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Abstract
Background: Excessive alcohol consumption is associated with damage to various organs, but its

multi-organ effects have not been characterised across the usual range of alcohol drinking in a

large general population sample.
Methods: We assessed global effect sizes of alcohol consumption on quantitative magnetic

resonance imaging phenotypic measures of the brain, heart, aorta, and liver of UK Biobank

participants who reported drinking alcohol.
Results: We found a monotonic association of higher alcohol consumption with lower normalised

brain volume across the range of alcohol intakes (–1.7 � 10�3
± 0.76 � 10�3 per doubling of alcohol

consumption, p=3.0 � 10�14). Alcohol consumption was also associated directly with measures of

left ventricular mass index and left ventricular and atrial volume indices. Liver fat increased by a

mean of 0.15% per doubling of alcohol consumption.
Conclusions: Our results imply that there is not a ‘safe threshold’ below which there are no toxic

effects of alcohol. Current public health guidelines concerning alcohol consumption may need to be

revisited.
Funding: See acknowledgements.

Introduction
Alcohol consumption causes damage to multiple organs and systems, and heavy drinking is associ-

ated with increased all-cause mortality (Bell et al., 2017). According to the Global Burden of Dis-

eases Study, alcohol use was the seventh leading risk factor for both deaths and disability-adjusted
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life years in 2016, accounting for 2.2% and 6.8% excess in age-standardized female and male deaths,

respectively (GBD 2016 Alcohol Collaborators, 2016). While previous evidence has suggested that

low to moderate amounts of daily consumption may have beneficial effects on cardiovascular

health (Bell et al., 2017), a recent large-scale meta-analysis concluded that even moderate daily

alcohol intake may have significant impact on disease risk (Wood et al., 2018). Because of these

uncertainties, there remains controversy about whether there is a ‘safe level’ of alcohol drinking for

the general population (Fernández-Solà, 2015; Mukamal and Rimm, 2008).

The liver is a primary target for the detrimental effects of alcohol, as it is the primary site of alco-

hol metabolism (Cederbaum, 2012). With high levels of alcohol consumption, effects on other

organs (including the brain and heart) have been described (Obad et al., 2018). Excessive alcohol

use during adolescence has been associated with reduced brain grey matter

volumes (Heikkinen et al., 2017), but evidence regarding structural brain changes at lower levels of

alcohol intake is limited and conflicting (Ding et al., 2004; Mukamal et al., 2001; McEvoy et al.,

2018). Moderate to heavy alcohol consumption is implicated causally with pathologically reduced

left ventricular ejection fraction (van Oort et al., 2020), cardiomyopathy, heart failure, and sudden

death. Analyses of cardiac structure based on echocardiography have suggested that smaller differ-

ences in left ventricular mass consistent with early pathology can also be attributed to lower levels of

alcohol intake (Voskoboinik et al., 2019; Gonçalves et al., 2015a; Gémes et al., 2018).

Here, for the first time, we report associations across the range of population alcohol consump-

tion with differences in morphology or function of multiple organs determined from quantitative

measures of the brain, cardiac structure and function, and liver fat magnetic resonance imaging

(MRI) scans. Our aim was to investigate effects of alcohol at intakes within the currently recom-

mended limits for consumption by the general population. Discovery of evidence for potentially toxic

effects of alcohol within these recommended limits would have important implications for public

health and government policies regarding ‘safe’ levels of alcohol drinking.

Materials and methods

Study participants
UK Biobank is a prospective, observational study of ~500,000 people across the United Kingdom,

aged 40–69 years at recruitment (2007–2010) (Sudlow et al., 2015; Bycroft et al., 2018). Here we

used a subset of the UK Biobank data from participants whose brain, cardiac and/or aortic, and liver

MRI images and image-derived phenotypes (IDPs) were available. Non-drinkers and those with self-

reported brain, cardiac, and/or aortic diseases were excluded. IDPs of participants were included

based on availability of measures after the application of exclusion criteria (brain grey matter

[N = 10,143], brain white matter [N = 9053], heart [N = 11,821], aortic [N = 12,376], and liver

[N = 3649]) (Figure 1). Table 1 describes characteristics of the population included in the analyses.

