
Arterioscler Thromb Vasc Biol is available at www.ahajournals.org/journal/atvb

Arterioscler Thromb Vasc Biol. 2021;41:00–00. DOI: 10.1161/ATVBAHA.121.316025� May 2021    1

Arteriosclerosis, Thrombosis, and Vascular Biology

 

Correspondence to: Hiroaki Shimokawa, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, 
Aoba-ku, Sendai 980-8574. Email shimo@cardio.med.tohoku.ac.jp

This article was sent to Robert A. Hegele, Consulting Editor, for review by expert referees, editorial decision, and final disposition.

For Sources of Funding and Disclosures, see page XXX.

© 2021 American Heart Association, Inc.

BRIEF REVIEW

Coronary Microvascular Dysfunction
Shigeo Godo, Akira Suda, Jun Takahashi, Satoshi Yasuda, Hiroaki Shimokawa

ABSTRACT: Over the past couple of decades, accumulating evidence has shown that structural and functional abnormalities of 
coronary microvasculature are highly prevalent, associated with adverse clinical outcomes in patients with various cardiovascular 
diseases. The term coronary microvascular dysfunction (CMD) has been coined to refer to this clinical condition and is 
increasingly recognized as an important clinical entity in many clinical settings. The potential mechanisms of CMD appear 
to be heterogenous, including enhanced coronary vasoconstrictive reactivity at microvascular level, impaired endothelium-
dependent and independent coronary vasodilator capacities, and increased coronary microvascular resistance secondary to 
structural factors. Recent experimental and clinical studies have highlighted emerging modulators of vascular functions, vital 
insight into the pathogenesis of cardiovascular diseases associated with CMD, and potential therapeutic interventions to 
CMD with major clinical implications. In this article, we will briefly review the current progress on pathophysiology, molecular 
mechanisms, and clinical management of CMD from bench to bedside.
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A growing body of evidence has underscored the 
importance of coronary microvascular dysfunc-
tion (CMD), which manifests as the structural and 

functional abnormalities of coronary microvasculature, 
in a variety of cardiovascular diseases.1 The prevalence 
of CMD is higher than ever thought in many clinical 
settings,2–4 and its presence is associated with worse 
clinical outcomes, especially when accompanied by 
myocardial ischemia5 or nonsignificant coronary artery 
disease (CAD).6 Previous studies exclusively targeted 
structural and functional abnormalities of epicar-
dial coronary arteries of patients with CAD because 
these arteries are easily visible on coronary angiogra-
phy and readily amenable to procedural intervention, 
such as percutaneous coronary intervention (PCI) and 
coronary artery bypass grafting. A nationwide large-
scale cohort study in the United States enrolling a 
total of 12 062 081 coronary revascularizations was 
performed to assess the contemporary trends in the 
characteristics and outcomes of patients with CAD.7 
Notably, this study revealed that risk-adjusted mor-
tality significantly decreased after coronary artery 
bypass grafting but not after PCI across all clinical 

indications.7 In line with these findings, a limit to the 
benefit of PCI versus optimal medical therapy in stable 
CAD has been replicated by the results of the 2 recent 
landmark clinical trials, the ORBITA trial (Objective 
Randomized Blinded Investigation With Optimal Medi-
cal Therapy of Angioplasty in Stable Angina)8 and 
the ISCHEMIA trial (International Study of Compara-
tive Health Effectiveness With Medical and Invasive 
Approaches).9 Although these trials did not directly 
address coronary microvascular function, the question-
able benefit of PCI in patients with stable CAD is sug-
gestive of the importance of coronary microvascular 
physiology; it may be speculated that CMD contributes 
to myocardial ischemia even after successful revas-
cularization of significant epicardial coronary stenosis. 
The underlying mechanisms behind CMD appear to 
be multiple and complex, including several structural 
and functional alterations in the coronary microcircu-
lation that often coexist in various combinations.3,10–13 
In this review, we highlight the current advances in the 
research on CMD and underlying mechanisms and 
some updates on endothelial modulation of vascular 
tone from bench to bedside.

D
ow

nloaded from
 http://ahajournals.org by on A

pril 20, 2021

mailto:shimo@cardio.med.tohoku.ac.jp


Brief


 
Review




 - 
VB

Godo et al Coronary Microvascular Dysfunction

2    May 2021� Arterioscler Thromb Vasc Biol. 2021;41:00–00. DOI: 10.1161/ATVBAHA.121.316025

PATHOPHYSIOLOGY OF CMD AND 
ENDOTHELIAL MODULATION OF 
VASCULAR TONE
The potential mechanisms of CMD appear to be heter-
ogenous, encompassing enhanced coronary vasocon-
strictive reactivity at microvascular level (eg, coronary 
microvascular spasm), impaired endothelium-dependent 
and independent coronary vasodilator capacities, and 
increased coronary microvascular resistance second-
ary to structural factors (eg, luminal narrowing, vascular 
remodeling, vascular rarefaction, and extramural com-
pression; Figure  1).1 Coronary microvascular spasm is 
defined as reproduction of angina symptoms, ischemic 
ECG changes, but no epicardial spasm during intra-
coronary acetylcholine provocation testing.14 The major 
mechanisms of coronary microvascular spasm include 
Rho kinase–induced myosin light-chain phosphoryla-
tion,15 increased production of vasoconstrictive media-
tors (eg, serotonin),16 and inflammatory conditions in the 
coronary microvasculature17 with resultant enhanced 

