanisms of risk reduction.

Here, we reported the results from a large-scale prospectively de-
signed surrogate endpoint discovery and validation study based on 
proteomics. In 32,130 samples from 22,849 participants in nine clini-
cal studies with >170,000 participant-years of follow-up and more 
than 150 million individual protein measurements, we trained and 
validated a 27-protein prognostic cardiovascular model and evaluated 
it for the technical features of surrogacy as defined by the FDA bio-
marker qualification framework (16) in subsequent paragraphs.

Whereas the potential benefits of a surrogate end point are high, 
including accelerating patient access to effective drugs and terminat-
ing ineffective or unsafe drugs before large-scale exposure, the conse-
quences of false results are also serious and include the approval of an 
ineffective or unsafe drug. The weight of evidence required for quali-
fication of a surrogate end point is therefore high.

Biologic plausibility for the 27-protein model is high. Proteins 
regulate biological processes and integrate the effects of genes with 

Fig. 3. Stratification and calibration of protein predictions in defined risk categories in the validation meta-cohort for all studies with 4-year follow-up. 
(A) Kaplan-Meier survival curves in the merged meta-cohort (n = 11,609) illustrating stratification between the four risk categories, median plus 95% confidence intervals 
in shading. (B) Predicted risks [mean, SD (solid line) and range (dashed line)] and observed risks in individual studies and in the meta-cohort for each risk category. 
Observed rates are in Kaplan-Meier estimates to account for censoring.
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Fig. 4. Consistency of discrimination performance across groups. The forest plot shows the value of the 4-year AUC and the time-independent c-statistic across sub-
groups; means and 95% confidence intervals are shown. **For all studies, 4-year outcome data were available except for CHART-2, which is therefore not included in the 
meta-cohort. For that study alone, the 2-year AUC is shown instead of the 4-year AUC. All c-statistics used all available follow-up data described in Table 1. In addition to 
the combined-group comparisons with the clinical risk factors shown above, in the initial ARIC and HUNT validation studies (in participants where the component data 
were available), the clinical risk factor model had a c-statistic of 0.63 and 0.56, and the PCE had a c-statistic of 0.64 in the over-65 participants without known disease 
(where application of the equation is valid) in ARIC.
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the environment, age, comorbidities, lifestyle, and drugs (11,  31); 
proteins are highly mutable as conditions change (18, 19, 36, 37), en-
code demographic information (31), and are the targets of 95% of all 
known drugs (38). All 27 proteins in the model related to biologic 
processes that are generally reported to be risk prognostic for cardio-
vascular outcomes. In addition, 16 of the 27 model proteins were in-
cluded in a proteo-genomic database (21), and 12 of these proteins 
(75%) had at least one genetic causal association with cardiovascular 
disease or its risk factors.

The prognostic performance of the 27-protein model in indepen-
dent validation cohorts was superior to clinical models in every stan-
dard metric: dynamic range (about twofold greater), discrimination 
(about 0.1 greater AUC), and risk reclassification (an event NRI of 
more than 40%). It was also robust to sex, geographic, racial/ethnic, 
demographic, and morbidity differences across studies and does not 
use race as a variable. In addition, the reliable identification of indi-
viduals with an observed event rate of >50% and a median time to 
event of 18 months is of clinical and economic relevance.

Combining the protein model with the standard PCE or the opti-
mized clinical model added very little discrimination performance 
(0.01 gain in c-statistic with overlapping confidence intervals versus 
the protein model alone). This implied that the protein model had 
already encoded the biological information conferred by the clini-
cal model.

The protein model demonstrated universally concordant responses 
to known changes in risk when evaluated using paired samples from 

the same individuals. In people approaching events after the second 
sample in the EXSCEL and ACCORD trials, greater predicted incre-
mental risk elevations heralded subsequent events. For aging, protein- 
predicted risk elevations of +2.25 and +4.89% within 1 year in the 
placebo group of the EXSCEL study and the control group in the 
DiRECT study and +7.5% in 2 years in the ACCORD study were ob-
served. For drug toxicity, protein-predicted risks increased by +6.2% 
over about 3 months in the PRADA trial because left ventricular ejec-
tion fractions fell (25) during cardiotoxic anthracycline chemothera-
py (39). For neutral effects, in the ACCORD trial of intensive glycemic 
control, in the fraction of the participants with paired samples that we 
studied (and without hypoglycemic episodes that affected the larger 
trial), observed event rates were unchanged across groups, as were the 
protein predictions. In PRADA, the use of neither angiotensin recep-
tor blockers nor beta blockers had an observed long-term cardio-
protective effect (26), again matching the protein-predicted lack of 
benefit for those groups. For protein-predicted improvements, in 
EXSCEL, at first glance, the −1.49% (P < 0.01) protein-predicted benefit 
of exenatide, even when discounted for the shorter study follow-up 
than the prediction period, appears somewhat more beneficial and 
statistically significant than the observed 0.6% (P = 0.06) absolute re-
duction in cardiovascular event rates in 3.2 years (27). However, de-
clining adherence to exenatide over the median follow-up of 3.2 years 
may have reduced the observed benefits (27), and our study only 
evaluated changes within the first year. This, coupled with the finding 
that four of seven outcome studies with other GLP-1 RAs showed 

