
D
ow

nloaded
from

http://journals.lw
w
.com

/cardiovascularpharm
by

BhD
M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3i3D

0O
dR

yi7TvSFl4C
f3VC

4/O
AVpD

D
a8K2+Ya6H

515kE=
on

12/01/2021

Downloadedfromhttp://journals.lww.com/cardiovascularpharmbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8K2+Ya6H515kE=on12/01/2021

Journal of Cardiovascular Pharmacology Publish Ahead of Print
DOI: 10.1097/FJC.0000000000001089

 
 

 

Endothelium in Coronary Macro- and Microvascular Diseases 

Shigeo Godo, MD, PhD1; Jun Takahashi, MD, PhD1; Satoshi Yasuda, MD, PhD1; Hiroaki 

Shimokawa, MD, PhD1,2 

1Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 

Sendai, Japan 

2Graduate School, International University of Health and Welfare, Narita, Japan. 

Conflict of Interest Disclosure: None. 

Declaration of Funding Source: This work was supported in part by the Grant-in-Aid for 

Scientific Research from the Ministry of Education, Culture, Sports, Science and 

Technology, Tokyo, Japan (16K19383 and 17K15983). 

Address for correspondence: Hiroaki Shimokawa, MD, PhD.Department of Cardiovascular 

Medicine Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, 

Sendai 980-8574, Japan, Tel: +81-22-717-7153, Fax: +81-22-717-7156, E-mail: 

shimo@cardio.med.tohoku.ac.jp 

 

 

 

ACCEPTED

 Copyright © 20  The Author(s). Published by Wolters Kluwer Health, Inc. 21



 
 

This is an open-access article distributed under the terms of the Creative Commons 

Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is 

permissible to download and share the work provided it is properly cited. The work cannot be 

changed in anyway or used commercially without permission from the journal. 

 

Abstract 

 

The endothelium plays a pivotal role in the regulation of vascular tone by synthesizing and 

liberating endothelium-derived relaxing factors inclusive of vasodilator prostaglandins (e.g. 

prostacyclin), nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH) factors 

in a distinct blood vessel-size dependent manner.  Large conduit arteries are predominantly 

regulated by NO and small resistance arteries by EDH factors.  Accumulating evidence over 

the past few decades has demonstrated that endothelial dysfunction and coronary vasomotion 

abnormalities play crucial roles in the pathogenesis of various cardiovascular diseases.  

Structural and functional alterations of the coronary microvasculature have been coined as 

coronary microvascular dysfunction (CMD), which is highly prevalent and associated with 

adverse clinical outcomes in many clinical settings.  The major mechanisms of coronary 

vasomotion abnormalities include enhanced coronary vasoconstrictive reactivity at epicardial 

and microvascular levels, impaired endothelium-dependent and -independent coronary 
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vasodilator capacities, and elevated coronary microvascular resistance caused by structural 

factors.  Recent experimental and clinical research has highlighted CMD as the systemic 

small artery disease beyond the heart, emerging modulators of vascular functions, novel 

insight into the pathogenesis of cardiovascular diseases associated with CMD, and potential 

therapeutic interventions to CMD with major clinical implications.  Herein, we will 

summarize the current knowledge on the endothelial modulation of vascular tone as well as 

the pathogenesis of coronary macro- and microvascular diseases from bench to bedside, with 

a special emphasis placed on the mechanisms and clinical implications of CMD. 

(229/250 words) 

 

Key words: coronary artery disease, coronary microvascular dysfunction, endothelial 

function, endothelium, nitric oxide, vasospastic angina (6/3–6 key words or phrases) 

 

Abbreviations 

 

ACE: angiotensin-converting enzyme 

CABG: coronary artery bypass grafting 

CAD: coronary artery disease 

CCB(s): calcium channel blocker(s) 
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CMD: coronary microvascular dysfunction 

CO: carbon monoxide 

DES: drug-eluting stents 

EDH: endothelium-dependent hyperpolarization 

EDCF(s): endothelium-derived contracing factor(s) 

EDRF(s): endothelium-derived relaxing factor(s) 

