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Chapter 7
Diagnosis of Coronary Microvascular 
Dysfunction

Jun Takahashi and Hiroaki Shimokawa

Abstract Coronary microvascular dysfunction (CMD) has emerged as a third potential 
mechanism of myocardial ischemia in addition to coronary atherosclerotic disease (CAD) 
and epicardial coronary artery spasm. Since several studies indicated that CMD could be 
associated with increased risk of cardiovascular events, it is important to make correct 
diagnosis and assessment of CMD. However, in contrast with epicardial coronary arter-
ies, the coronary microcirculation cannot be directly visualized in vivo with coronary 
angiography or intracoronary imaging technique. Although there are several non-invasive 
(e.g. transthoracic Doppler echocardiography, positron emission tomography, cardiac 
magnetic resonance imaging) and invasive (e.g. assessment of coronary flow reserve and 
microvascular resistance using adenosine, microvascular coronary spasm with acetylcho-
line) approaches for the evaluation of coronary microvascular function, all of them have 
several limitations. Currently, the interventional diagnostic procedure, which consists of 
acetylcholine testing for the detection of coronary spasm as well as coronary flow reserve 
and microvascular resistance assessment in response to adenosine using a coronary pres-
sure–temperature sensor guidewire, could represent the most comprehensive coronary 
vasomotor evaluation. Furthermore, several biomarkers have recently attracted much 
attention as a diagnostic tool for CMD. Especially, plasma concentration of serotonin 
may be a novel biomarker to dissect CMD from epicardial coronary artery spasm. Correct 
diagnosis of the underlying cause of angina should enable us to stratify the treatment for 
distinct disorders, including CMD, vasospastic angina, and non-cardiac chest pain.
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7.1  Introduction

It has been reported that up to 40% of patients undergoing diagnostic coronary 
angiography for typical chest pain have no significant coronary stenosis [1]. The 
Women’s Ischemia Syndrome Evaluation Study showed that there are at least 
3–4 million patients in the United States alone who have signs and symptoms of 
myocardial ischemia with non-obstructive coronary artery disease (CAD), associ-
ated with poor quality of life, psychological distress, and health-care costs that 
approximate those of patients with obstructive CAD [2, 3]. In such cases, myo-
cardial ischemia may be caused by different types of functional disorders involv-
ing the epicardial coronary arteries, coronary microcirculation or both [4]. 
Vasospastic angina (VSA) is one of the important functional cardiac disorders 
characterized by myocardial ischemia attributable to epicardial coronary artery 
spasm and a number of studies have elucidated patient characteristics, outcomes, 
and prognostic factors of VSA [5–7]. Furthermore, the Japanese Circulation 
Society guidelines describe the standard methods for the diagnosis of VSA in the 
current clinical practice based on the currently available evidence [8]. The 
Coronary Vasomotion Disorders International Study Group (COVADIS) also 
developed international standards for the diagnostic criteria of VSA [9]. 
Remarkably, the spasm provocation tests with ergonovine and acetylcholine 
employed in the catheterization laboratory have been established as a high-reli-
able diagnostic tool to detect functional disorder of the epicardial coronary artery 
[10, 11]. We also have recently demonstrated that Rho- kinase activity in circulat-
ing neutrophils is enhanced in VSA patients and is a useful biomarker for diagno-
sis and disease activity assessment of the disorder [12, 13]. On the other hand, 
coronary microvascular dysfunction (CMD) has emerged as a third potential 
mechanism of myocardial ischemia in addition to coronary atherosclerotic dis-
ease and epicardial coronary spasm [4, 14]. Indeed, it was demonstrated that 
CMD could be associated with increased risk of cardiovascular events, [15] indi-
cating that it is important to make a correct diagnosis or assessment of 
CMD. However, in contrast with epicardial coronary arteries, the coronary micro-
circulation cannot be directly visualized in vivo with coronary angiography or 
intracoronary imaging technique. Thus, microvascular function is assessed indi-
rectly, generally through measurements of coronary or myocardial blood flow 
(MBF) which is regulated by coronary arteriolar tone in healthy vessels, or detec-
tion of propensity to coronary vasoconstriction. A number of studies published in 
the past 2 decades have highlighted how abnormalities in the function and struc-
ture of the coronary microcirculation can interfere with the control of MBF, and 
contribute to the pathogenesis of myocardial ischemia [16]. In this chapter, we 
will briefly review the diagnostic methods and strategies for CMD.