Table 3. Longitudinal sensitivity to change in risk for the 27-protein model and common individual prognostic biomarkers. Percentages for the protein 
model are of the change in absolute risk predictions within individuals (or the difference in risk increment across groups for randomized trials) from paired 
samples in the same participants over intervals of 1 or 2 years. “Event” and “no event” participants are from combined randomized groups. Upward arrows 
represent statistically significant effects in the direction of adverse risk and downward arrows in the direction of reduced risk (for biomarkers, P < 0.05 corrected 
for six multiple comparisons). NS, not statistically significant; ACCORD, the Action to Control Cardiovascular Risk in Diabetes; DiRECT, Diabetes Remission Clinical 
Trial; PRADA, Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy. Biomarkers were measured from the SomaScan assay; correlations with 
standard laboratory measures (except myeloperoxidase) are shown in table S9.

 
Condition 27 Proteins, 

absolute 
change in risk 

CRP Cystatin
-C 

GDF-15 Myelo-
peroxidase 

NT-
proBNP 

Troponin 
T 

Expected 
Adverse 
Change 

Approaching an event, 1-year 
change vs. no event (EXSCEL) 

  NS NS NS   

Approaching an event, 2-year 
change vs. no event (ACCORD) 

 NS NS NS NS NS NS 

Anthracycline chemotherapy, 3- 
month change (PRADA) 

  NS    NS NS 

Expected 
Neutral 
Change 

Intensive diabetic control, vs. 
standard control (ACCORD) 

NS NS   NS  NS NS 

Angiotensin receptor blocker vs. 
placebo (PRADA) 

NS NS NS NS NS NS NS NS 

Beta blocker in chemotherapy 
vs. placebo (PRADA) 

NS NS NS  NS NS NS 

Expected 
Beneficial 

Change 

Exenatide, within-subject change 
vs. placebo (EXSCEL) 

   NS  NS  NS 

Diet in diabetes in one year vs. 
standard diet (DiRECT) 

   NS  NS NS 
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cardioprotective superiority over placebo (35), suggests that a real ex-
enatide benefit in EXSCEL was detected by the protein model and 
that the significance (P = 0.06) of observed changes in outcomes was 
likely obscured by an insufficiently powered trial with a hierarchical 
statistical design, testing first for noninferiority. The predicted im-
proved cardiovascular risk in DiRECT is also likely to reflect a true 
benefit. Although 4-year event rates are not yet available, events were 
numerically fewer over the first 2 years (28), and reanalysis of the 
Look-AHEAD diabetes trial showed that individuals who lost ≥10% 
of their bodyweight had proportionately 21% lower incidence of ad-
verse cardiovascular outcomes (40). The same 27-protein model has 
also been evaluated in more than 800 patients presenting with coro-
navirus disease 2019; predicted risks increased rapidly during active 
infection and declined during recovery, and it predicted all-cause 
mortality within 28 days with an AUC of 0.83 (41).

We also evaluated the model cross-sectionally under conditions 
known to have elevations in cardiovascular event rates. Figure 5 in-
troduces such tests in more than 11,000 participants from ARIC visit 
3 for four further risk-changing mechanisms not explicitly included 
in the longitudinal studies: currently smoking, presence of diabetes, 
cancer history, and rheumatoid arthritis, plus known cardiovascular 
disease, all consistent with epidemiologic observations (29, 30, 42). In 
addition, the model correctly predicted elevated risks of undiagnosed, 

untreated above-median systolic blood pressure and undiagnosed, 
untreated above-median hyperlipidemia in this population, and last, 
consistent with epidemiology and the cancer survival evidence from 
ARIC, the predicted proteomic risks for cancer survivors in PRADA 
at long-term follow-up were also about threefold higher than in 
matched women without cancer (31).

