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Abstract
Risk prediction for heart failure (HF) using machine learning methods (MLM) has not yet been established at practical 
application levels in clinical settings. This study aimed to create a new risk prediction model for HF with a minimum num-
ber of predictor variables using MLM. We used two datasets of hospitalized HF patients: retrospective data for creating the 
model and prospectively registered data for model validation. Critical clinical events (CCEs) were defined as death or LV 
assist device implantation within 1 year from the discharge date. We randomly divided the retrospective data into training 
and testing datasets and created a risk prediction model based on the training dataset (MLM-risk model). The prediction 
model was validated using both the testing dataset and the prospectively registered data. Finally, we compared predictive 
power with published conventional risk models. In the patients with HF (n = 987), CCEs occurred in 142 patients. In the 
testing dataset, the substantial predictive power of the MLM-risk model was obtained (AUC = 0.87). We generated the model 
using 15 variables. Our MLM-risk model showed superior predictive power in the prospective study compared to conven-
tional risk models such as the Seattle Heart Failure Model (c-statistics: 0.86 vs. 0.68, p < 0.05). Notably, the model with an 
input variable number (n = 5) has comparable predictive power for CCE with the model (variable number = 15). This study 
developed and validated a model with minimized variables to predict mortality more accurately in patients with HF, using 
a MLM, than the existing risk scores.
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Abbreviations
HF  Heart failure
BNP  B-type natriuretic peptide

SHFM  Seattle heart failure model
GWGT-HF  Get with the guidelines-heart failure
MAGGIC  Meta-analysis global group in chronic heart 

failure
LVEF  Left ventricular ejection fraction
LVAD  Left ventricular assist device
CCE  Critical clinical events

Introduction

Heart failure (HF) is a complex syndrome characterized by 
heterogenous pathophysiology [1]. The systemic state of a 
patient is often affected by various circumstances, not only 
by cardiac factors but also by extra-cardiac factors such as 
fluid volume retention, renal function, and neurohormo-
nal activation, resulting in dynamic changes in patient state 
[2–4]. Because of the complex interaction of multiple factors 
affecting the HF state, several methods for risk stratification 
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using multiple factor have already been proposed in clinical 
settings, such as the Seattle Heart Failure Model (SHFM) [5, 
6], the Get With The Guidelines-Heart Failure (GWTG-HF) 
risk model [7], and the Meta-analysis Global Group in Chronic 
Heart Failure (MAGGIC) score [8]. Some of these models 
require a large number of variables, such as 24 variables in 
SHFM, to increase the accuracy of prediction. However, most 
of these models use only simple linear models without con-
sidering nonlinear interactions between multiple factors. There 
is a possibility that methods based on non-linear interactions 
improve the predictive power compared with those based on 
linear interaction. Indeed, several studies have demonstrated 
the superiority of the models based on non-linear interaction 
using machine learning methods compared with models based 
on linear interaction [9–13]. Although they have a higher accu-
racy rate, these nonlinear risk prediction models have not been 
widely available in clinical settings. These machine learning 
models based on non-linear interactions also require a large 
number of predictor variables. When considering clinical 
application, reducing the variables seems to be beneficial in 
order to reduce the burden on the clinical site.

With this background, this study aimed to verify the 
hypothesis that non-linear models based on machine learn-
ing methods improve the predictive power for clinical out-
comes compared with conventional risk stratification tools 
based on a linear model. If so, we also aimed to identify 
the determinants of the operation of our model to facilitate 
clinical application. First, we aimed to create a non-linear 
prediction model for 1-year mortality with higher predictive 
power using retrospective data. If such a model is estab-
lished, it can be applied to replanning patient care includ-
ing advance care planning. Second, we validated our model 
using prospective data. Third, we optimized our model with 
the minimum independent variable size without sacrificing 
the model accuracy rate to facilitate the clinical application 
of our model.

Methods

Study design

This was a cross-sectional study of patients with HF admit-
ted to the National Cerebral and Cardiovascular Center 
(NCVC) of Japan. The validation study was performed using 
the data of National Hospital Organization Kyoto Medical 
Center (KMC).