coronary vasoconstrictive reactivity. A comprehensive 
invasive assessment of CMD by functional coronary 
angiography is safe, feasible, and of diagnostic value to 
better differentiate between endothelium-dependent and 
independent CMD.3,10,13,18 An autopsy study by de Waard 
et al19 of patients without structural or infiltrative myocar-
dial disease who had undergone coronary angiography 
within 2 years before death was performed to examine 
whether structural alterations occurred in the coronary 
microcirculation downstream of epicardial coronary ste-
noses. The findings showed no microcirculatory remodel-
ing distal to noncritical stenoses, validating the rationale 
for invasive or noninvasive physiology-derived indices, 
such as fractional flow reserve, and that microvascular 
resistance at maximal hyperemia is similar regardless of 
the presence or absence of a stenosis.19,20

The endothelium plays a pivotal role in modulating 
vascular tone by synthesizing and liberating endothelium-
derived relaxing factors, including vasodilator prostaglan-
dins, NO, and endothelium-dependent hyperpolarization 
(EDH) factors in a distinct vessel size–dependent manner; 
NO predominantly mediates vasodilatation of relatively 
large, conduit vessels (eg, epicardial coronary arteries), 
while EDH factors in small resistance vessels (eg, coro-
nary microvessels; Figure 1).21,22 Endothelium-dependent 
CMD can be attributed to reduced production or action 
of these relaxing mediators. Among them, hydrogen per-
oxide is one of the major EDH factors in various vascular 
beds including human coronary arteries.1,23 For example, 
by means of a unique bioassay method, a previous study 
showed that hydrogen peroxide derived from the beating 
heart caused the metabolic coronary microvascular dila-
tion in vivo.24 It is conceivable that impaired hydrogen per-
oxide/EDH factor–mediated vasodilatation is involved in 

Nonstandard Abbreviations and Acronyms

ACE2	 angiotensin-converting enzyme 2
ADAM17	 a disintegrin and metalloprotease
CAD	 coronary artery disease
CMD	 coronary microvascular dysfunction
COVID-19	 coronavirus disease 2019
EDH	� endothelium-dependent 

hyperpolarization
ENDOFIND	� Endothelial Function-Guided Manage-

ment in Patients With Non-Obstruc-
tive Coronary Artery Disease

FKBP12	 FK506-binding protein 12
ISCHEMIA	� International Study of Comparative 

Health Effectiveness With Medical 
and Invasive Approaches

JUPITER	� Justification for the Use of Statins in 
Prevention: an Intervention Trial Evalu-
ating Rosuvastatin

MPO	 myeloperoxidase
mTOR	 mammalian target of rapamycin
ORBITA	� Objective Randomized Blinded Inves-

tigation With Optimal Medical Therapy 
of Angioplasty in Stable Angina

PCI	 percutaneous coronary intervention
PVAT	 perivascular adipose tissue
VSMC	 vascular smooth muscle cells
WARRIOR	� Women’s Ischemia Trial to Reduce 

Events in Non-Obstructive CAD
WISE	� Women’s Ischemic Syndrome 

Evaluation

Highlights

•	 Structural and functional abnormalities of coronary 
microvasculature, referred to as coronary microvas-
cular dysfunction, are highly prevalent in association 
with adverse clinical outcomes in patients with vari-
ous cardiovascular diseases.

•	 The potential mechanisms of coronary microvas-
cular dysfunction appear to be heterogenous, 
including enhanced coronary vasoconstrictive reac-
tivity at microvascular level, impaired endothelium-
dependent and independent coronary vasodilator 
capacities, and increased coronary microvascular 
resistance secondary to structural factors.