The rationale for testing the putative surrogate’s responses to mul-
tiple mechanistic drivers or remediations of cardiovascular risk is to 
test empirically the concept of “universality” (that the surrogate will 
respond to the net change in outcome that results from any mecha-
nism). Universality was added to the surrogate endpoint evidentiary 
framework as an alternative to historically requiring causality (43) 
because under complex conditions, it is not known. Although some 
of the proteins in the risk model may be causal mediators, it is unlike-
ly that the protein model captured all such causal factors for cardio-
vascular disease.

A multivariate model also appears to be a more universal risk in-
tegrator than individual cardiovascular biomarkers, none of which 
were as reliably sensitive to change in risk across mechanisms as the 
27-protein model (as shown in Table 3). For example, NTproBNP is 
known to increase during dietary weight loss (44), and this was ob-
served in the DiRECT cohort. If this protein was viewed as a univari-
ate surrogate, then this would wrongly have suggested increased risk 

Fig. 5. Protein cardiovascular risk prediction and observed event rates under conditions with known higher cardiovascular risk. Analysis of 11,301participants in 
ARIC visit 3, which was not used for model training or model validation. Except for the control group, participants may be in more than one group. Groups with a dark 
blue asterisk have observed event rates significantly higher than the control group (P < 0.05, Dunnett’s correction for multiple comparisons). Groups with a teal asterisk 
have predicted event rates significantly higher than the control group (P < 0.05, Dunnett’s correction for multiple comparisons). *The rheumatoid arthritis group has 39 
participants and only two (5.1%) cardiovascular events. Note that the overprediction in the controls is to be expected because they do not have any of the higher-risk 
conditions that the model was trained on.
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from diet and resolution of diabetes. Although this protein is 1 of the 
27 proteins in the multivariate model, the net multivariate prediction 
was correct.

Our study and findings have some important limitations. First, 
the calibration of the model trained in secondary populations over-
predicts risk at the high end of the range in primary or mixed popu-
lations with lower event rates (similar to reported calibration errors 
for the PCE and Framingham risk scores) (45), although predictions 
in the lower and mid-range, where accuracy is most important, were 
reasonably aligned with observed event rates (Figs. 2 and 3) despite a 
fivefold difference in these rates across studies. Improvement by post 
hoc recalibration (46) could be obtained (fig. S1). Second, although 
an AUC of 0.73  in validation cannot be viewed as anywhere ap-
proaching perfection, it is unknowable what the achievable “ceiling” 
for a perfect prognostic test is, because changes in environmental 
exposure, medication, and behavior after the sample is taken, but 
within the 4-year prediction period, can easily change the risks. Third, 
although the sensitivity of protein models to universally detect changes 
(or lack of changes) in cardiovascular risk from any mechanism has 
been tested across 15 different mechanisms, there are notable drug 
class omissions, including PCSK9 inhibitors and SGLT2i. In addi-
tion, the cross-sectional epidemiologic evaluations of risks from 
different diseases in Fig. 5 do not represent a fully adjusted multipara-
metric comparison with existing risk factors. Last, the determination 
as to whether the weight of evidence is yet sufficient for qualification 
as a drug development tool for any category of surrogate validation 
has not yet been made by the FDA.

In conclusion, these findings suggest that agnostic, multidimensional 
machine learning, applied to a highly multiplexed information source 
and without favoring any historically used biomarkers, is a useful 
approach toward enhancing risk model performance. This study pro-
vides initial evidence that multiprotein models, exemplified by our 
27-protein model, may provide a much sought-after universal car-
diovascular surrogate end point.

MATERIALS AND METHODS
Study design
The proteomic program (Fig. 1) was initiated in secondary popula-
tions, because they have higher event rates and are likely more en-
riched for relevant biologic mechanisms of risk than healthier groups. 
Having met predefined performance metrics, the program continued 
to validate the model and to extend the intended use population to 
other higher-risk populations, all of which are known to be difficult 
to stratify (bottom left side of Fig. 1). Specifically excluded was primary 
prevention without known drivers of elevated risk. Then, the sensi-
tivity of the model to within-participant change in risks from multi-
ple mechanisms was tested using longitudinal blood samples (bottom 
center of Fig. 1). Last, the model was tested across groups with differ-
ent epidemiologically observed elevated risks, again across multiple 
mechanisms (bottom right side of Fig. 1). Each study evaluation was 
predefined in a statistical analysis plan; technical reports of the results 
were documented, and these were all filed to an auditable regulatory 
filing system (Arena Inc.).