J. Takahashi and H. Shimokawa



121

7.2  Clinical Criteria for Suspecting Microvascular Angina 
Due to CMD

CMD could be developed by several pathological mechanisms. In 2007, Camici and 
Crea proposed the clinical and pathogenetic classifications of CMD (Table  7.1) 
[14]. From a pathophysiological point of view, and independently of the underlying 
mechanisms, CMD results in varying degrees of disruption of the normal coronary 
physiology. These alterations eventually impair the capacity of MBF to adapt to 
changes in myocardial oxygen demand. Indeed, CMD is typically suspected in 
patients with angina and nearly normal coronary angiograms. The term “microvas-
cular angina” (MVA) typically describes myocardial ischemia triggered by CMD in 
the absence of CAD.  Stable MVA is characterized by effort-induced symptoms 
similar to those observed in patients with angina triggered by obstructive 
CAD.  However, MVA patients often have angina at rest and a variable angina 
threshold, suggestive of dynamic coronary vasomotor changes. CMD can result 
from a variable combination of abnormal vasodilatation and increased vasoconstric-
tion caused by various stimuli of coronary microvessels (Fig. 7.1) [17]. Thus, the 
presence of both effort and rest angina suggests a possible coexistence of reduced 
coronary microvascular dilatory function and microvascular spasm [18]. Patients 

Table 7.1 Classification of coronary microvascular dysfunction

Clinical setting
Main pathogenic 
mechanism

Type 1: in the absence of myocardial diseases 
and obstructive CAD

Risk factors SMC dysfunction
Microvascular angina Endothelial 

dysfunction
Vascular remodeling

Type 2: in myocardial diseases Hypertrophic 
cardiomyopathy

Vascular remodeling

Dilated cardiomyopathy SMC dysfunction
Anderson-Fabry’s 
disease

Extramural 
compression

Amyloidosis Luminal obstruction
Myocarditis
Aortic stenosis

Type 3: obstructive CAD Stable angina SMC dysfunction
Acute coronary 
syndrome

Endothelial 
dysfunction
Luminal obstruction

Type 4: iatrogenic PCI Luminal obstruction
Coronary artery grafting Autonomic 

dysfunction

CAD coronary artery disease, SMC smooth muscle cells, PCI percutaneous coronary intervention. 
(Reproduced from Crea et al. [14])
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with MVA may have chest pain that can persist even after cessation of the activity 
[19]. Furthermore, they may not have rapid or sufficient symptom relief in response 
to sublingual nitroglycerin, because nitroglycerin selectively dilates larger microves-
sels but not arterioles [20]. Furthermore, typical and atypical chest pain does not 
differentiate between obstructive and non-obstructive CAD and symptom complex-
ity may not always identify patients with CMD [21, 22]. Excluding angiographic 
atheroma or establishing that a stenosis has no effect on coronary physiology 
 (e.g. normal fractional flow reserve) strongly suggests a microvascular origin of symp-
toms [23]. Although objective documentation of myocardial ischemia is warranted 
for the diagnosis of CMD, imaging modalities often give negative results despite the 
occurrence of ischemia. This is because, contrary to what is seen in obstructive 
CAD, myocardial ischemia does not follow a regional pattern in MVA and ischemia 
may be limited to the subendocardium in many cases [19]. Based on these clinical 
features of MVA, the Coronary Vasomotor Disorder Study (COVADIS) group has 
recently proposed the following diagnostic criteria for MVA [24]; signs and symp-
toms of myocardial ischemia, reduced coronary flow reserve (CFR) defined as the 
ratio of coronary blood flow (CBF) during near maximal coronary vasodilatation to 
baseline CBF, or microvascular spasm, and documented myocardial ischemia, 
which is not triggered by obstructive CAD but by functional or structural abnor-
malities at the site of the coronary microcirculation (Table 7.2). Angina occurs in 
approximately 30–60% of patients with CMD [22, 25–28]. Other cardinal manifes-
tations of CMD include exertional dyspnea and possibly heart failure [29]. Patients 
may also manifest with a gradual decrease in exercise tolerance or dyspnea on exer-
tion. It may represent an ischemic equivalent caused by LV diastolic dysfunction 
with an excessive rise in end-diastolic pressure leading to cardiopulmonary conges-
tion. In those patients presenting with heart failure, the typical signs of elevated 
filling pressure, such as jugular venous distention, rales, and pedal edema, may be 
present.