•	 Recent research has highlighted emerging modu-
lators of vascular functions, novel insight into the 
pathogenesis of cardiovascular diseases associated 
with coronary microvascular dysfunction, and poten-
tial therapeutic interventions to coronary microvas-
cular dysfunction with major clinical implications.
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the pathogenesis of CMD in light of its potent vasodila-
tor properties in coronary resistance vessels where EDH 
factor–mediated responses become relatively dominant 
to NO-mediated relaxations.1,23

CMD AS A SYSTEMIC VASCULAR 
DISEASE BEYOND THE HEART
Recent studies have demonstrated that patients with 
coronary vasomotion abnormalities are often accom-
panied by peripheral endothelial dysfunction as well, 
where CMD manifests as systemic vascular dysfunc-
tion beyond the heart (Figure 1).13,25–28 Al-Badri et al26 

invasively and simultaneously measured acetylcholine-
induced endothelium-dependent and adenosine- or 
sodium nitroprusside–induced endothelium-independent 
vascular reactivity of coronary and femoral arteries and 
showed a modest but significant correlation in endothe-
lial functional changes between the coronary and periph-
eral circulations. In line with these observations, we have 
demonstrated that both NO- and EDH-mediated digital 
vasodilatations were markedly impaired in patients with 
microvascular angina,13 which was diagnosed by the gold 
standard coronary reactivity testing.14 Coronary endothe-
lial dysfunction is associated with impaired high-density 
lipoprotein function,29 which is modulated by a genetic 

Figure 1. Mechanisms of coronary microvascular dysfunction and endothelial modulation of vascular tone in a vessel size–
dependent manner.
Each number corresponds to the reference. EDH indicates endothelium-dependent hyperpolarization.
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polymorphism in the haptoglobin gene.30 Specifically, 
high-density lipoprotein function is markedly impaired in 
diabetic patients who carry haptoglobin 2-2 genotype.30 
Based on these observations, Asleh et al31 demonstrated 
that the haptoglobin 2-2 phenotype was associated with 
coronary endothelial dysfunction at both epicardial and 
microvascular levels in patients with chest pain and angi-
ographically normal coronary arteries or mild nonobstruc-
tive CAD (<30% diameter stenosis), especially in those 
with diabetes. This association might be related to the 
increased amount of hemoglobin bound to high-density 
lipoprotein through haptoglobin 2-2, which contributes 
to impaired NO bioavailability and dysfunctional high-
density lipoprotein.31 Notably, the deleterious impact of 
haptoglobin 2-2 on endothelial dysfunction was more 
prominent in the coronary microcirculation than in the 
epicardial coronary artery.31 These results imply that 
coronary microvascular endothelial dysfunction may pre-
cede epicardial coronary endothelial dysfunction, driven 
by oxidative stress and inflammation in the early stage 
of CAD. In agreement with this notion, an animal study 
by Plaza et al32 showed that focal vascular inflammation 
accelerates the development and progression of athero-
sclerosis in remote arteries. Briefly, a focal mechanical 
injury-induced persistent aortic inflammation in ApoE-
knockout mice accelerated atherosclerosis in the remote 
brachiocephalic artery associated with elevated levels of 
serum interleukin-6.32 This inflammatory cascade was 
mitigated by the treatment with pravastatin or minocy-
cline, both of which have anti-inflammatory properties.32 
Dou et al33 showed that aging and obesity were associ-
ated with a significant decline in the expression of caveo-
lin-1, an inhibitory regulator of ADAM17 (a disintegrin 
and metalloprotease). The dissociation of ADAM17 from 
its inhibitory interaction with caveolin-1 induced pheno-
type transition of perivascular adipose tissue (PVAT) into 
a proinflammatory state by increasing ADAM17 activity 
and soluble tumor necrosis factor release in adipose tis-
sue, leading to impaired bradykinin-evoked endothelium-
dependent vasodilatation of human coronary arterioles 
and thereby the development of remote CMD.33 To the 
contrary, given a recent study showing that caveolin-1 
deficiency attenuated vascular inflammation and ath-
erosclerosis by activating endothelial autophagy,34 how 
to modulate caveolin-1 to benefit patients awaits fur-
ther investigation. Taken together, it is conceivable that 
patients with endothelium-dependent CMD may benefit 
from early aggressive medical management for restor-
ing endothelial function and underlying risk factors upon 
detection of systemic endothelial dysfunction.

SEX DIFFERENCES IN CMD
Multiple mechanisms appear to contribute to the sex 
differences35 in CMD, including differences in sex hor-
mone effects, autonomic regulation, and susceptibility 