FMD: flow-mediated dilatation 

HFpEF: heart failure with preserved ejection fraction 

H2O2: hydrogen peroxide 

H2S: hydrogen sulfide 

INOCA: ischemia and no obstructive CAD 

MACE: major adverse cardiovascular events 

NO: nitric oxide 

PCI: percutaneous coronary intervention 

PVAT: perivascular adipose tissue 

RHI: reactive hyperemia index 

VSA: vasospastic angina 

VSMC: vascular smooth muscle cells 
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Summary 

 

Introduction 

 

A mountain of evidence has accumulated over the past few decades demonstrating that 

endothelial dysfunction and coronary vasomotion abnormalities play essential roles in the 

pathogenesis of various cardiovascular diseases.1,2  The major mechanisms of coronary 

vasomotion abnormalities include enhanced coronary vasoconstrictive reactivity at epicardial 

and microvascular levels, impaired endothelium-dependent and -independent coronary 

vasodilator capacities, and enhanced coronary microvascular resistance caused by structural 

factors (Figure 1).3,4  The role of endothelial dysfunction has been well recognized in the 
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development and progression of coronary macro- and microvascular diseases, although 

Rho-kinase-induced myosin light chain phosphorylation with resultant hypercontraction of 

vascular smooth muscle cells (VSMC) rather than endothelial dysfunction1 is the central 

mechanism of coronary artery spasm at epicardial5,6 as well as at microvascular levels.7  For 

better or for worse, previous studies exclusively focused on structural and functional 

abnormalities of “epicardial” coronary arteries (i.e. coronary macrovascular disease) in 

patients with coronary artery disease (CAD) because they are immediately visible on 

coronary angiography in the catheter laboratory and amenable to procedural approaches 

represented by percutaneous coronary intervention (PCI) and coronary artery bypass grafting 

(CABG).  However, a nationwide large-scale cohort study in the United States assessing a 

total of 12,062,081 coronary revascularizations in patients with CAD revealed that 

risk-adjusted mortality significantly decreased after CABG but not after PCI regardless of 

clinical indications.8  Thus, structural and functional abnormalities of the coronary 

microvasculature, which is referred to as coronary microvascular dysfunction (CMD), have 

gained growing attention as potential research and therapeutic targets in many clinical 

settings, including ischemic heart disease,9-16 heart failure with preserved ejection fraction 

(HFpEF),17-26 aortic stenosis,27 and even non-cardiac diseases, such as chronic inflammatory 

disorders28-32 and liver diseases.33  The term “ischemia and no obstructive CAD (INOCA)” 

has been coined for patients who have chest pain regardless of the presence or absence of 
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coronary macrovascular disease (i.e. epicardial obstructive CAD).34   Many studies have 

consistently revealed high prevalence and significant prognostic impact of CMD in patients 

with INOCA in both genders, especially in females.9-16  Moreover, different subtypes of 

coronary vasomotion abnormalities often coexist in various combinations in a subclinical, 

asymptomatic manner even in the absence of obstructive CAD, causing myocardial ischemia 

due to CMD.13,35-37  Indeed, the counterintuitive results of the two landmark clinical trials 

addressing the management of stable CAD, the Objective Randomised Blinded Investigation 

with optimal medical Therapy of Angioplasty in stable angina (ORBITA) Trial38 and the 

International Study of Comparative Health Effectiveness with Medical and Invasive 

Approaches (ISCHEMIA) Trial,39 have questioned the benefit of PCI or CABG and have 

suggested the importance of the coronary microvascular physiology, which interventional 

strategy could not improve.  Although these trials did not directly focus on coronary 

microvascular function, an intriguing speculation is that CMD, which is highly prevalent in 

patients with a wide spectrum of CAD, might have contributed to residual cardiac ischemia 

even after the successful coronary revascularization.  

The endothelium plays a pivotal role in the regulation of vascular tone by 

synthesizing and liberating endothelium-derived relaxing factors (EDRFs), including 

vasodilator prostaglandins (e.g. prostacyclin), nitric oxide (NO), and endothelium-dependent 

hyperpolarization (EDH) factors, as well as endothelium-derived contracting factors 
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(EDCFs).1,2  Endothelial dysfunction can be attributed to reduced production or action of 

EDRFs or increased responses of EDCFs, initiating the step toward atherosclerotic 

cardiovascular diseases.2  In this review, we will summarize the current knowledge on the 

role of the endothelium in the regulation and modulation of vascular tone involved in the 

pathogenesis of coronary macro- and microvascular diseases from bench to bedside, with a 

special emphasis on the mechanisms and clinical implications of CMD.  