The study is reported following the Strengthening the Reporting of Observational Studies in Epide-

miology (STROBE) guideline.

Baseline characteristics
Information on age, sex, ethnicity, college degree education, body mass index (BMI), hypertension,

diabetes, and history of smoking and cardiac, brain, and/or aortic diseases were reported at the

imaging assessment. We defined participants as hypertensive if they had systolic blood

pressure � 140 mmHg or diastolic blood pressure � 90 mmHg or were receiving antihypertensive

medication (Suzuki et al., 2017). We recorded self-reported diabetes, smoking history, and college

degree education.

Alcohol consumption
We calculated alcohol intake as grams of alcohol per day (g/d) among drinkers based on self-

reported alcohol drinking from a touch-screen questionnaire described previously (Evangelou et al.,

2019). Briefly, the quantity of each type of drink was multiplied by its standard drink size and refer-

ence alcohol content. Drink-specific intake during the reported drinking period was summed and

converted to g/d alcohol intake for each participant with completed responses to the quantitative

drinking questions. The alcohol intake for participants with incomplete responses was imputed by
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bootstrap resampling from the completed responses, stratified by drinking frequency and sex. Alco-

hol intake was log2-transformed, as it has a skewed distribution. Using this transformation, a log2

change of 1 unit translates to a doubling of alcohol consumption, e.g., from 10 g/d to 20 g/d.

Brain MRI acquisition and pre-processing
Details of the image acquisition are available online (Miller et al., 2016). Briefly, the T1-weighted

(3D MPRAGE, 1 � 1 � 1 mm3 resolution, field of view [FOV]/matrix = 208 � 256�256, TR [repetition

time] = 2000 ms, TI [inversion time] = 880 ms) brain images used here were acquired using a Sie-

mens Skyra 3T running VD13A SP4 (Siemens Healthcare, Erlangen, Germany) with a Siemens 32-

channel RF receive head coil used for structural analyses. Before analyses, the images were regis-

tered in the standard Montreal Neurological Institute (MNI) space using DARTEL tools in SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

Participants with  

T1-weighted images 

(N=14,502) 

Lack of alcohol  

consumption data 

Participants with  

 brain diseases  

Participant data 

included (N=10,143) 

Lack of complete  

baseline data 

Participants with  

diffusion images  

(N=12,855) 

Participants with  

cardiac images 

(N=19,075) 

Participants with  

aortic images 

(N=16,349) 

Participants with  

 cardiac diseases  

Participants with  

 aortic diseases  

N=100 

N=2283 

N=1976 

Participant data 

included (N=9053) 

N=84 

N=2019 

N=1699 

Participant data 

included (N=11,821) 

N=864 

N=3846 

N=2544 

Participant data 

included  (N=12,376) 

N=8 

N=1803 

N=2162 

Figure 1. Flow chart of eligible participants included in analyses.

Table 1. Participant characteristics.

Brain grey matter Brain white matter Heart Aorta Liver

N 10,143 9053 11,821 12,376 3649

Baseline characteristics

Age (years) (mean ± SD) 62.9 ± 7.4 62.9 ± 7.4 62.8 ± 7.4 63.0 ± 7.4 55.7 ± 7.5

Male (%) 49.8 49.4 49.9 50.2 50.5

Caucasian (%) 99.8 99.8 99.8 99.8 93.2

Educational attainment (%) 53.2 53.5 53.5 52.9 53.1

Body mass index (mean ± SD) 26.7 ± 4.4 26.6 ± 4.3 26.5 ± 4.3 26.5 ± 4.2 26.5 ± 4.1

Hypertension (%) 39.6 39.3 39.0 39.1 46.5

Diabetes (%) 5.2 5.0 4.7 4.9 2.5

Smoking history (%) 39.7 39.4 38.6 39.1 36

Alcohol consumption (g/d) (median–IQR) 14.29
(6.46–26.78)

14.29
(6.26–26.79)

14.29
(6.70–26.79)

14.29
(6.69–26.79)

16.61
(8.93–28.86)
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After separate segmentation of grey and white matter and cerebrospinal fluid, each tissue mask

was modulated with the Jacobian determinants derived from the spatial normalisation, multiplying

each voxel by the relative change in volume to correct for volume changes in the non-linear

normalisation (Good et al., 2001). Brain and regional volumes were normalised to the correspond-

ing total intracranial volumes, calculated from the sums of volumes of the grey and white matter and

cerebrospinal fluid. For the multiple regression voxel-wise analysis, the normalised grey matter maps

were smoothed by convolving an isotropic Gaussian kernel of 8 mm full width at half maximum,

excluding voxels with a grey matter probability value < 0.2.