to proatherogenic mediators, such as oxidative stress, 
endothelin-1, and angiotensin II.36 When considering 
interventions to endothelium-related CMD, it is important 
to note that among the aforementioned 3 endothelium-
derived relaxing factors, EDH-mediated vasodilatation 
is more predominant in female resistance arteries as 
compared with male counterparts.22 Considering the 
lower prevalence of obstructive CAD and higher preva-
lence of CMD in female patients with chest pain in the 
absence of obstructive CAD, the proper assessment 
and diagnosis of coronary functional rather than struc-
tural abnormalities should be encouraged, particularly 
in women.36 Sullivan et al37 revealed distinct sex differ-
ences in hemodynamic and microvascular mechanisms 
of mental stress–induced myocardial ischemia. Briefly, 
a more prominent peripheral microvascular dysfunction 
measured by peripheral arterial tonometry and a less 
pronounced hemodynamic role assessed by the rate-
pressure product were associated with the development 
of metal stress–induced myocardial ischemia in women 
and vice versa in men.37 These results support the role of 
stress-induced vasoconstriction in the pathogenesis of 
CMD particularly in women and provide a clue to develop 
sex-specific treatment for CMD. The results of the WISE 
study (Women’s Ischemic Syndrome Evaluation) funded 
by the National Heart, Lung, and Blood Institute have 
provided important insight into the clinical characteristics 
of ischemic heart disease in women.38,39 The major find-
ings of the WISE study are that CMD is highly prevalent 
and responsible for myocardial ischemia in patients with 
chest pain who are found to have no obstructive CAD 
and that the diagnostic evaluation of CMD is important 
using invasive or noninvasive coronary reactivity test-
ing.38,39 AlBadri et al40 added another layer of evidence 
to substantiate the role of CMD in the increased risk for 
adverse cardiovascular events in this population; higher 
levels of ultra-high-sensitivity cardiac troponin I were 
associated with both endothelium-dependent and inde-
pendent CMD in women with symptoms or signs of myo-
cardial ischemia but no obstructive CAD.

EMERGING MODULATORS OF 
MICROVASCULAR FUNCTION
Molecular Modulators
Arginase
Arginase I is constitutively expressed in the coronary 
microvascular endothelial cells and inhibits the pro-
duction of NO by competing with endothelial NO syn-
thase for the common substrate L-arginine.41 Masi et 
al42 showed that endothelium-dependent, NO-mediated 
relaxations of subcutaneous small arteries were impaired 
by arginase in obese subjects; however, the influence of 
arginase on endothelial function was lessened by aging 
because of vascular oxidative stress and irreversible 
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vascular remodeling. These results indicate that early 
therapeutic interventions aimed at arginase activity are 
warranted to prevent obesity- and aging-related endo-
thelial dysfunction and vascular remodeling. By contrast, 
in a diabetic mouse model, genetic ablation of endothelial 
arginase-1 had a neutral effect on vasomotor function of 
resistance arteries.43 In another porcine model of chronic 
myocardial ischemia, CMD developed independently of 
the activity and expression of arginase I.44 Given that cor-
onary vascular resistance is predominantly determined 
by the prearterioles and arterioles45 where the effect of 
EDH-mediated relaxations on vascular tone surpasses 
that of NO-mediated relaxations,46 it is important to con-
sider the vessel size–dependent contribution of NO and 
EDH factors for the treatment of CMD. Taken together, 
endotyping patients with CMD based on the underlying 
mechanism of the disorder may be crucial to tailor the 
most appropriate treatment and to identify those who 
benefit from arginase inhibition (Figure 2).

Calreticulin
Calreticulin is a calcium-binding chaperone that is 
highly expressed throughout the internal elastic lamina 
in small arteries.47 Using tamoxifen-inducible, endothe-
lium-specific, calreticulin-knockout mice, Biwer et al47 
revealed that nonendoplasmic reticulum pool of calre-
ticulin in resistance mesenteric arteries played important 
roles in the regulation of intercellular calcium signaling 
between endothelial cells and vascular smooth muscle 
cell (VSMC), vasoreactivity, and thus blood pressure. The 
same group subsequently showed that endothelial calre-
ticulin knockdown impaired carbachol-induced endothe-
lium-dependent vasodilatation of resistance mesenteric 
arteries associated with endoplasmic reticulum stress in 
aged mice.48 In light of the notion that CMD is a systemic 
vascular disease beyond the heart, calreticulin may be a 
potential therapeutic target for CMD (Figure 2).

Flavoring Additives
The growing use of vaping products has been a public 
health issue in general and implicated in the pathogen-
esis of microvascular disease in particular.49,50 Ciftci et 
al49 showed that smoking mentholated cigarettes sig-
nificantly reduced coronary flow reserve to the same 
extent of regular cigarettes. Fetterman et al51 showed 
that flavoring additives in electronic cigarettes and other 
tobacco products, such as menthol and eugenol, at low 
concentrations likely to be achieved in vivo, increased 
the expression of the proinflammatory cytokine inter-
leukin-6 and decreased the production of NO in human 
endothelial cells, possibly leading to endothelial dysfunc-
tion and cardiovascular toxicity. Carnevale et al52 showed 
that electronic cigarette use was associated with det-
rimental effects on flow-mediated dilatation, oxidative 
stress, and NO bioavailability, while Kerr et al50 showed 
a counterintuitive result that reactive hyperemia index—
an index of microvascular endothelial function assessed 

via peripheral artery tonometry—increased acutely after 
electronic cigarette use. In the latter study, however, 
decreased pulse wave amplitudes were suggestive of an 
acute vasoconstrictive response in the microvasculature 
following electronic cigarette smoke (Figure 2).50