Study population

Retrospective study

We retrospectively identified all hospitalized patients requir-
ing HF treatment between January 2013 and May 2016 in the 

NCVC via the diagnosis at discharge of diagnosis procedure 
combination system. According to the Framingham criteria 
[14], HF was diagnosed by at least two attending physicians. 
As for the patients, whether or not the HF episode met the 
Framingham criteria was reviewed by the investigators via 
medical records. We excluded patients who did not meet the 
criteria as judged by the investigator or attending physician 
for each patient as previously described [15]. We identified 
1204 HF hospitalizations. Because we assumed that this 
model would be applied to patients with advanced HF and 
multiple HF hospitalization history and could be used for 
the index for replanning patient care in the end-stage of HF 
to determine an initiation timing of advanced care planning, 
this study used the last hospitalization data in patients with 
multiple HF hospitalization histories. Patients who died dur-
ing the corresponding hospitalization period for HF were 
excluded from the analysis. Finally, data from 987 patients 
were included in this study.

Prospective study

We started a single-center, observational, ongoing, and pro-
spective cohort that included all patients requiring hospitali-
zation since January 2019 with a diagnosis of HF by at least 
two cardiologists. Whether the HF episode met the Framing-
ham criteria was reviewed by the investigators, including 
well-trained nurses and clinical research coordinators, and 
was finally approved by the cardiologist in the investigation 
team. One-hundred-and-ninety-seven HF patients between 
January and March 2019 were enrolled in this analysis.

Validation study

We also performed the validation study using the data of 
KMC. The data of the patients with hospitalized due to HF 
were collected in 2017, retrospectively. For the validation 
study, we convert the NT-proBNP values to BNP values 
using the formula published in the previous study [16].

Laboratory tests

All biochemical analyses were performed as routine clini-
cal examinations. BNP were measured by the human brain 
natriuretic peptide kit (TOSOH corporation, Tokyo, Japan) 
as previously described [17].

Echocardiography

Using the medical records, we retrospectively reviewed the 
echocardiographic data of the enrolled patients during hospi-
talization. Left ventricular (LV) dimensions were measured 
according to the American Society of Echocardiography 
guidelines [18]. LV ejection fraction (EF) was measured 
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using the modified Simpson method or semiquantitative 
two-dimensional visual estimation method, as previously 
described [19].

Clinical outcomes

After the discharge date, we investigated all causes of death 
and implantation of an LV assist device (LVAD) through 
medical chart review or a letter. Critical clinical events 
(CCEs) in this study were defined as all-cause death or 
LVAD implantation. Thus, non-survivors were defined as 
patients with the above critical events: all-cause death or 
LVAD implantation.

Machine learning algorithm

We used a machine learning framework of a tree-based 
algorithm called a gradient boosting machine to create our 
non-linear model for the binary classification of survival or 
non-survival categories. Instead of using a multilayer neural 
network model, we chose a tree-based algorithm as a non-
linear model to achieve both higher prediction accuracy and 
better model interpretability. Model interpretability helps us 
to create an important feature list that is essential for creating 
an optimized model with minimum independent variables, 
which increases the usability of the model in clinical prac-
tice. We implemented all the methods with the open-source 
Python (version 3.6) programming language and Scikit-learn 
library with Lenovo X390 with Windows 10 OS, 1.60 GHz 
4 core, and 16GM memory.

LightGBM

In this study, we used LightGBM [20, 21], which is a gra-
dient boosting algorithm framework, to create a nonlinear 
model. Most of the existing gradient boosting frameworks 
are algorithms that often provide better predictions, but the 
model creation process requires a longer computational time. 
LightGBM, a recent improvement of the gradient boosting 
framework, inherited the original high predictivity of gra-
dient boosting but resolved the computational time bottle-
neck by adopting a leaf-wise tree growth strategy. Moreover, 
LightGBM helps to solve the missing value problem and 
imbalanced data problem inside the framework by providing 
related hyper-parameters in the frameworks.

Overview of procedures

We followed a normal procedure to create our model. First, 
we randomly split our dataset into two parts, where 70% was 
used as the training data and the remaining 30% was used as 
the testing dataset, as shown in the flow chart (Fig. 1, upper 
panel). Second, we fine-tuned our model hyper-parameters 

by using 10% of our training data as the validation dataset. 
Third, we validated our model using a test dataset and vali-
dation with a prospective dataset. Forth, we also validated 
the model using other facilitate data of patients with HF.