1. Abnormal vasodilatation 2. Microvascular spasm

Increased vasoconstriction
. Acetylcholine
. Serotonin
. Rho-kinase
. CatecholaminesEndothelium-dependent

(Flow-mediated)
. Acetylcholine
. Serotonin
. Histamine
. Bradykinin

Coronary
microvascular

dysfunction
(CMD)

Endothelium-dependent
. Adenosine
. Catecholamines

Fig. 7.1 Coronary microvascular dysfunction car result from a variable combination of abnormal 
vasodilatation and increased vasoconstriction caused by various stimuli
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7.3  Assessment for Diastolic Function 
of Coronary Microvasculature

Coronary microvascular function is usually assessed by measurement of coronary 
microvascular response to vasodilator stimuli. In many cases, the vasodilator capac-
ity is often evaluated by CFR calculated as the ratio of CBF during maximal vaso-
dilatation over basal CBF. Since CFR is an integrated measure of flow through both 
the large epicardial arteries and the coronary microcirculation, reduced CFR is a 
marker of CMD in the absence of obstructive stenosis of the epicardial arteries [16]. 
The most widely used substance to assess coronary microvascular dilator function 
is adenosine. Adenosine is administered at an intravenous dose of 140 μg/kg/min, as 
this dose has been found to achieve maximal coronary microvascular dilatation 
[30]. Although adenosine has possible side effects, including bradycardia due to 
atrioventricular or sino-atrial node blockade and bronchoconstriction, both of which 
are mediated by purinergic A1 receptor, relevant advantages of adenosine are its 
very short half-life (10 s) which enables rapid regression of side effects and repeti-
tion of the test during the same session, if necessary [31]. Another frequently used 
substance to assess endothelium-independent coronary microvascular dilatation is 

Table 7.2 Clinical criteria for suspecting microvascular angina

1. Symptoms of myocardial ischemia
  (a) Effort and/or rest angina
  (b) Angina equivalents (e.g. shortness of breath)

2. Absence of obstructive CAD (<50% diameter reduction or FFR > 0.80) by
  (a) Coronary CTA
  (b) Invasive coronary angiography

3. Objective evidence of myocardial ischemia
  (a) Ischemic ECG changes during an episode of chest pain
  (b)  Stress-induced chest pain and/or ischemic ECG changes in the presence or absence of 

transient/reversible abnormal myocardial perfusion and/or wall motion abnormality
4. Evidence of impaired coronary microvascular function

  (a)  Impaired coronary flow reserve (cut-off values depending on methodology use 
between ≤2.0 and ≤ 2.5)

  (b)  Coronary microvascular spasm, defined as reproduction of symptoms, ischemic ECG 
shifts but no epicardial spasm during acetylcholine testing

  (c) Abnormal coronary microvascular resistance indices (e.g. IMR > 25)
  (d) Coronary slow flow phenomenon, defined as TIMI frame count >25

    CAD coronary artery disease, CTA computed tomographic angiography, 
FFR fractional flow reserve, IMR index of microcirculatory resistance, TIMI 
thrombolysis in myocardial infarction

    Definite MVA is only diagnosed if all four criteria are present
    Suspected MVA is diagnosed if symptoms of ischemia are present with 

non-obstructive
    CAD but only objective evidence of myocardial ischemia, or evidence of 

impaired coronary microvascular function alone

(Reproduced from Ong et al. [24])
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dipyridamole, which acts by inhibiting adenosine degradation by adenosine deami-
nase [32]. Acetylcholine is often used as a endothelium-dependent coronary micro-
vascular vasodilator. However, it is not the ideal substance to assess 
endothelium-dependent vasodilator function, since it also acts directly on smooth 
muscle cells (SMCs), including vasoconstriction [4]. There are several non-invasive 
and invasive approaches for evaluation of coronary vasodilator response, while all 
of them have several limitations. Although there is currently no consensus on the 
cut-off for the diagnosis of CMD based on imaging, a three-tiered characterization 
of CMD has been proposed as follows: CFR < 1.5, definite; CMD 1.5–2.6, border-
line; and CMD >2.6, no CMD [33].