Brain diffusion MRI images were acquired using a Stejskal-Tanner pulse sequence (Elliott et al.,

2018). Our analyses used the white matter microstructural IDPs for fractional anisotropy and orienta-

tion dispersion (the extent of directional complexity of diffusion) (Zhang et al., 2012; Wood et al.,

2018) for 27 probabilistically defined (Suzuki et al., 2017) white matter tracts described and made

available in the UK Biobank Data Showcase (UK Biobank, 2021). The white matter microstructure

measures were then expressed as mean z-scores (referenced to the mean values for the full study

population) in our analyses.

Cardiac and aortic MRI acquisition and pre-processing
Details of the cardiac and aortic image acquisitions were reported previously (Petersen et al.,

2016). Briefly, the cardiac and aortic MRI were acquired using a clinical wide bore 1.5T scanner

(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany) with 48

receiver channels, a 45 mT/m and 200 T/m/s gradient system, and an 18-channel anterior body sur-

face coil used in combination with 12 elements of an integrated 32 element spine coil and electro-

cardiographic gating for synchronisation with the cardiac cycle. The acquired images were

segmented to derive IDPs using a fully convolutional network (CNN) (Bai et al., 2018; Wenjia Bai

et al., 2018).

The ventricular CNN image segmentation provided measures that, with adjustments for body sur-

face area, were used as IDPs for the left ventricular mass, left ventricular end-diastolic (LVEDVI) and

left ventricular end-systolic volume (LVESVI), and right ventricular end-diastolic (RVEDVI) and right

ventricular end-systolic volume (RVESVI) indices. Left and right ventricular ejection fraction IDPs were

derived from integrations of the primary indices as (LVEDVI – LVESVI)/LVEDVI � 100 and (RVEDVI –

RVESVI)/RVEDVI � 100, respectively. The atrial image segmentation provided left and right atrial

volume indices after adjustment for body surface area. The aortic image segmentation provided

maximal ascending (AAoAI) and descending (DAoAI) aortic area indices and minimal ascending

(AAoAImin) and descending (DAoAImin) aortic area indices after adjustment for body surface area.

Ascending and descending aortic distensibilities were derived as (AAoAI – AAoAImin)/AAoAImin/(sys-

tolic – diastolic blood pressure) and (DAoAI – DAoAImin)/AAoAImin/(systolic – diastolic blood pres-

sure), respectively (Petersen et al., 2016).

Liver fat MRI acquisition and pre-processing
Abdominal images for assessments of liver fat were acquired using a Siemens 1.5T MAGNETOM

Aera. Details of the MRI acquisition and pre-processing protocol are provided

elsewhere (Wilman et al., 2017). Briefly, a dual-echo Dixon Vibe protocol, which can be used to gen-

erate images distinguishing water and fat, from which liver fat could be determined, was performed

(2.2 � 1.2 � 10 mm3 resolution, TR = 3.23 ms, TE = 1.44 ms). The liver MRI proton density fat frac-

tion % derived is available to researchers through the UK Biobank Data Showcase (UK Biobank,

2021).

Statistical analysis
We estimated the age-related differences in the brain normalised volume, cardiac, and liver fat IDPs

by their regression onto age adjusted for sex, ethnicity, educational level, BMI, hypertension, diabe-

tes, and smoking history. We then examined the magnitudes of differences in organ morphology or

functional IDPs with alcohol consumption. Each IDP was regressed onto log2-transformed alcohol

consumption adjusted for age, sex, ethnicity, educational level, BMI, hypertension, diabetes, and

smoking history; raw coefficients are used for all measures except brain white matter diffusion meas-

ures, for which standardised coefficients are reported. Normality of the IDPs was tested using a
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Shapiro–Wilks test. We used partial residual plots to assess any deviation from the fitted model.