Ethics

This study was composed of the two data sets (retrospec-
tive and prospective), which were approved by our insti-
tutional ethics committee: the research ethics committee 
of NCVC (M26-127, M30-142 and M30-548). The studies 
were designed to be carried out without obtaining individual 
informed consent according to the “opt-out” principle, as 
previously described [15]. Instead, we publicized a summary 
of the study protocol with the contact information for our 
office on the institution’s website, which provided patients 
with the ability to refuse enrollment in the study. Both proto-
cols were also registered in the Japanese University Hospital 
Medical Information Network Clinical Trials Registration 
(the retrospective study: UMIN 000034409; the prospec-
tive study: UMIN 000035428). In addition, regarding vali-
dation study using the data of KMC, the study protocol was 
approved by KMC ethics committee (19–074). All methods 
were carried out in accordance with relevant guidelines and 
regulations.

Statistical analyses

Results are expressed as the median and interquartile range 
(IQR). Fisher’s exact test or the χ2 test was used to compare 
categorical variables, as appropriate. The area under the 

Fig. 1  Study flow chart. Upper panel: we randomly split our dataset 
into two parts, where 70% was used as training data and the remain-
ing 30% was used as the testing dataset. Lower panel: we analyzed 
the predictive power of our method using prospective data (n = 197) 
to validate the machine learning risk model and compare its predic-
tive power with that of the conventional tool (Seattle Heart Failure 
Model and MAGGIC score)
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receiver operating characteristics (ROC) curve (AUC) and 
C-statistics were also calculated. The AUCs were compared 
using an algorithm developed by Delong et al [14]. We used 
R with the pROC package to perform the Delong test in 
this study. Statistical analyses regarding the comparison of 
AUC curves were performed using R 3.5.0, and the qROC 
software packages [22]. SHFM risk score [5] and MAGGIC 
risk score [8] were calculated by published formula and the 
patients with a lack of data were excluded from the analysis.

Results

Baseline patient characteristics

The enrolled patients in the retrospective study are sum-
marized in Table 1 and characterized as follows; New York 
Heart Association class III and IV on admission (42.4% and 
43.4%, respectively), male (60.8%), LVEF on admission 
(median: 35.0%, IQR [22.5, 52.5%]), LV end-diastolic diam-
eter on admission (median: 54.0 mm, IQR [47.0, 61.0 mm]), 
and plasma BNP levels on admission (median: 600.2 pg/ml, 
IQR [296.3, 1041.1 pg/ml]). The median length of hospitali-
zation was 19 days (IQR: 13, 27 days).

Mortality following hospital discharge in patients 
with HF

Of the 987 enrolled patients, CCE (all-cause death or LVAD 
implantation) occurred in 142 patients within 1 year from 
the discharge date.

Minimum variable selection

Our cross-sectional data consist of 987 samples and each 
sample has 172 predictor variables. We categorized the pre-
dictor variables into seven groups: general variables (13), 
pre-admission variables (15), hospital variables (32), cur-
rent post-admission variables (46), 1-year post-discharge 
variables (11), 2-year post-admission variables (11), and 
others (44). As our model predicts outcome events within 
one year, after we deleted 1- and 2-year post-admission vari-
ables, 150 variables remained. In the next step, we deleted 
variables with more than 30% missing values. In the fol-
lowing step, we performed correlation analysis and kept 
a single variable from a highly correlated pair (r ≥ 0.75). 
Finally, we used 39 variables to create our non-linear model 
using a machine learning method. To improve the applicabil-
ity of our model in clinical practice, we chose the variable 
selection process in our final step of model creation and 
optimized the model with a better prediction accuracy with 
fewer predictor variables. Using the LightGBM framework, 
we ranked 39 variables with respect to the importance of 

the trained model. Then, we rebuilt our model with a sub-
set of these 39 variables, as shown in Supplemental Fig. 1. 
The results of the training dataset are shown in Supplemen-
tal Fig. 2. Initially, we started with the five most important 
variables to train LightGBM with the same hyper-parameter 
settings as our original 39 variables model. One by one, we 
increase the variables and rebuild the model iteratively. If 
the newly added variable did not increase the c-static value, 
we excluded the variables from the targeted variable list. We 
terminated this iterative process, while the testing c-statistic 
was the maximum. Finally, we identified the first set of 15 
variables, which showed better predictive performance, as 