7.3.1  Non-invasive Techniques for Diagnosis of CMD

Transthoracic Doppler echocardiography (TTDE) can measure coronary blood flow 
velocity (CBFV) of the distal left anterior descending artery (LAD), which is a sur-
rogate for CBF. CFR is measured as the ratio of peak CBFV after vasodilator to 
CBFV at rest in a highly reproducible fashion [34]. CFR measured by TTDE has 
been demonstrated to have good agreement with that measured by an intracoronary 
Doppler flow wire and positron emission tomography (PET) [34, 35]. Advantages 
of TTDE are its relatively low cost and high feasibility, but considerable intra- 
observer and inter-observer variability (~10%) needs to be taken into account when 
examining serial recordings obtained for assessing the effects of therapy [36]. 
Myocardial contrast echocardiography (MCE) exploits the property of intrave-
nously administered, echogenic, gas-filled microbubbles that are similar in size and 
rheological properties to red blood cells [37]. MCE enables repeated, quantitative 
measurement of microvascular flow velocity and capillary blood volume, and pro-
vides an estimate of MBF that correlated well with that measured by PET [38]. 
There is a growing body of evidence that a reduced coronary flow velocity reserve 
index helps to identify CMD and allows risk stratification [39, 40].

PET is a well-validated technique that can provide non-invasive, accurate, and 
reproducible quantification of MBF and CFR in humans, and is thus used for assess-
ment of coronary vasomotor function [41, 42]. Recent PET studies demonstrated 
that coronary vascular dysfunction, as defined by reduced CFR, is highly prevalent 
among patients with CAD, [25] increases the severity of inducible myocardial isch-
emia and subclinical myocardial injury, [43], and identifies patients at high risk for 
future cardiac events [44]. PET also has the advantage of assessing all three coro-
nary distributions, thus allowing a more accurate assessment of microvascular dys-
function, as CMD has been shown to have a heterogenous distribution over the three 
vessels [45].

Cardiac magnetic resonance (CMR) has also been used to quantify myocardial 
perfusion following the injection of a gadolinium-based contrast agent [46]. 
Advantages of CMR are high spatial resolution, allowing transmural characteriza-
tion of myocardial blood flow, and the lack of ionizing radiation, along with the 
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ability to perform a comprehensive assessment of cardiovascular structure and func-
tion. A decreased response to vasodilator is seen in the subendocardial region in 
CMD patients and was shown to predict prognosis [47, 48]. A gadolinium-free 
stress CMR approach using T1 mapping has also been recently proposed for diag-
nosis of myocardial ischemia with and without obstructive CAD [49].

7.3.2  Invasive Guidewire-Based Techniques 
for Diagnosis of CMD

Invasive coronary angiography, by combining the ability to exclude obstructive 
CAD with complementary catheter-based techniques to investigate epicardial and 
microvascular coronary physiology, is an attractive approach to evaluate patients 
with CMD [50]. It often involves an interventional procedure where a guidewire- 
based assessment of coronary blood flow is performed at rest and during interroga-
tion with pharmacological probes, typically adenosine [27, 50]. The procedure is 
invasive by nature, requires special expertise, and can be time-consuming. However, 
it has been shown to be safe and effective when performed by experienced interven-
tional operators [51]. Coronary flow reserve (CFR) reflects the ratio of hyperemic 
flow to basal flow and was first describe by Gould et al. in 1974 [52]. This is also 
termed the vasodilator capacity and reflects the ability of the coronary circulation to 
augment blood flow from rest. CFR is calculated using thermodilution as the resting 
mean transit time divided by hyperemic mean transit time, and an abnormal CFR is 
defined as ≤2 (Fig. 7.2) [25, 53]. Importantly, decreased CFR is associated with 
increased risk of MACE [15]. CFR reflects the combined vasodilator capacity of the 
epicardial coronary artery and its subtended microvasculature. Thus, there are some 
limitations for the use of invasively measured CFR due to its sensitivity to systemic 
hemodynamics, myocardial contractility, and challenges with establishing true rest-
ing coronary blood flow during invasive coronary angiography [54]. Specific 