Tissue Modulators
Glycocalyx
Endothelial glycocalyx serves as a vascular barrier at the 
border of the endothelium and blood with important roles 
in preserving physiological endothelial functions, including 
anticoagulation, mechanotransduction, and shear stress–
mediated NO production.53 The function of glycocalyx can 
be evaluated by measuring its antithrombogenic capacity 
in vitro.54 In diabetes, hyperglycemia causes damage to 
endothelial glycocalyx with resultant endothelial dysfunc-
tion, whereas preserving endothelial glycocalyx by inhib-
iting the function of a major circulating hyaluronidase 
HYAL1 may be a promising therapeutic target to prevent 
diabetic micro- and macrovascular complications.53 MPO 
(myeloperoxidase) is a heme-containing peroxidase that 
promotes oxidative stress and inflammatory responses in 
the vascular wall in various diseased conditions. Cheng 
et al55 showed that a pharmacological inhibition of MPO 
attenuated inflammation-driven endothelial dysfunc-
tion in 3 different mouse models of vascular inflamma-
tion and atherosclerosis. Manchanda et al56 revealed 
that MPO interacted with heparan sulfate side chains to 
cause neutrophil-dependent shedding of syndecan-1—a 
core protein of endothelial glycocalyx—and thereby dis-
rupted the structure of endothelial glycocalyx. Moreover, 
using gain- and loss-of-function genetic mouse models 
and obese human samples, Fancher et al57 revealed that 
obesity-induced impaired flow sensitivity of endothelial 
inwardly rectifying K+ channels was associated with gly-
cocalyx disruption and obesity-induced endothelial dys-
function of resistance arteries. Furthermore, Wang et al58 
showed that physiological laminar shear stress on the 
endothelium regulated the biosynthesis of hyaluronan—a 
major structural component of the endothelial glycoca-
lyx. This mechanism maintains a thick glycocalyx layer 
on the surface of the endothelium to keep endothelial 
functions, such as antipermeability, anti-inflammatory, 
and antithrombotic properties (Figure 2).58

Vascular Smooth Muscle Cells
Along with endothelial dysfunction, VSMC dysfunction, 
like coronary artery spasm and VSMC remodeling, also 
serves as one of the major pathogenetic mechanisms 
of CMD.1,59 Pannexin-1 has emerged as the physiologi-
cal conduit that forms ATP-releasing channels to regu-
late vascular tone, highly expressed in endothelium and 
VSMC throughout the coronary artery tree.60 Using a 
novel tamoxifen-inducible, VSMC-specific, caveolin-1 
knockout mice, DeLalio et al61 showed that colocalization 
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and functional coupling of pannexin-1 and caveolin-1 in 
VSMC caveolae of resistance arteries played important 
roles in the regulation of blood pressure via sympathetic-
mediated ATP release and vasoconstriction without 
affecting endothelium-dependent relaxation to acetyl-
choline. Barrese et al62 revealed a novel interaction in 
VSMC between sodium-myo-inositol transporter 1 and 

Kv7.4/Kv7.5 heteromeric channels that modulate arterial 
contractility; exposure to hypertonic medium increased 
the expression of sodium-myo-inositol transporter 1, 
which augmented vasorelaxation through the activation 
of Kv7.4/Kv7.5 channels. Such mechanisms may help 
explain hyperosmolarity-induced vasodilation in sev-
eral vascular beds, including coronary arteries, as seen 

Figure 2. Emerging modulators of microvascular function.
Each number corresponds to the reference. EDH indicates endothelium-dependent hyperpolarization.
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in diabetes. Additionally, van der Horst et al63 showed 
that Kv7 potassium channels played an important role in 
intravenous acetaminophen-induced vasodilatation and 
hypotension in the clinical settings (Figure 2).

Perivascular Adipose Tissue
Accumulating evidence has revealed the role of inflamed 
PVAT in the pathogenesis of coronary vasomotion abnor-
malities including CMD (Figure 1).17 Briot et al64 revealed 
the impact of senescence on the fatty acid handling and 
inflammatory response in microvascular endothelial cells 
of human adipose tissue; senescence induced a peroxi-
some proliferator–activated receptor gamma-depen-
dent phenotypic change in endothelial cells from active 
fatty acid transporter toward proinflammatory activated 
cells. These mechanisms may underlie adipose tissue 
dysfunction in favor of inflammatory response associ-
ated with obesity and aging. Saxton et al65 revealed 2 
novel mechanisms by which PVAT exerted an anticon-
tractile effect on resistance arteries; PVAT served as a 
releaser of adiponectin in a paracrine manner via β3-
adrenoceptor activation, as well as a reservoir for sympa-
thetic nerve–derived noradrenaline, and thus prevented 
vasocontraction. Haynes et al66 demonstrated the pres-
ence of endothelial-to-mesenchymal transition in obese 
human adipose tissue with resultant functional changes 
of endothelial cells, including impaired barrier func-
tion, increased migration, reduced proliferative capacity, 
and blunted angiogenic response. Along with the local 
effects of this transition in the adipose tissue microen-
vironment, dysfunctional endothelial cells were able to 
produce and release increased number of extracellular 
vesicles with inflammatory and immune activities, which 
might be disseminated in a paracrine or endocrine man-
ner to cause endothelial dysfunction in remote vascular 
beds (Figure 2).66