Additionally, a voxel-wise parametric analysis (Fernández-Solà, 2015; McEvoy et al., 2018), which

used each voxel of the grey matter maps as dependent variable and log2-transformed alcohol con-

sumption as independent variable adjusted for intracranial volume and the same covariates as

above, was conducted for mapping grey matter regions associated with alcohol consumption. In sec-

ondary analysis of brain, cardiac, and liver phenotypes, an interaction term for age and log2 alcohol

consumption was included in the regression models. To correct for multiple comparisons, the signifi-

cance level was set to p<0.017 and p<4.5 � 10�3 for brain and heart/aorta imaging IDPs, respec-

tively, whereas for liver fat at p<0.05. For the voxel-wise analysis, a family-wise error-corrected

threshold of p<0.05 was used for grey matter analysis. All statistical analyses were carried out using

STATA 14.

Patient involvement
The performed analyses are based on existing data from a population-based cohort in the

United Kingdom (UK Biobank). No patients were explicitly engaged in designing the present

research question or the outcome measures, nor were they involved in developing plans for recruit-

ment, design, or implementation of the study. No patients were asked to advise on interpretation or

writing up of results. Results from UK Biobank are routinely disseminated to study participants via

the study website and social media outlets.

Results

Participant characteristics and imaging phenotypes
Baseline characteristics of the participants included in this study and summary IDPs are shown in

Tables 1 and 2. For the five subsets in our analysis, median alcohol intakes among these drinkers

were similar: ~20.9 g/d (i.e., just over two 10 g drinking units, where 125 ml of 12.5% wine is 1.25

drinking units) for men and ~10.7 g/d for women with 25th and 75th centiles ~10.3 g/d and 35.8 g/d

for men and ~3.6 g/d and 17.9 g/d for women (Supplementary file 1).

Table 2. Structural imaging phenotypes for brain (N = 10,143), heart (N = 11,821), and aorta

(N = 12,376) in the UK Biobank.

Imaging-derived phenotypes Mean ± SD

Brain

Normalised brain volume 0.72 ± 0.045

Normalised grey matter volume 0.43 ± 0.034

Normalised white matter volume 0.29 ± 0.020

Heart

Left ventricular mass index (g/m2) 46.2 ± 8.5

Left ventricular end-diastolic volume index (ml/m2) 80.0 ± 13.7

Left ventricular ejection fraction (%) 59.6 ± 5.9

Left atrial volume index (ml/m2) 38.8 ± 10.7

Right ventricular end-diastolic volume index (ml/m2) 84.5 ± 15.4

Right ventricular ejection fraction (%) 57.3 ± 6.0

Right atrial volume index (ml/m2) 46.1 ± 13.1

Aorta

Ascending aortic area index (mm2/m2) 455.3 ± 91.9

Ascending aortic distensibility (10�3mmHg�1) 1.98 ± 1.17

Descending aortic area index (mm2/m2) 254.1 ± 43.3

Descending aortic distensibility (10�3mmHg�1) 2.64 ± 1.25

SD: standard deviation.
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Associations of alcohol consumption with brain structure
Age-related differences in normalised brain volumes (NBV) in the population, adjusted for alcohol

consumption, were about 0.3% lower/year (mean ± standard error: �3.0 � 10�3
± 0.05 � 10�5/year,

p<1.0 � 10�300), consistent with previous studies (Enzinger et al., 2005). The contribution of alcohol

to the observed brain volume differences was about 0.17% lower NBV per doubling of alcohol con-

sumption (–1.7 � 10�3
± 2.3 � 10�4, p=3.0 � 10�14). Lower volumes per doubling of alcohol con-

sumption of both total grey (–1.2 � 10�3
± 1.7 � 10�4, p=1.9 � 10�12) and white (–5.1 � 10�4

± 1.2

� 10�4, p=2.1 � 10�5) matter jointly account for the lower brain volumes associated with greater

alcohol intake. Partial residual plots confirmed the observed relationship without any deviations from

the fitted model (Figure 2a–c).