 

Endothelial Modulation of Vascular Tone: Blood Vessel Size-Dependent Contribution of 

Endothelium-Derived Relaxing Factors 

Figure 2 shows the key players of endothelium-dependent vasodilatation.  Shear stress and 

various agonists stimulate endothelial cells to synthesize and release different EDRFs to 

cause relaxation of the underlying VSMC and subsequent vasodilatation.1,2  To date, three 

kinds of EDRFs have been identified, including vasodilator prostaglandins, NO, and EDH 

factors.1,2  EDH-mediated relaxations are observed in the presence of cyclooxygenase and 

NO synthase inhibitors and are associated with hyperpolarization of the neighboring 

VSMC.40,41  The nature of EDH factors appears to be heterogeneous depending on species 

and vascular beds of interest,42 including epoxyeicosatrienoic acids (metabolites of 

arachidonic P450 epoxygenase pathway),43,44 electrical communication through gap 

junctions,45 K+ ions,46 hydrogen sulfide (H2S),47,48 carbon monoxide (CO),49 and as we have 
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identified, endothelium-derived hydrogen peroxide (H2O2).
50  Among them, EETs mainly 

take part in EDH-mediated relaxations in human,51 canine,52 porcine,53 and bovine coronary 

arteries,54 K+ ions in porcine55 and bovine56 coronary arteries, CO in rat coronary arteries,49 

and endothelium-derived H2O2 at physiological low concentrations in the coronary 

circulation of humans57,58 and animals.59-63  Like other gaseous mediators, H2S has 

pleiotropic cardiovascular effects, such as shear stress-mediated vasomotor control in 

coronary arteries,64 arterial blood pressure-lowering effects,65 and anti-inflammatory and 

anti-oxidant properties.42  As illustrated in Figure 2, these EDRFs finely modulate vascular 

tone in a distinct blood vessel-size dependent manner; vasodilator prostaglandins play a small 

but invariable role, NO predominantly modulates the tone of large conduit arteries (e.g. 

epicardial coronary arteries) and the contribution of NO decreases as the blood vessel size 

decreases, whilst that of EDH increases as the blood vessel size decreases and consequently 

EDH-mediated responses are the major mechanism of vasodilatation in small resistance 

arteries (e.g. coronary microvessels).1,66-68  This blood vessel size-dependent contribution of 

NO and EDH is well conserved across species from rodents to humans to achieve a 

physiological balance between them.  Accordingly, EDH is especially important in 

microcirculations, where blood pressure and organ perfusion are mostly determined.  It 

should be emphasized that epicardial coronary artery is just like a tip of the iceberg, because 

more than 95% of coronary vascular resistance is predominantly determined by the 
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pre-arterioles (more than 100 �m in diameter) and arterioles (less than 100 �m),69 where 

EDH-mediated responses in the mechanism of vasodilatation become more important than 

NO-mediated relaxations.  Multiple mechanisms are involved in the augmented 

EDH-mediated responses in small resistance arteries, including negative interactions between 

NO and several EDH factors.68,70-74  Keeping these concepts in mind, in the treatment of 

patients with coronary macro- and microvascular diseases, cardiologists should pay more 

attention to microcirculations although they are invisible on routine coronary angiography.  

The reason for this will be discussed later.  

 

Coronary Macrovascular Disease 

Inflammation and Coronary Vasospastic Angina 

Hypercontraction of VSMC mediated by Rho-kinase-induced myosin light chain 

phosphorylation rather than endothelial dysfunction is the predominant mechanism of 

coronary artery spasm.1  Building on this mechanism, recent studies have revealed close 

relationships among inflammation, perivascular adipose tissue (PVAT), and vasa vasorum in 

the pathogenesis of coronary artery spasm.  Briefly, a major inflammatory cytokine 

interleulin-1� caused intimal thickening and coronary vasospastic responses to intracoronary 

serotonin or histamine via outside-to-inside signaling in pigs in vivo.75  Multimodality 

imaging techniques, such as micro-computed tomography and optical frequency domain 
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imaging, enabled us to visualize enhanced adventitial vasa vasorum formation associated 

with coronary hyperconstriction via Rho-kinase activation in patients with VSA.76,77  Vasa 

vasorum serves as a pipeline for inflammatory mediators derived from the surrounding 

inflamed adipose tissue to the local coronary atherosclerotic lesions in the vascular wall.  