Exogenous Modulators
Shear Stress
Shear stress serves as important physiological stimuli 
that make endothelial cells synthesize and liberate endo-
thelium-derived relaxing factors to maintain vascular 
homeostasis.22 In striking contrast to the atheroprotec-
tive effects of steady laminar or pulsatile shear stress, 
altered oscillatory or low shear stress with disturbed flow 
on the vascular wall accelerates atherogenesis through 
multiple mechanisms, including endothelial and VSMCs 
proliferation, inflammation, lipoprotein uptake, and leuko-
cyte adhesion.67,68 Recent studies have shown that endo-
thelium-dependent CMD is associated with advanced 
plaque characteristics via low endothelial shear stress in 
the epicardial coronary artery, contributing to the devel-
opment of epicardial coronary atherosclerosis, even 
though epicardial coronary lesions are located upstream 
to the microcirculation (Figure 2).18,69,70

Circadian Rhythm
Circadian rhythm is an internal biological clock that regu-
lates numerous physiological processes in the body. We 
have previously showed that Rho kinase activity in cir-
culating leukocytes of patients with vasospastic angina 
exhibited a marked circadian variation with a peak at 
early morning and that Rho kinase activity was associ-
ated with enhanced coronary vasoconstrictive reactivity 
in response to acetylcholine.71 Speculatively, such circa-
dian variation of Rho kinase activity may be a therapeutic 
consideration for a subset of patients with CMD because 
Rho kinase–induced myosin light-chain phosphorylation 
is a major mechanism of coronary microvascular spasm 
as well.15 Low-dose aspirin administered at night but not 
in the morning is known to have a blood pressure–lower-
ing effect in hypertensive patients. Chen et al72 success-
fully reproduced the time-dependent hypotensive effect 
of aspirin in mice, however, unexpectedly, found no time-
dependent effect of aspirin on the canonical clock genes 
expression or acetylation in the key organs of hyperten-
sion or on the urinary excretion of prostaglandins and 
catecholamines. The endogenous circadian rhythm has 
been implicated in the underlying mechanisms of a high 
incidence of cardiovascular events in morning hours. 
Thosar et al73 performed a comprehensive circadian 
study of vascular endothelial function as assessed by 
brachial artery flow–mediated dilatation, showing that 
the endogenous circadian system affected the endothe-
lial function in the vulnerable morning period associated 
with elevated plasma levels of malondialdehyde adducts 
(an oxidative stress marker) and endothelin-1 (a potent 
endothelium-derived vasoconstrictor peptide; Figure 2).

VASCULAR IMAGING
As reviewed by Nishimiya et al,74 recent advances in 
vascular imaging have allowed us to capture the extent 
and characteristics of coronary plaques in vivo in more 
depth. In particular, more comprehensive quantitative 
assessments of coronary plaque composition, inflamma-
tion, and hemodynamic status, rather than conventional 
assessments of coronary luminal stenosis, have gained 
increasing attention.75,76 Jarr et al77 reported that 18F-flu-
orodeoxyglucose–positron emission tomography/com-
puted tomography was useful for detecting vulnerable 
atherosclerotic plaques, as well as the response to ther-
apeutic intervention in mice in vivo. Youn et al78 showed 
the potential of 18F-sodium fluoride–positron emission 
tomography/computed tomography to detect coronary 
plaques with high-risk features such as microcalcifica-
tion and fibroatheromas. A recent study by Russo et 
al79 demonstrated a high prevalence of healed culprit 
plaques in patients with stable angina pectoris in asso-
ciation with more advanced and vulnerable plaques even 
at nonculprit lesions, suggesting the panvascular nature 
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of coronary atherosclerosis. Nishiyama et al80 visualized 
endothelial cell morphology such as endothelial pave-
menting in coronary arteries by means of a new form of 
optical coherence tomography with ultra-high resolution. 
This novel technology may provide insight into structural 
alterations of coronary arteries in patient with CMD.