Exploration of voxel-wise parametric associations of the log2-transformed g/d alcohol intake with

brain grey matter showed greatest negative associations with regions in the cingulate and orbital

frontal cortices, the bilateral insula, and thalami (Figure 3). There were no positive correlations

between alcohol and grey matter volumes for any of the brain regions after family-wise error

correction.

Finally, given the associations of greater alcohol intake with lower white matter volumes, we

explored alcohol-associated differences in fractional anisotropy, a measure of white matter micro-

structure, across 27 major white matter tract IDPs. The bilateral corticospinal tracts showed

increased fractional anisotropy with greater alcohol intake (standardised coefficient, left,

0.013 ± 0.003 per doubling of alcohol consumption, p=1.0 � 10�4; right, 0.011 ± 0.003,

p=4.20 � 10�4). This was associated with lower orientation dispersion (standardised coefficient, left,

–0.013 ± 0.003, p=8.1 � 10�4; right, –0.013 ± 0.003, p=1.4 � 10�3), suggesting greater fibre coher-

ence or a relatively reduced density of orthogonally crossing white matter tracts (Zhang et al.,

2012; Mollink et al., 2017).

Associations of alcohol consumption with heart and aorta
We first tested for age-related differences in cardiac and aortic IDPs adjusted for alcohol consump-

tion in the population. Left ventricular mass index and the left atrial and left and right ventricular end

diastolic volume indices were lower with greater age. Right and left ventricular ejection fractions

both were modestly greater with age. There was also a small relative increase in the right atrial vol-

ume index with age (Table 3).

Log2-transformed alcohol consumption was associated directly with measures of left ventricular

and atrial mass and volume. The effects of alcohol on the cardiac IDPs were largely in opposite direc-

tion to those for age (Table 3).

Ascending and descending aortic area indices increased with age, while distensibility decreased;

log2-transformed alcohol consumption associations for the aorta showed the same directions of

effect as age (Table 3).

The associations with alcohol appeared linear-log with no deviation as indicated by the partial

residual plots (Figure 2d–n). We also explored interactions between age and log2 alcohol consump-

tion, which were most evident for the left ventricular mass index and aortic distensibility IDPs

(Supplementary file 2). There was no evidence for U-shaped associations, i.e., higher values at both

the lower and higher ends of the alcohol intake distribution, for any of the aortic or cardiac IDPs.

Association of alcohol consumption with liver fat
We did not observe age-related differences in liver fat after adjusting for alcohol consumption and

other relevant variables (0.015 ± 0.01, p=0.14). There was an increase of liver fat per doubling of

alcohol consumption (0.15 ± 0.06, p=0.006), with no deviation from linear-log association observed

(Figure 2o).

Discussion
In this large population-based study of the effects of alcohol consumption on different organs, we

found that increasing alcohol intake was associated with reduced brain grey matter volume,

increased left ventricular mass and volume and aortic area index, and reduced descending aortic dis-

tensibility and increased liver fat. There was no evidence against a monotonic increase across the
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Figure 2. Partial residual plots for the imaging-derived phenotypes. Partial residual plots for (a) normalised brain volume, (b) total grey volume, (c) total

white volume, (d) left ventricular mass index, (e) left ventricular end-diastolic volume index, (f) left ventricular ejection fraction, (g) right ventricular end-

diastolic volume index, (h) right ventricular ejection fraction, (i) left atrial volume index, (j) right atrial volume index, (k) ascending aortic area index, (l)

descending aortic area index, (m) ascending aortic distensibility, (n) descending aborting distensibility, and (o) liver fat.
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range of alcohol intakes, indicating potentially

pathological effects of alcohol on the brain,

heart, and aorta across the full range of alcohol

intake in the population, without evidence for a

threshold.