Table 1  Baseline patient characteristics

Values are the median (IQR) and patients number, N (%)
BMI body mass index, NYHA New York Heart Association, DM 
diabetes mellitus, LVEDD Left ventricular end-diastolic diameter, 
LVESD Left ventricular end-systolic diameter, LVEF left ventricu-
lar ejection fraction, BUN blood urea nitrogen, Hb hemoglobin, Hct 
hematocrit, CRP C reactive protein

Overall patients

Patients number 987
Age (y.o.) 78 (69, 84)
Gender (male %) 60.8
BMI (kg/m2) 22.5 (19.9, 25.2)
NYHA class
 Class III, N, (%) 418 (42.4)
 Class IV N, (%) 428 (43.4)

Etiology
 Ischemic, N, (%) 297 (30.1)
 Non ischemic, N, (%) 234 (23.7)
 Valvular, N, (%) 215 (21.8)
 Hypertensive, N, (%) 196 (19.9)
 Others, N, (%) 45 (4.6)

History
 Hypertension, N, (%) 659 (69.8)
 Diabetes mellitus, N, (%) 363 (37.2)

Vital signs and others on admission
 Systolic blood pressure (mmHg) 119 (105, 138)
 Diastolic blood pressure (mmHg) 68 (58, 82)
 Heart rate (bpm) 77 (66, 93)

Echocardiography
 LVEDD (mm) 54.0 (47.0, 61.0)
 LVESD (mm) 42.5 (33.0, 53.0)
 LVEF (%) 35.0 (22.5, 52.5)

Laboratory data
 BNP (pg/ml) 600.2 (296.3, 1041.1)
 BUN (mg/dl) 23 (17, 33)
 Creatinine (mg/dl) 1.08 (0.85, 1.56)
 Hb (g/dl) 12.0 (10.6, 13.4)
 Hct (%) 36.7 (32.3, 40.7)
 CRP (mg/dl) 1.35 (0.13, 1.27)
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shown in Table 2. We also created two other models with the 
best 10 variables and the best five variables.

Predictive power of risk models for clinical 
outcomes

The results of predictive power in the validation study are 
shown in Fig. 2, which used the 15 variables (Table 2, No. 
1–15). Next, we analyzed the association between variable 
numbers and predictive power. The predictive power for 
the clinical outcomes in the retrospective cohort is shown 
in Fig. 2 A, B, and C, which are based on 15 (No. 1–15 in 
Table 1), ten (No. 1–10 in Table 1), and five variables (No. 
1–5 in Table 1). The differences in predictability between 
A (No. 1–15) and B (No. 1–10) and between A (No. 1–15) 
and C (No. 1–5) was not statistically significant (p = 0.762 
and 0.690, respectively).

Next, we analyzed the predictive power of our method 
using prospective data (n = 197, Fig. 1, lower panel) as 
the validation study (Fig. 3A). We then compared the 
predictive power of the SHFM and MAGGIC risk model 
as a conventional predictive tool. Figure 3B and C show 
the AUC curves in the SHFM and MAGGIC risk model, 
respectively. The predictive power of the ML-risk model 
was superior to that of the SHFM (p = 0.043) and was not 
inferior to that of the MAGGIC risk model (p = 0.205). In 
addition, as shown in Supplemental Fig. 3, the predictabil-
ity was decreased in the patients with HF with preserved 

Table 2  Variables used for operating AI algorithm

IMP feature importance calculated by LightGBM, BMI body mass 
index, BNP B-type natriuretic peptide, CRP C reactive protein, LDLC 
low density lipoprotein cholesterol, WBC white blood cell, TG tri-
glyceride, TRPG tricuspid peak gradient, BUN blood urea nitrogen, 
LVEF left ventricular ejection fraction

No Variables IMP

1 Troponin levels 1093
2 Systolic blood pressure on admission 955
3 BMI at discharge 938
4 Hematcrit at discharge 877
5 BNP levels at discharge 855
6 CRP at discharge 831
7 LDLC on admission 771
8 Systolic blood pressure at discharge 770
9 WBC at discharge 753
10 Diastolic blood pressure at discharge 747
11 Creatinine levels at discharge 736
12 TG on admission 732
13 TRPG on admission 670
14 BUN on admission 651
15 LVEF on admission 621