Indeed, coronary vasoconstriction in response to intracoronary acetylcholine in patients with 

non-obstructive CAD was more prominent in coronary artery segments that had macrophage 

infiltration and vasa vasorum proliferation in an additive fashion than in those without both.78  

Inflamed PVAT plays important roles in the underlying mechanisms behind coronary 

vasomotion abnormalities.  We have recently demonstrated that drug-eluting stent (DES) 

induced marked inflammation of coronary PVAT in association with coronary 

hyperconstricting responses in pigs in vivo79 and that the extent of coronary perivascular 

inflammation in patients with VSA was markedly decreased in the spastic coronary artery in a 

reversible manner after a median treatment period of 23 months with calcium-channel 

blockers (CCBs),80 the drug of choice for the treatment and prevention of coronary artery 

spasm.81  Refer to concise reviews and our recent study for more information on the novel 

roles of PVAT and adventitial vasa vasorum in the modulation of vascular functions.82-85 

 

Drug-Eluting Stent-Induced Coronary Inflammation and Spasm 

Although DES is currently the mainstay of PCI to significant coronary lesions, unresolved 
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issues after coronary stenting include neoatherosclerosis, coronary hyperconstricting and 

inflammatory responses at the site of stent placement, and persistent or recurrent angina in 

the absence of residual epicardial stenosis.86-89  Coronary PVAT inflammation following 

DES implantation79,80 and cardiac lymphatic dysfunction90 have been shown to be involved in 

enhanced coronary vasoconstrictive reactivity, suggesting that inflamed PVAT and cardiac 

lymphatic dysfunction may be novel therapeutic targets to reduce coronary hyperconstricting 

responses caused by DES. 

 

Coronary Microvascular Disease 

Mechanisms, Prevalence, and Clinical Significance of CMD 

A growing body of experimental and clinical evidence has highlighted the crucial role of 

CMD in the pathophysiology of cardiac ischemia in patients with various cardiovascular 

diseases with major clinical implications.4  The underlying mechanisms of CMD appear to 

be multifarious, including several structural and functional alterations; enhanced coronary 

vasoconstrictive reactivity (e.g. coronary spasm) at epicardial and microvascular levels, 

impaired endothelium-dependent and -independent coronary vasodilator capacities, and 

enhanced coronary microvascular resistance caused by structural factors (e.g. luminal 

narrowing, vascular remodeling, vascular rarefaction, and extramural compression), all of 

which can cause myocardial ischemia and often overlap and coexist in various combinations 
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even without the presence of obstructive CAD (Figure 3).3,4,35,37,108  Coronary 

microvascular spasm is defined as reproduction of angina symptoms, ischemic ECG changes, 

but no epicardial spasm in response to intracoronary acetylcholine provocation testing.91  

The major mechanisms of coronary microvascular spasm include Rho-kinase-mediated 

myosin light chain phosphorylation,7 increased production of vasoconstrictive mediators, 

such as serotonin,92 endothelin-1,93,94 and neuropeptide Y,95 and inflammatory conditions in 

the coronary microvasculature96 with resultant enhanced coronary vasoconstrictive reactivity.  