EMERGING CLINICAL IMPLICATIONS OF 
CMD
Drug-Eluting Stent–Related Coronary 
Inflammation and Spasm
Although drug-eluting stents are currently the main-
stay of PCI of significant coronary lesions, outstanding 
issues after stenting include neoatherosclerosis, coro-
nary hyperconstricting responses (ie, coronary spasm), 
and inflammatory changes at the site of stent place-
ment.81,82 Coronary PVAT inflammation has been shown 
to be associated with enhanced coronary vasoconstric-
tive reactivity (Figure 1).83,84 Harari et al85 showed that 
everolimus-eluting stents caused endothelial barrier 
dysfunction and promoted neoatherosclerosis via inter-
actions between canonical mTOR (mammalian target 
of rapamycin) inhibitors and the 12.6-kDa FKBP12 
(FK506-binding protein 12). These alterations were 
mitigated by using a novel FKBP12-independent 
mTOR kinase inhibitor Torin-2–eluting stents.85 We have 
recently demonstrated that drug-eluting stent–induced 
coronary hyperconstricting responses were exaggerated 
by the ligation of cardiac lymphatic vessels in association 
with more adventitial inflammation, more Rho kinase acti-
vation, and less adventitial lymphatic vessel formation in 
pigs in vivo.86 This study suggests that cardiac lymphatic 
dysfunction may be a therapeutic target in the attempt to 
reduce coronary hyperconstricting responses induced by 
drug-eluting stents.86

Chronic Inflammatory Diseases
A chronic inflammatory milieu, which is commonly seen 
in patients with chronic inflammatory diseases, can affect 
coronary microvascular structure and function, leading 
to the development of CMD (Figure 1).87 Inflammatory 
endothelial activation and oxidative stress play a poten-
tial mechanistic role linking chronic inflammatory rheu-
matoid diseases with CMD.17 For example, psoriasis is a 
common chronic inflammatory skin disease, character-
ized by systemic inflammation affecting multiple organs 
in the body, including the coronary microvasculature (Fig-
ure 1).88 A non-negligible prevalence of CMD has been 
reported in patients with psoriasis even in the absence of 
conventional coronary risk factors or overt CAD.88 Using 
a deep sequencing omics approach, Garshick et al89 
revealed that circulating inflammasome signaling path-
ways, such as interleukins-1β and 6, were correlated with 

inflammatory endothelial activation markers in patients 
with psoriasis as compared with age- and sex-matched 
controls. Moreover, the same group also showed that in 
patients with psoriasis, platelets were activated to induce 
endothelial cell inflammatory responses via cyclooxygen-
ase-1, which was improved by 2-week treatment with 
low-dose aspirin.90 Furthermore, treatment with tumor 
necrosis factor (a proinflammatory cytokine) inhibitors 
in patients with psoriasis markedly improved coronary 
microvascular function as assessed by coronary flow 
reserve along with the reduction in systemic inflamma-
tory biomarkers.91 These results further support the role 
of inflammation in the pathophysiology of endothelial 
dysfunction and the increased risk of cardiovascular 
disease in patients with the disorder.32 Potential strate-
gies to attenuate vascular inflammation include target-
ing cholesterol metabolism, fatty acid mediators, and the 
autophagy-lysosome pathway.92

Coronavirus Disease 2019
An initial case series of coronavirus disease 2019 
(COVID-19) patients with ST-segment elevation reported 
that 3 of 9 (33%) patients who underwent coronary angi-
ography did not have obstructive CAD, raising the pos-
sibility that myocardial injury in these patients could be 
attributed, in part, to coronary functional abnormalities 
including CMD.93 Preexisting endothelial dysfunction may 
predispose the patient to cardiovascular complications of 
COVID-19, such as cardiac dysfunction, myocarditis, and 
thromboembolism.94,95 Briefly, it is speculated that the cul-
prit virus severe acute respiratory syndrome coronavirus 2 
binds and enters endothelial cells through ACE2 (angio-
tensin-converting enzyme 2).94,95 The viral entry leads to 
degradation of ACE2, and the resultant loss of its activity 
contributes to cardiac dysfunction, coronary vasoconstric-
tion, epicardial adipose tissue inflammation, and possibly 
coronary microcirculatory dysfunction.94–96 However, it 
remains to be fully elucidated whether severe acute respi-
ratory syndrome coronavirus 2 enters endothelial cells and 
ACE2 plays a role in this process. Sakamoto et al97 con-
firmed that the expression of ACE2 was markedly reduced 
in postmortem COVID-19 hearts. In this study, ACE2 
was scarcely detectable in the endothelium or pericytes 
of intramyocardial microvessels, but readily detectable in 
the endothelium of coronary arteries, implicating the viral 
involvement of coronary microvasculature.97 Nagashima et 
al98 found elevated endothelial expression of interleukin-6, 
tumor necrosis factor-α, intercellular adhesion molecule 1, 
and caspase-1 in postmortem lung samples from COVID-
19 patients, providing evidence of endotheliopathy—a 
putative contributor to COVID-19–associated coagulopa-
thy. Although no studies to date have directly addressed 
the role of angiotensin-(1–7) as a modulator of CMD, it is 
a potent vasodilator derived from angiotensin II by ACE222 
and augments both NO- and EDH-mediated relaxations 
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in porcine coronary arteries.99 Available evidence sug-
gests that preserving ACE2 activity in the endothelium 
while preventing ACE2 cleavage to form soluble ACE2 
may help to avoid unrestrained inflammatory responses 
associated with COVID-19 and thus may be beneficial for 
cardiovascular complications during the infection.100 Many 
clinical trials are ongoing across the world to investigate 
the efficacy and safety of renin-angiotensin-aldosterone 
system modulators in the prevention and treatment of 
COVID-19.100