Troponin levels on admission
Systolic blood pressure on admission

BMI at discharge
Hematocrit at discharge
BNP levels at discharge

CRP at discharge
LDLC on admission

Systolic blood pressure at discharge
WBC at discharge

Diastolic blood pressure at discharge
Creatinine levels at discharge

TG on admission
TRPG on admission
BUN on admission
LVEF on admission

Troponin levels on admission
Systolic blood pressure on admission

BMI at discharge
Hematocrit at discharge
BNP levels at discharge

CRP at discharge
LDLC on admission

Systolic blood pressure at discharge
WBC at discharge

Diastolic blood pressure at discharge

Troponin levels on admission
Systolic blood pressure on admission

BMI at discharge
Hematocrit at discharge
BNP levels at discharge

Input variable numbers=15 Input variable numbers=10 Input variable numbers=5

MLM-risk model(Retrospective study)

AUC = 0.87
Best Threshold

AUC = 0.86
Best Threshold

AUC = 0.86
Best Threshold

Fig. 2  The predictability of minimum number of variables risk model 
(MLM-risk model). Predictive power for the clinical outcomes in the 
retrospective cohort. A, B, and C, which are based on 15 (No. 1–15 
in Table 1), ten (No. 1–10 in Table 1), and five variables (No. 1–5 in 

Table 1). The differences in predictability between A (No. 1–15) and 
B (No. 1–10) and between A (No. 1–15) and C (No. 1–5) was not sta-
tistically significant (p = 0.762 and 0.690, respectively)
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EF (HFpEF). In contrast, the predictability was preserved 
in those with HFrEF.

We also performed the additional analysis for validation 
of this model using KMC. As shown in the Supplemental 
Fig. 4, AUC of this model ranged 0.67–0.69. The enrolled 
patients in KMC are summarized in Supplemental Table 1 
and characterized as follows; New York Heart Association 
class III and IV on admission (36.9% and 34.6%, respec-
tively), male (61.2%), LVEF on admission (median: 43.5%, 
IQR [33.0, 54.0%]), and LV end-diastolic diameter on 
admission (median: 51.0 mm, IQR [45.0, 56.0 mm]). Dif-
ferences were found in several patient characteristics as age, 
the rate of NYHA3-4, HF etiology, the rate of hypertension, 
blood pressure on admission, heart rate on admission, LV 
size and LVEF (Supplemental Table 1).

Discussion

This study demonstrated the strong predictive power of the 
nonlinear model compared with the conventional linear 
model. Our non-linear machine learning risk model predicts 
1-year mortality in patients with HF and was validated using 
a prospective cohort. Moreover, we identified the minimum 
variables that are necessary to operate the model for pre-
dicting clinical outcomes, as shown in Table 2. Although 
the variables identified in this study are widely known as 
predictors of clinical outcomes in cardiovascular diseases 
[14], the machine learning used in this study was able to 
efficiently choose the variables based on non-linear models. 
This study also demonstrates that our model works with a 
small number of variables without sacrificing its predictive 
power. This strong prediction power with a minimum vari-
able size ensures the practical application of our model in 
clinical settings. One unique point in the present study is that 
even if we decreased the number of variables in the machine 

learning models, the predictive power was not reduced 
(variable number = 15, AUC = 0.87; variable number = 10, 
AUC = 0.86; variable number = 5, AUC = 0.86), as shown in 
Fig. 2. Although the previous studies already demonstrated 
the efficacy of the machine learning models for prediction 
of heart failure outcomes [23–25], we focused on the devel-
opment of predictive models for the association of variable 
numbers and predictive power for clinical outcomes.