Definition of the composite outcome
The outcome in this study was defined as the first event, subsequent 
to the blood sample, of myocardial infarction, stroke, heart failure 
hospitalization, or all-cause death. This composite end point used in 

our prior studies (18–20, 31) includes a broad range of events impor-
tant to patients, their providers, and in clinical trials (18, 47, 48). We 
chose all-cause death because of mounting evidence that clinical 
adjudication of cardiovascular from noncardiovascular causes tends 
to be inaccurate (49) and because clinical drug safety evaluations, for 
which a surrogate will be used, should be more encompassing rather 
than more exclusive. Revascularization procedures were excluded 
from the composite because of the contemporary changing frequency 
of nonacute procedures (50, 51) and because of likely geographic 
variation. Our inclusion of heart failure alongside atherosclerotic 
events resembles the “global” (48) or “general” (47) cardiovascular 
outcome used by ARIC and Framingham investigators, respectively. 
Combining such atherosclerotic and heart failure events is facilitated 
by their clinical predictors being virtually identical (52).

Proteomic platform
The SomaScan assay (53) and its performance characteristics (54) 
have been described previously. It used DNA-based binding reagents 
(modified aptamers) (55) to quantify the availability of binding epi-
topes on plasma proteins for about 5000 proteins, with high specificity 
and limits of detection largely comparable to antibody-based assays 
(tables S8 and S9). Briefly, the SomaScan assay started as a mix of 
thousands of fluorophore-labeled SOMAmer reagents immobilized 
on streptavidin-coated beads and incubated with 55 l of EDTA plas-
ma. Samples were run at three different dilutions to expand dynamic 
range to about 10 logs. After a series of washing steps and the use of a 
polyanionic competitor to negate nonspecific binding and a second 
capture step, SOMAmer reagents were hybridized to complementary 
sequences on a DNA microarray chip and quantified by fluorescence, 
which was related to the relative availability of the three-dimensional 
shape-charge epitope on each protein in the original sample. This in-
tegrates each protein’s abundance, shape, charge, and availability of 
the binding epitope.

Statistical methods for training and validation 
of the 27-protein model
Univariate Cox proportional hazards models were designed for pro-
teins associated with the composite outcome and assessed for all indi-
vidual proteins in the training set [80% of HUNT3 (56) (Norway) and 
20% of ARIC visit 5 (48) (United States)], in participants with known 
cardiovascular disease. One hundred and forty-four of the top 400 most 
significant (P  <  0.1, false discovery rate adjusted) proteins in each 
univariate list were common to both training datasets. These were 
input into a Cox regularized regression model using 10-fold cross- 
validation in the training set and penalized as a least absolute shrinkage 
and selection operator (LASSO) model (18) for the purpose of select-
ing a stable set of informative proteins. The resulting 27 proteins with 
nonzero coefficients from the cross-validated LASSO model using 
the minimum lambda (0.3) were then used to train a parametric AFT 
final model to provide additional time-varying flexibility for a model 
predictive of absolute risk. Four-year risk of a cardiovascular disease 
event and four categorical ranges (derived to have nonoverlapping 
confidence intervals and simple-to-communicate multiples of risk) 
of predicted event rates were the outputs.

Performance metrics
For prognosis in survival models, the most commonly evaluated 
metrics are for discrimination: the c-statistic (the ability of a model to 
discriminate between random pairs of individuals with different time 
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to event) or the AUC (the ability of the model to dichotomize the 
population into two classes at a defined time point). Accordingly, we 
used these measures as metrics, especially for testing consistency 
across populations and as comparators to the optimized clinical 
model. However, because neither of these assessments fully reflects 
the use of a surrogate with a continuous likelihood output in medical 
practice (22) or in clinical trials, we also placed emphasis on the dy-
namic range of these predictions.

Comparator clinical model
In the absence of clinical comparators previously validated for the 
composite cardiovascular end point, time horizon, and study popula-
tions, we selected the same measures used by the Framingham inves-
tigators to create a model for high-risk populations (57) and the 2013 
ACC/AHA PCE (58): age, sex, race, total cholesterol, HDL cholester-
ol, blood pressure, diabetes, and smoking. We retrained their coeffi-
cients in the same populations used for training the protein model, 
as we have done previously (18) and as is necessary to calculate 
an NRI. Comparative performance was assessed by discrimination 
(c-statistic and 4-year receiver operating characteristic AUC) and by 
the NRI in the first two validation datasets (HUNT3 and ARIC visit 
5). The refit clinical model and the standard PCE were also applied to 
5593 participants in the meta-cohort for which all the components 
were available.