POTENTIAL THERAPEUTIC INTERVENTIONS
Statins
JUPITER (Justification for the Use of Statins in Pre-
vention: an Intervention Trial Evaluating Rosuvastatin) 
showed that rosuvastatin significantly reduced the inci-
dence of major cardiovascular events and death from any 
cause in apparently healthy people who had low-grade 
inflammation (a high-sensitivity C-reactive protein level 
of ≥0.2 mg/dL) but did not have hyperlipidemia (a low-
density lipoprotein cholesterol level of <130 mg/dL).101 
In a primary prevention setting of the JUPITER popu-
lation, Akintunde et al102 showed that elevated levels 
of baseline group IIA secretory phospholipase A2—an 
inflammatory mediator in the vasculature—were an inde-
pendent predictor of incident cardiovascular events and 
that some single-nucleotide polymorphisms in PLA2G2A 
encoding the protein had a trend for higher risk of car-
diovascular disease. A combination treatment with statins 
and angiotensin-converting enzyme inhibitors was effec-
tive for improving endothelial function and quality of life 
in patients with chest pain and normal coronary angio-
grams, possibly by reducing oxidative stress of the vas-
cular wall.103 The current European Society of Cardiology 
guidelines recommend statins in all patients with chronic 
coronary syndromes including CMD.104 The ongo-
ing WARRIOR trial (Women’s Ischemia Trial to Reduce 
Events in Non-Obstructive CAD; NCT03417388) is a 
multicenter, prospective, randomized, blinded clinical 
trial (n=4422), testing the hypothesis that intense medi-
cal therapy of high-intensity statin, maximally tolerated 
angiotensin-converting enzyme inhibitor/angiotensin 
receptor blocker, and aspirin will reduce major adverse 
cardiovascular events in female patients with symptoms 
and signs of ischemia but no obstructive CAD.105 The 
study will be completed by December 30, 2022, and is 
expected to provide more definitive information on the 
management of patients with CMD.

Calcium Channel Blockers
Calcium channel blockers are the worldwide main-
stay for treatment of coronary spasm at both epicar-
dial and microvascular levels.17 Interestingly, the extent 

of coronary perivascular inflammation was markedly 
decreased in the spastic coronary artery after treatment 
with calcium channel blockers.84 In this study, benidip-
ine was preferably used as the drug of choice for sev-
eral reasons; benidipine is characterized by L-, N-, and 
T-type triple Ca channel blockade, high affinity for cor-
onary artery smooth muscle cells, and more beneficial 
prognostic effects as compared with other major calcium 
channel blockers used for the treatment of vasospastic 
angina (eg, nifedipine, amlodipine, and diltiazem).106 A 
recent study has demonstrated the advantage of T-type 
Ca channel blockade in suppressing vasospasm in small 
coronary arteries through EDH-mediated mechanisms.107 
These results shed light on the pleiotropic effects of 
benidipine on coronary inflammation and vasomotion 
abnormalities, although benidipine is available exclusively 
in several Asian countries (eg, Japan, China, Korea, and 
the Philippines) for the treatment of hypertension and 
vasospastic angina.108

Angiotensin-Converting Enzyme Inhibitors
A recent study showed that in hypertrophic cardiomy-
opathy patients with CMD, a 6-month treatment with an 
angiotensin-converting enzyme inhibitor perindopril at a 
dose of 10 mg/day improved myocardial blood flow only 
in the subset of patients without evidence of myocar-
dial fibrosis assessed by magnetic resonance imaging.109 
Perindopril may be effective in improving CMD in the 
early stage of the disease.109

Endothelial Function-Guided Management
The ENDOFIND trial (Endothelial Function-Guided 
Management in Patients With Non-Obstructive Coro-
nary Artery Disease)110 is a currently ongoing large-scale 
randomized clinical trial to test the hypothesis that a 
peripheral endothelial function–guided early aggressive 
management, which consists of lifestyle management, 
optimal blood pressure, and glycemic control, and inten-
sive use of statins and calcium channel blockers, can 
reduce the risk of major cardiovascular events in patients 
with nonobstructive CAD, in whom CMD is highly preva-
lent. The study intervention and follow-up will be com-
pleted before the end of December 2022.110

SUMMARY
As highlighted in this review, recent experimental and 
clinical studies that addressed broad issues in vascu-
lar biology and cardiovascular medicine have contrib-
uted to a better understanding of the pathophysiology 
and clinical implications of CMD from bench to bedside. 
Although much remains to be elucidated regarding the 
mechanism, management, treatment, and prevention of 
CMD, recent advances in the field will pave the way for 
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the development of novel therapeutic strategies target-
ing CMD to improve the clinical outcomes of patients 
with the disorder.
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