Current guidelines for safe alcohol consump-

tion vary between countries, mostly around one

or two standard drinks/day. In the

United Kingdom, the Chief Medical Officers’

guideline for both men and women suggests that

avoiding more than 14 units/week (corresponding

to 16 g/d alcohol) on a regular basis maintains

health risks at a low level (UK Chief Medical Offi-

cer’s, 2016). In the United States, the suggested

threshold is �2 drinks/day (~28 g/d) for men and

�1 drink/day (~14 g/d) for

women (United States Department of Health

and Human Services, 2015). In a recent meta-

analysis, excess mortality was observed above

around 100 g alcohol intake per week (14.3 g/d),

but with reduced incidence of myocardial

infarction (Wood et al., 2018). Our results sug-

gest that alcohol consumption below this thresh-

old and below the currently recommended

guidelines worldwide is associated with patholog-

ical structural and functional changes in brain,

heart, aorta, and liver.

Previous research on structural and functional

changes in the brain has indicated that excessive

alcohol use is associated with abnormal develop-

ment of the brain grey matter in

animals (Cosa et al., 2017) and

humans (Heikkinen et al., 2017), but the studies

were small and underpowered. Here we found

evidence of inverse associations of brain volume

with amounts of alcohol consumed in a general

population sample of adults. The magnitude of the effects appears to be meaningful: doubling of

alcohol consumption (e.g., from 10 to 20 g/d) was associated with over half the brain volume reduc-

tion attributed to a year of aging in the population. This suggests a possible relationship between

alcohol consumption and increased susceptibility to age-related brain pathologies and disease, con-

sistent with our recent report of a genetic correlation between alcohol consumption and neuropsy-

chiatric disease (Evangelou et al., 2019).

The effects of alcohol consumption on the brain appeared to be relatively generalised with a

reduction in both white and grey matter volumes with greater alcohol consumption. Alcohol intake

has previously been reported to be associated with reduced grey matter volumes in specific areas of

the brain including the hippocampus and the inferior-medial frontal and anterior cingulate

cortices (Topiwala et al., 2017). Our voxel wide-analysis also showed relatively greater associations

of alcohol consumption with lower cingulate volumes and provides new evidence for similar direc-

tions of association within the orbital frontal cortex, the bilateral insula, and the thalami.

Studies of the effect of alcohol consumption on brain white matter have been less conclusive to

date (Ding et al., 2004; Mukamal et al., 2001; McEvoy et al., 2018). This lack of consensus in the

literature may in part reflect both study power and the potential complexity of changes in the mac-

roscopic MRI measures of brain microstructure (Ferizi et al., 2017). Our study, the largest to date,

found that the ratio of variance to effect was larger for white matter than grey matter, highlighting

the need for larger study sizes to estimate volume differences in white matter. We also found higher

fractional anisotropy and decreased orientation dispersion (a measure of greater fibre

Figure 3. Voxel-wise associations of alcohol

consumption with brain grey matter volumes

(N = 10,143). Highlighted clusters define regions in

which reductions of spatially normalised grey matter

volume are inversely correlated with log2-transformed

alcohol consumption (g/d). The analysis suggests

higher relative atrophy in the cingulate cortex (light

blue arrowheads, A, B), thalamus (green arrowheads, A,

C), orbital frontal cortex (red arrowheads, A, D), and

insular cortex (dark blue arrowheads, C, D). Broken

lines in (A) show levels for axial images in (B–D). The

voxel-wise parametric model was adjusted for age, sex,

ethnicity, body mass index, college degree education,

hypertension, diabetes, and smoking history. The

results are displayed on the MRI template available in

SPM12 at axial slices of 46.5 mm (B), 6 mm (C), and –7.5

mm (D) relative to the bregma. The calibration bar

provides the colour range use to describe t-scores

calculated using a family-wise error (FWE)-corrected

threshold of p<0.05.
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coherence) (Enzinger et al., 2005) in the corticospinal tracts with increasing alcohol consumption.

As we have no reason to hypothesise adaptive plasticity with an increased density of descending

motor neurons (one interpretation of increased fractional anisotropy) (Mole et al., 2016), we inter-

pret these observations as reflecting not differences in the structures of corticospinal tracts, but

lower densities in major axonal tracts crossing them (e.g., the cingulum bundle and superior longitu-

dinal fasciculus). This interpretation is broadly consistent with the lower grey matter volumes in asso-

ciated cortical regions (e.g., the cingulate and anterior prefrontal cortices) reported here and

previously with greater alcohol consumption (Topiwala et al., 2017). A similar ‘paradoxical’ differ-

ence in fractional anisotropy in the context of decreased density of crossing fibre tracts distinguishes

people with mild cognitive impairment who progress most rapidly to Alzheimer’s

disease (Douaud et al., 2011).