MicroRNAs are small non-coding RNAs regulating gene expressions via degradation or 

translational repression of mRNA and play various regulatory roles in the cardiovascular 

system.97  For instance, microRNAs-125a/b-5p are highly expressed in vascular endothelial 

cells and inhibit the expression of endothelin-1.98  A previous study showed decreased levels 

of microRNA 125a-5p in parallel with increased levels of plasma endothelin-1 in patients 

with takotsubo cardiomyopathy, giving support to the coronary microvascular spasm 

hypothesis of the disease.99  Readers are encouraged to refer to the comprehensive review 

article on the contemporary experimental animal models of CMD with a keen insight into 

anatomical, metabolic, and mechanistic considerations of different models.100 

The prevalence of CMD in patients with CAD has been shown to be unexpectedly 

high.  Indeed, more than half of patients undergoing invasive coronary angiography for the 

evaluation of suspected coronary macrovascular disease have no significant coronary artery 
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stenosis.101  A large cohort study (n=1,439) from Mayo Clinic showed that about two-thirds 

of patients with chest pain who had angiographically normal coronary arteries or 

non-obstructive CAD had either endothelium-dependent or -independent CMD, which was 

evaluated by invasive coronary reactivity testing.13  This clinical entity has been referred to 

as INOCA, in which the role of CMD has been recognized as an alternative etiology of 

symptoms and signs of myocardial ischemia.34  Moreover, recent studies comprehensively 

assessing coronary physiology by multimodality protocols revealed that a substantial 

proportion of patients with INOCA differ in the underlying coronary microvascular 

disease.13,35,36,85  Furthermore, we have recently demonstrated, in patients with VSA, a 

significant 5% increased risk of major adverse cardiovascular events (MACE) for each 

1-point increase in index of microcirculatory resistance (IMR), a catheter-derived measure of 

CMD.37  If complicated with CMD, patients with INOCA are associated with increased 

future adverse cardiac events, including myocardial infarction, percutaneous or surgical 

revascularization, cardiac death, and hospitalization for unstable angina.102-105  As 

extensively reviewed elsewhere106,107 and summarized in Table 1, several methods are 

available for appraising coronary microvascular function, with variable differences in costs, 

invasiveness, accessibility, evaluable measures, and diagnostic accuracy.  Although the 

diagnostic accuracy of contemporary non-invasive stress tests is limited for detecting 

CMD,13,108 comprehensive invasive assessment of coronary vasomotor reactivity using 
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intracoronary acetylcholine, adenosine, and other vasoactive agents is feasible, safe, and of 

diagnostic value to extract patients with CMD.13,35,109-113  Such structured approach to 

endotype patients with CMD based on the underlying mechanism of coronary vasomotion 

abnormalities may be important to tailor the most appropriate treatment and may provide 

physicians with useful information to assist decision making and risk stratification beyond 

conventional risk factors.   

 

CMD as Systemic Vascular Disease beyond the Heart 

Recent studies have revealed that coronary vasomotion abnormalities are often concomitant 

with peripheral endothelial dysfunction, where CMD is a cardiac manifestation of the 

systemic small artery disease.114-118  We simultaneously examined endothelial functions of 

peripheral conduit and resistance arteries in patients with VSA and microvascular angina,118 

which were diagnosed by coronary spasm provocation testing using intracoronary 

acetylcholine.91,119  The major finding was that bradykinin-induced endothelium-dependent 

vasodilatations in fingertip arterioles were almost absent in patients with microvascular 

angina.118  Mechanistically, both NO- and EDH-mediated digital vasodilatations were 

markedly impaired in patients with microvascular angina, suggesting that CMD is a 

manifestation of systemic vascular dysfunction beyond the heart.118 
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Primary Coronary Microcirculatory Dysfunction and Vulnerable Patient 

Endothelium-Dependent CMD and Advanced Coronary Atherosclerosis 

We examined whether endothelium-dependent CMD is associated with coronary 

atherosclerosis in patients with INOCA.120  Endothelium-dependent coronary vascular 

reactivity was evaluated with graded doses of intracoronary acetylcholine and 

endothelium-dependent CMD was defined as a percent increase in coronary blood flow of 

less than 50% in response to acetylcholine.102,121-123  Patients with VSA, which was defined 

as transient total or subtotal coronary artery occlusion (more than 90% constriction) with 

chest pain and ischemic ECG changes in response to acetylcholine, were excluded because of 

a limitation of acetylcholine for testing endothelium-dependent CMD; acetylcholine is not a 

pure endothelium-dependent agonist but rather evokes VSMC-dependent vasoconstriction in 

patients with VSA who have enhanced coronary vasoconstrictive reactivity.1,111  The major 

finding was that patients with endothelium-dependent CMD showed larger plaque burden and 

plaque volume in association with more vulnerable plaque characteristics as evaluated by 

virtual-histology intravascular ultrasound.120  These patients showed larger necrotic core 

volume and higher frequency of thin-capped fibroatheroma, which is characteristic of 

rupture-prone vulnerable plaques.120  These results are consistent with previous studies 

showing the association between endothelium-independent CMD and vulnerable plaque 

characteristics.124-126   
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Endothelium-Dependent CMD and Local Low Shear Stress 