Cardiovascular risk under conditions with epidemiologically 
elevated event rates
For the diseases and conditions known to be associated with elevated 
cardiovascular event rates shown in Fig. 5, 11,301 participants’ sam-
ples and data from ARIC visit 3 were used in a series of case-control 
designs; each case [current diabetes (n  =  1143), history of cancer 
(n = 337), rheumatoid arthritis (n = 39), known cardiovascular dis-
ease (n = 571), and current smokers (n = 2034)] was compared against 
the remainder of the cohort without those conditions (n = 7666). All 
were around the same age when enrolled, and some participants with 
more than one condition were used in more than one group. In a 
second approach, individuals with diagnosed hypertension or diag-
nosed hyperlipidemia were eliminated from either group. Then, each 
group was split at the median measurement (elevated systolic blood 
pressure and high total cholesterol/HDL ratio, respectively), and the 
predicted and observed event rates for individuals with directionally 
adverse measures (n = 2907 for systolic blood pressure and n = 4182 
for lipids) were counted as cases and directionally beneficial measures 
(n = 3041 for systolic blood pressure and n = 4176 for lipids) as con-
trols. The predicted and observed case-control differences were statis-
tically evaluated. For comparison with breast cancer in PRADA, which 
did not have noncancer controls, we used prior results from women 
in Fenland matched for age and cardiovascular history (n = 500).

Statistical analysis
The median reproducibility of the 27-protein model in nine repli-
cates of the same 10 samples was 4.98% (table S10). Specificity testing 
for each of the 27 modified aptamer reagents used in the model is 
shown in table S11, and interference testing showing no issues for 
common substances relevant to cardiovascular disease is in tables 
S12 and S13.

The final model was initially validated in study subsets, still with 
known cardiovascular disease and high event rates: 20% (139 partici-
pants) of HUNT3 and 80% (784 participants) of ARIC visit 5 not 

used in model training. Subsequent independent validation was per-
formed in datasets with populations of varying morbidities: BASEL 
VIII (59) (Switzerland, suspicion of chronic coronary syndromes), 
the placebo group of EXSCEL (27) (35 countries, type 2 diabetes), 
ARIC visit 5 (United States, elderly without known disease), and 
CHART-2 (60) (Japan, heart failure). Participants in EXSCEL assigned 
to placebo but who received a GLP-1 RA (n = 88) or SGLT2i (n = 169) 
treatments after baseline were excluded from this validation.

Participants from the six validation datasets with 4-year follow-up 
shown in Fig. 1 (n = 11,609) were pooled into a single meta-cohort. 
Baseline characteristics of each of the seven cohorts for which dis-
crimination metrics were calculated are shown in Table 1, and addi-
tional description of each cohort is provided in section S1. Where the 
c-statistic and AUC are calculated for these datasets, the variability 
of these metrics is also derived using 95% confidence intervals from 
200 bootstraps of each respective dataset.

Longitudinal sensitivity to change was assessed by comparing the 
mean change of protein-predicted cardiovascular disease risk for each 
respective group using one-tailed paired t testing. Parametric testing 
was deemed sufficient because of distribution of changes among, 
typically, hundreds of paired samples. Additional paired t testing was 
applied to measured abundances of six chosen biomarkers, with 
those results Bonferroni-adjusted for the six comparisons, and results 
considered significant if P < 0.05. For the cross-sectional case-control 
analyses in Fig. 5, t tests with Dunnett’s correction for multiple com-
parisons were used. Analysis was performed using R version 4.1.0, 
with model training and analysis using the following packages and 
respective versions: pROC version 1.17.0.1, survival version 3.2-11, 
glmnet version 4.1-1, and rms version 6.2-0.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abj9625
Materials and Methods
Figs. S1 and S2
Tables S1 to S13
MDAR Reproducibility Checklist
References (61–110)

View/request a protocol for this paper from Bio-protocol.
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Creating a surrogate for cardiovascular risk
Clinical trials can be limited by the lack of surrogates for cardiovascular risk, leading to increased costs and potentially
delaying important results. Here, Williams et al. used proteomics and machine learning to derive a 27-protein model
that could predict the 4-year likelihood of myocardial infarction, heart failure, stroke, or death better than a clinical
model. The proteins included in the model represented 10 mechanistic pathways, and 12 were associated with causal
genetic traits. This model was validated across more than 11,000 participants from multiple large studies and was
sensitive to both adverse and beneficial changes in outcome, suggesting that it has potential as a surrogate end point
for use in phase 2 trials.
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