We provide evidence for cardiac remodelling including the association of alcohol consumption

with larger ventricular masses, end-diastolic volumes, and left atrial volume indices. Our findings are

consistent with previous echocardiographic studies that showed association between increasing

alcohol intake and greater left ventricular mass (Gonçalves et al., 2015a; Gémes et al., 2018;

Manolio et al., 1991) (although a smaller recent MRI study, assessing effects of light-to-moderate

alcohol consumption, reported similar left ventricular mass in drinkers compared to non-

drinkers; Voskoboinik et al., 2019). Left ventricular mass is a strong prognostic factor for incidence

of cardiovascular disease and mortality (Levy et al., 1990). Greater atrial indices with higher alcohol

consumption have also been reported (Gonçalves et al., 2015a); atrial enlargement can be consid-

ered a risk factor for several adverse cardiovascular outcomes (Benjamin et al., 1995) and is associ-

ated with increased risk of heart failure (Gottdiener et al., 2006). Alcohol consumption had same

directions of effect as aging for the thoracic aortic measures (larger diameters and lower distensibil-

ities). Such changes may also contribute to greater risks of cardiovascular disease and

mortality (Erbel and Eggebrecht, 2006; Redheuil et al., 2014).

A number of studies have suggested a ‘U’-shaped association between alcohol drinking and car-

diovascular outcomes, even after exclusion of ex-drinkers from the non-drinker

category (Marmot et al., 1981). Our diagnostic plots for the relationship between alcohol and car-

diovascular measures did not provide evidence of deviation from a monotonic association and there-

fore did not support a ‘U’-shaped association for these measures. Rather, our results point to

pathological effects of regular alcohol intake on the heart and major vessels occurring below current

consumption guidelines.

Table 3. Associations of age and alcohol consumption with cardiac (N = 11,821) and aortic (N = 12,376) imaging phenotypes.

Aging/year, estimate* ± SE p-value Alcohol, estimate* ± SE p-value

Heart

Left ventricular mass index �0.10 ± 0.01 1.3 � 10�31 0.36 ± 0.04 8.5 � 10�22

Left ventricular end-diastolic volume index �0.33 ± 0.02 6.0 � 10�90 0.61 ± 0.07 4.1 � 10�17

Left ventricular ejection fraction (%) 0.04 ± 0.01 6.3 � 10�7 0.05 ± 0.03 0.16

Left atrial volume index (ml/m2) �0.12 ± 0.01 8.9 � 10�17 0.43 ± 0.06 6.0 � 10�12

Right ventricular end-diastolic volume index (ml/m2) �0.33 ± 0.02 5.6 � 10�80 0.57 ± 0.08 2.5 � 10�13

Right ventricular ejection fraction (%) 0.04 ± 0.01 1.6 � 10�8 0.05 ± 0.03 0.13

Right atrial volume index (ml/m2) 0.04 ± 0.02 6.9 � 10�3 0.26 ± 0.07 3.0 � 10�4

Aorta

Ascending aortic area index (mm2/m2) 2.75 ± 0.11 4.0 � 10�130 2.64 ± 0.50 1.5 � 10�7

Ascending aortic distensibility (10�3mmHg�1) �0.09 ± 0.001 <1 � 10�300
�0.006 ± 0.005 0.22

Descending aortic area index (mm2/m2) 1.86 ± 0.05 2.0 � 10�291 1.34 ± 0.22 2.1 � 10�9

Descending aortic distensibility (10�3mmHg�1) �0.09 ± 0.001 <1 � 10�300 –0.02 ± 0.005 7.5 � 10�4