Shear stress is one of the important physiological stimuli that make endothelial cells 

synthesize and liberate EDRFs to maintain vascular homeostasis, whereas altered oscillatory 

or low shear stress with a disturbed flow pattern on coronary artery wall contributes to the 

local progression of atherosclerotic coronary plaque through endothelial and VSMC 

proliferation, inflammation, lipoprotein uptake, and leukocyte adhesion.127,128  Indeed, 

previous studies have shown that altered shear stress on the coronary artery wall is associated 

with the local progression of atherosclerotic coronary plaque,129 and that coronary endothelial 

shear stress decreases as changes in coronary blood flow in response to acetylcholine 

decrease.123  Taken together, endothelium-dependent CMD is involved in coronary 

atherosclerosis progression, possibly via low endothelial shear stress.130  

 

The Vulnerable Microcirculation Concept 

The aforementioned lines of evidence support the concepts of “primary coronary 

microcirculatory dysfunction”131 and “vulnerable patient”.132  Patients with chest pain but 

without angiographical abnormalities are often underdiagnosed and are offered no therapeutic 

intervention or follow-up under the umbrella of “normal” coronary arteries.  On the contrary, 

patients with CMD may be predisposed to the development of more vulnerable coronary 
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atherosclerosis and therefore may be prone to future coronary events.85  

 

Clinical and Therapeutic Considerations 

Smoking and Vaping: A Modifiable Risk factor for Coronary Macro- and Microvascular 

Diseases 

Among traditional risk factors for coronary atherosclerotic disease, cigarette smoking is well 

recognized as a major risk and prognostic factor for VSA,133,134 and undoubtedly smoking 

cessation is the mainstay of symptomatic and prognostic improvement in patients with 

VSA.133 Mechanistically, superoxide anions derived from cigarette smoke extract can 

accelerate the oxidative degradation of NO, directly damage endothelial cells, and promote 

vascular inflammatory responses, leading to coronary hypercontraction.135,136  Recently, the 

evolving use of vaping products has been implicated in the pathogenesis of macro- and 

microvascular diseases.137-140  For example, mentholated cigarette smoking can reduce 

coronary flow reserve to the same extent as regular cigarettes.137  Flavoring additives in 

electronic cigarettes can cause endothelial dysfunction by increasing vascular inflammatory 

responses as well as oxidative stress and thus by decreasing NO bioavailability.138,139  

Moreover, electronic cigarette smoking can elicit an acute vasoconstrictive response in the 

microvasculature, although an index of microvascular endothelial function, reactive 

hyperemia index paradoxically increases immediately after electronic cigarettes use.140  The 
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Sapienza University of Rome-Vascular Assessment of Proatherosclerotic Effects of Smoking 

(SUR-VAPES) 3 Trial is designed to examine the acute effects of electronic vaping cigarettes 

and heat-not-burn cigarettes on coronary vasomotor function assessed by invasive coronary 

reactivity testing, including coronary flow reserve, fractional flow reserve, and instantaneous 

wave-free ratio.141,142  The results of this trial will bring more detailed information on the 

effects of novel smoking products on the coronary macro- and microcirculation.141,142  

 

Supplemental NO: Too Much of a Good Thing? 