Several studies have demonstrated the benefits of machine 
learning for predicting clinical outcomes in patients with HF 
[11–13, 26]. Kwon et al. developed deep-learning-based AI 
algorithms for predicting mortality in patients with acute 
HF using neural network models with a c-statistic of 0.782 
[13]. Their models used demographic information and gen-
eral routine clinical examinations as electrocardiography 
and echocardiography findings as inputs for the model in 
clinical use and demonstrated the superiority of machine 
learning algorithms compared with the other conventional 
models. However, these models require a large amount as 
22–86 variables to operate the algorithms [13, 26]. In con-
trast, this study identified five to fifteen essential variables 
necessary to predict clinical outcomes in the operation of 
machine learning algorithms. Our study also demonstrates 
that our model is superior to the previous models, such as 
the SHFM or shows the comparable predictive power with 
the MAGGIC risk model. In addition, accurate predictabil-
ity was shown in the machine learning algorithm focusing 
on the minimum number of variables (MLM-risk model) 
as shown in Fig. 3. Given the clinical application of the 
risk prediction model, MLM-risk model will be expected to 
reduce the burden on healthcare workers in clinical settings, 
such as in emergency room.

The reason for the differences in predictive power 
between the conventional tool and the MLM-risk model in 
this study is uncertain at present. One speculation is that 
since previous risk models did not involve biomarkers such 

A. B. C.

AUC = 0.68
Best Threshold

AUC = 0.68
Best Threshold

Machine learning-risk model Seattle Heart Failure Model MAGGIC score

AUC = 0.85
Best Threshold

Fig. 3  Validation of machine learning risk model and compari-
son with conventional tools. In a validation study using prospective 
cohort data, the ROC curves are shown in A. ROC curves using the 
Seattle Heart Failure model and MAGGIC risk model are shown in 

B  and C , respectively. The predictive power of the machine learn-
ing risk model was superior to that of the Seattle Heart Failure model 
(p = 0.043) and was not statistically different with that of the MAG-
GIC risk model (p = 0.205)
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as BNP, we could not exclude the possibility that the differ-
ences in involved variables, such as BNP, contribute to their 
predictive power differences in the previous models and our 
current model. However, even when adding BNP values to 
the risk models in the previously validated studies [6, 27], 
their predictive power was also limited to below c-statics 
of 0.8. These findings and accumulating evidence raise the 
possibility that a non-linear model using the machine learn-
ing method might contribute to this difference. In addition, 
the previous models focused the variables on admission. In 
contrast, our model focused on the variables in both timings: 
on admission and before discharge. This might aid in plan-
ning therapies in post-discharge phases and contribute to the 
risk stratification after the discharge.

When this model was applied to the other facilitate data, 
the predictability was decreased. The reason for the differ-
ences in the two institutions is uncertain at present. One 
reason might be that a rate of patients with HFpEF tended 
to be higher in KMC. Indeed, LVEF was significantly higher 
in KMC than in NCVC (median LVEF: 43.5% vs. 35.0%, 
respectively). As described in the supplemental Fig. 3, the 
predictability of this model was decreased in patients with 
HFpEF, that might be associated with these findings. The 
other reason is that while the clinical outcomes in NCVC 
include the implantation of LVAD, it was not included in 
KMC protocol. Thus, differences in HF severity might be 
associated with these differences in predictability between 
the two institutes.

There were several limitations in this study. First, a limi-
tation of this study was that the data was initially derived 
from a single center and hence may be subject to a particular 
demographic selection bias. It is ideal for developing the 
model using the data of multiple facilitates. Thus, further 
investigation will be necessary. Second, this study did not 
include the patients treated with sacubitril/valsartan and 
sodium-glucose cotransporter-2 (SGLT2) inhibitors, because 
this study completed the data collection before these medica-
tions were released in our country. Further investigation is 
necessary to determine whether this algorism can be applied 
to the patients treated with these medications. Third, since 
this is a retrospective study, some data at discharges such as 
troponin levels were unavailable. Lastly, the predictability 
of this model was decreased in patients with HFpEF. These 
findings also suggest that the causes of lethal events to death 
in HFpEF are different from those with HFrEF, in accordant 
with the previous literature [28, 29]. Since the number of 
enrolled patients with HFpEF is limited in this study, further 
study will be necessary to confirm this finding.

In conclusion, using a machine learning approach, this 
study developed a highly predictive algorithm with mini-
mized input variable numbers for mortality in hospital-
ized patients with HF and validated its predictability using 
prospective registry data. Our non-linear model has strong 

predictive power, even when compared with the compared 
linear models.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00380- 023- 02237-w.
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