*Estimates ± SE define coefficients for cardiac and aortic imaging phenotype changes per year age or per doubling of alcohol consumption (g/d) with their

standard errors. The aging model was adjusted for sex, ethnicity, body mass index, and prevalence of college degree education, hypertension, diabetes,

and smoking history. The alcohol consumption model was adjusted for age, sex, ethnicity, body mass index, and prevalence of college degree education,

hypertension, diabetes, and smoking history. SE, standard error.
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Excessive alcohol intake is a well-known risk factor for increased liver fat (Bellentani et al., 1997),

but the evidence regarding low-to-moderate alcohol consumption has been inconclusive. Several

prospective studies have reported a lower prevalence or risk of fatty liver (Moriya et al., 2015;

Hashimoto et al., 2015; Yamada et al., 2010) for low-to-moderate compared to excessive alcohol

consumption. However, a randomised trial showed that even moderate consumption of red wine for

three months increases liver fat (Kechagias et al., 2011; van Eekelen et al., 2019). Our results are

consistent with this. The magnitude of the association with alcohol (0.15% per doubling of alcohol

consumption) suggests that alcohol could explain a major proportion of the population variance in

liver fat (mean liver fat density percentages in a larger UK Biobank sample ranged between a mean

of 1.34–5.71%) (Linge et al., 2019).

Our results highlight the multi-organ effects of low and moderate levels of alcohol consumption

in late middle-aged people. This may reflect direct toxicities. For example, the toxic effect of alcohol

or its metabolites can cause myocardial damage that leads to increased rates of cardiomyopathies,

heart failure, and mortality (Wood et al., 2018; Gonçalves et al., 2015b). Deleterious effects of

alcohol on cell function and survival and consequent organ injury may affect a number of biological

processes, e.g., oxidative stress, inflammation, aberrant post-translational modifications of proteins,

dysregulation in lipid metabolism, upregulation of catabolic processes and signal transduction path-

ways, and epigenetic changes involving DNA methylation impairments (Souza-Smith et al., 2016;

Osna and Kharbanda, 2016). However, our observations may also reflect interactions between

pathologies across organ systems. For example, alcohol is metabolised primarily in the liver, where it

increases fatty acid synthesis (Cederbaum, 2012) and leads to metabolic abnormalities that inde-

pendently contribute to cardiovascular and brain pathologies (Suzuki et al., 2019; Wilson et al.,

2005; Cai et al., 2012).

Our study has limitations. The observational design of UK Biobank has inherent limitations that

preclude establishing causal relationships. Also, the participants are relative healthy compared to

the general UK population and most are of European ancestry (Fry et al., 2017). The extent to which

results are generalisable to other populations or populations of various ethnic groups needs to be

explored. We relied on self-reported alcohol intake information obtained on a single occasion at the

baseline assessment. This is subject to misreporting and recall bias, especially among heavy drinkers

who may under-report their intake (Boniface et al., 2014; Greenfield and Kerr, 2008) and may

have led to bias in the estimation of the effects of alcohol intake on the outcomes under study. Fur-

thermore, the imaging data were also only available at one point in time. Future longitudinal analysis

will enable effects of low or moderate alcohol intake on anatomical and structural changes of the

various organs to be measured over time directly.

In summary, our findings provide new insights into the adverse effects of alcohol intake on the

structures of brain, heart, and aorta and on liver fat deposition. Specifically, we show that these

effects are monotonic (linear-log), increasing across the full range of reported alcohol intakes in this

large population sample, with no apparent threshold. Our results therefore indicate that pathologi-

cal changes in major organ systems may occur at even small amounts of daily alcohol intake. This

has important implications for governmental and public health policies concerning ‘safe’ levels of

alcohol drinking in the general population. Further research is needed, but we believe current guide-

lines on alcohol drinking may need to be revisited.
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Fernández-Solà J. 2015. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nature
Reviews Cardiology 12:576–587. DOI: https://doi.org/10.1038/nrcardio.2015.91

Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE. 2017. Comparison of
Sociodemographic and Health-Related characteristics of UK biobank participants with those of the general
population. American Journal of Epidemiology 186:1026–1034. DOI: https://doi.org/10.1093/aje/kwx246,
PMID: 28641372

GBD 2016 Alcohol Collaborators. 2016. Alcohol use and burden for 195 countries and territories, 1990-2016: a
systematic analysis for the global burden of disease study 2016. Lancet 392:1015–1035. DOI: https://doi.org/
10.1016/50140-6736(18)31310-2
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