Since the discovery of the acute anti-anginal effect of nitroglycerin over 140 years ago by 

Murrell,143 the use of nitrates as a NO donor has served as the most common treatment in the 

acute phase of ischemic heart disease and heart failure.  As discussed above, the emerging 

role of CMD has been implicated in patients with various cardiovascular diseases, including 

obstructive CAD who underwent successful revascularization,38 INOCA,34 VSA,37 and 

HFpEF.17-19  Contrary to the premise that enhancing NO-mediated vasodilatation by means 

of supplemental NO could exert beneficial effects on these patients, the results of systemic 

and long-term administrations of nitrates were unexpectedly neutral or even harmful in 

patients with residual microvascular ischemia despite successful PCI,144 myocardial 

infarction,145 VSA,146 and HFpEF.147,148  These lines of evidence suggest the potential harms 

of NO therapy and the need to turn our attention to avoid excessive NO supplementation.  A 
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possible explanation for such a “paradox” of NO-targeted therapy may be nitrosative stress 

caused by an excessive amount of supplemental NO.149,150  Moreover, in light of the facts 

that there are significant negative interactions between NO and several EDH factors68,70-73 

and that coronary vascular resistance is predominantly determined by the coronary 

microcirculation,69 where the effect of EDH-mediated responses on vascular tone 

overwhelms that of NO-mediated relaxations, it is important to consider the blood vessel 

size-dependent contribution of NO and EDH factors in the treatment of CMD.  Actually, 

intracoronary administration of nitroglycerin does not increase coronary blood flow.120  

Taken together, based on the underlying mechanism of coronary vasomotion abnormalities, 

identifying the specific indications and contraindications of chronic NO supplementation may 

be important to tailor the most appropriate treatment; a good example of this approach is 

available elsewhere.110,151,152  

 

Clinical Trials Targeting Endothelial Function and Coronary Microvascular Function 

The assessment of endothelial function in the clinical settings has been accepted as an 

excellent surrogate marker of cardiovascular risk.153  For instance, impaired flow-mediated 

dilatation (FMD) of the brachial artery and digital reactive hyperemia index (RHI) in 

peripheral arterial tonometry are both associated with future adverse cardiovascular events in 

patients with CAD,154-156 and one standard deviation reduction in FMD or RHI is associated 
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with doubling of adverse cardiovascular event risk.157  FMD and RHI reflect peripheral 

macro- and microvascular endothelial function, respectively, however, both indices are often 

impaired in patients with CMD,158,159 again suggesting the systemic nature of the disorder.   

The current European Society of Cardiology guidelines recommend the use of statins 

in all patients with chronic coronary syndromes including CMD.160  The guidelines also 

suggest treatment with �-blockers, angiotensin-converting enzyme (ACE) inhibitors, and 

statins for patients with reduced coronary flow reserve or increased IMR and a negative 

acetylcholine provocation test, which are suggestive of impaired coronary vasodilator 

capacities, while CCBs and long-acting nitrates for patients with coronary microvascular 

spasm.160  Previous animal studies demonstrated that ACE inhibitors are capable of 

potentiating endothelium-dependent relaxations mediated by both NO and EDH factors in the 

coronary circulation.161,162  

Based on the premise that a tailored therapeutic strategy,110 such as a stratified 

medical treatment driven by the results of coronary reactivity testing and endothelial 

function-guided management, may be beneficial in patients with CMD, several clinical trials 

have been launched.  For example, a multicenter, prospective, randomized, blinded clinical 

trial, the Women's Ischemia Trial to Reduce Events in Non-Obstructive CAD (WARRIOR) 

Trial (NCT03417388) (n=4,422) is ongoing to test the hypothesis that intensive medical 

treatment consisting of high-intensity statins, maximally tolerated doses of ACE 
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inhibitors/angiotensin receptor blockers, and aspirin would reduce the risk of MACE in 

female patients with symptoms and/or signs of myocardial ischemia but no obstructive 

CAD.163  Another large-scale randomized clinical trial, the Endothelial Function-Guided 

Management in Patients with Non-obstructive Coronary Artery Disease (ENDOFIND) Trial 

is currently ongoing to address whether an peripheral endothelial function-guided early 

aggressive management, which consists of lifestyle management, optimal blood pressure, and 

glycemic control, and the intensive use of statins and CCBs, could reduce the risk of MACE 

in patients with non-obstructive CAD, in whom CMD is highly prevalent.164  Both trials will 

be completed by the end of 2022 and are expected to provide informative evidence on the 

management of patients with CMD.  Additionally, the Ticagrelor and Preconditioning in 

Patients with Coronary artery disease (TAPER-S) Trial aims to assess the pleiotropic effects 

of a reversibly binding, direct-acting, oral, P2Y12 antagonist ticagrelor on ischemic 

preconditioning and coronary microvascular function in patients with stable multivessel CAD 

undergoing staged, fractional flow reserve-guided PCI.165  This trial has been completed by 

November 2020 and the results are awaited with interest.  

 

Summary 

This review highlights the evolving landscape of coronary vasomotion abnormalities in 

general and endothelium-related CMD in particular (Table 2).  Patients with coronary 
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vasomotion abnormalities are often complicated with inflammatory responses and peripheral 

endothelial dysfunction, in which CMD manifests as systemic vascular dysfunction beyond 

the heart.  Novel therapies to improve CMD may attenuate the progression of coronary 

atherosclerosis and early aggressive medical management upon detection of CMD may 

benefit the vulnerable patients.  In an attempt to optimize the treatment, consideration of 

CMD should not be lost even in the presence of normal coronary angiogram.  Rather, given 

the high prevalence and adverse clinical impact of CMD, consideration of coronary 

microvascular function should be implemented in both basic research and clinical practice for 

the purpose of improving health care and outcomes of patients with the disease.   

In conclusion, further characterization and better understanding of the roles of the 

endothelium in the pathophysiology and clinical outcomes of coronary macro- and 

microvascular diseases can be an important gateway to this end.   
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Figure legends 

 

Figure 1. Mechanisms of Coronary Macro- and Microvascular Dysfunction. 

 

Figure 2. Blood Vessel-size Dependent Endothelial Modulation of Vascular Tone and 

Rho-Kinase-Mediated Hypercontraction of Vascular Smooth Muscle. 

EDH, endothelium-dependent hyperpolarization; NO, nitric oxide. 

 

Figure 3. Overlap and Coexistence of Coronary Macro- and Microvascular 

Dysfunctions. 

Each number corresponds to the reference.   
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Tables 

 

Table 1. Invasive and non-invasive methods for appraising coronary microvascular 

function 

Methods Measures Features 

Invasive   

CAG review TIMI frame count Easily obtainable but semi-quantitative 

  Coronary reactivity testing  Enables endotyping of CMD 

    ACh/EM Coronary spasm Established as provocative spasm testing 

    CS sampling during ACh/EM Lactate production rate Enables the accurate diagnosis of MVS 

    Doppler flow/temperature wire ACh-induced CBF Endothelium-dependent responses 

     ATP-induced CFR Endothelium-independent responses 

    Pressure-thermodilution wire IMR Reflects pure microvascular function 

Non-invasive  During endothelium-independent 

maximum hyperemia 

Doppler echo CFR Readily available but operator-dependent 

CMR CFR The most reliable non-invasive method 

PET CFR The most reliable non-invasive method 

ACh: acetylcholine; ATP: adenosine triphosphate; CAG: coronary angiography; CBF: 

coronary blood flow; CFR: coronary flow reserve; CMD: coronary microvascular 

dysfunction; CMR: cardiac magnetic resonance; echo: echocardiography; CS: coronary sinus; 

EM: ergometrine (ergonovine); IMR: index of microvascular resistance; MVS: microvascular 

spasm; PET: positron emission tomography.  
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Table 2. Summary and perspective 

Highlights 

1. Endothelial dysfunction and coronary macro- and microvascular dysfunction play crucial 

roles in the pathogenesis of various cardiovascular diseases. 

2. The endothelium modulates vascular tone in a vessel-size dependent manner: 

A) Large conduit arteries are predominantly regulated by NO 

B) Small resistance arteries by EDH factors 

3. The major mechanisms of coronary vasomotion abnormalities are threefold: 

A) Enhanced coronary vasoconstrictive reactivity at epicardial and microvascular levels 

B) Impaired endothelium-dependent and -independent coronary vasodilator capacities 

C) Elevated coronary microvascular resistance caused by structural factors 

4. Given the high prevalence and adverse clinical impact of CMD, consideration of and 

novel therapies for CMD appear to be important for vulnerable patients. 

CMD: coronary microvascular dysfunction; EDH: endothelium-dependent hyperpolarization; 

NO: nitric oxide. 
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