Epicardial coronary artery Microcirculation

CFR

IMR

Coronary flow reserve

Index of microcirculatory resistance
= Pd x hyperemic Tmn

Pa Pd

Pa= mean proximal coronary pressure
Pd=mean distal coronary pressure
Tmn=mean transit time

Pressure- temperature
senior guidewire

Injection of saline

Mean transit time (Tmn)

= resting Tmn/hyperemic Tmn

Fig. 7.2 To evaluate relaxation of the coronary artery, a guidewire-based assessment of coronary 
blood flow is performed at rest and during interrogation with pharmacological probes, typically 
adenosine. CFR coronary flow reserve, IMR index of microcirculatory resistance
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measures of microvascular resistance are more reproducible and specific and are 
directly informative about microvascular disease [55]. Index of microvascular resis-
tance (IMR) is calculated as the distal coronary pressure divided by the inverse of 
the mean transit time during maximal hyperemia [56]. It can be measured by the use 
of a combined pressure-temperature sensor-tipped coronary guidewire, which 
allows simultaneous measurement of coronary pressure and hyperemic flow 
(Fig. 7.2). Increased IMR (e.g. ≥25) is representative of CMD and is associated 
with worse cardiovascular outcomes [57, 58]. Here is the standard measurement 
technique of IMR [59]. Briefly, systemic administration of heparin (50 ~ 100 IU/kg) 
and intracoronary nitroglycerin (100  ~  200  μg) is necessary before measuring 
IMR. A coronary pressure–temperature sensor guidewire is calibrated, equalized to 
the guide catheter pressure with the pressure sensor positioned at the tip of the cath-
eter, and advanced to the distal two thirds of the target vessel. For an accurate ther-
modilution measurement, the sensor needs to be at least 6  cm into the coronary 
artery. A three-way stopcock and 3-mL syringe are connected to the back of the 
manifold. The guide catheter is flushed with saline, clearing all contrast, and an 
operator should pause for a minute to allow coronary flow to return to baseline. If 
the operator intends to calculate CFR also, then 3 mL of room-temperature saline is 
briskly injected through the guide catheter under resting conditions, and the console 
automatically calculates the mean transit time (Tmn) at rest. After making the resting 
measurement, hyperemia is induced by either infusing intravenous adenosine 
(140 μg·kg−1·min−1) or by injecting intracoronary papaverine (10 ~ 20 mg). During 
maximal hyperemia, 3 mL of room-temperature saline is briskly injected through 
the guide catheter, and the hyperemic Tmn (TmnHyp) is measured again as described 
above. The system allows the operator to examine the Tmn curve and calculated time; 
if the operator is not happy, the value can be replaced with another injection. In 
some cases, variability in the Tmn values can occur, particularly if the guide catheter 
is moving out of the coronary ostium during saline injection. If all 3 Tmn values are 
<0.25%, then the variability can be ignored because in most cases, IMR will be in 
the normal range. If Tmn is >0.25% and ([the maximum individual Tmn value minus 
the minimum Tmn value]/the maximum Tmn value×100%) >30%, then the Tmn value 
that is furthest from the mean Tmn should be replaced. Pd is measured simultane-
ously with the same pressure wire during maximal hyperemia, and IMR is calcu-
lated as Pd multiplied by TmnHyp [60].

7.4  Objective Documentation of Coronary 
Microvascular Spasm

Primary reduction of coronary blood flow caused by spasm of coronary small 
arteries or arterioles may be the cause of angina at rest. This hypothesis is sup-
ported by the careful observations of patients with syndrome X which demon-
strated that angina and ischemic ST shift were not always preceded by increments 
in heart rate [61]. Sinus tachycardia that had caused ischemia during exercise 
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testing did not develop chest pain or ECG change in most instances [61]. The vari-
able threshold for angina symptoms during daily life suggests the presence of cir-
cadian variations in vasomotor tone and small vessel hyperconstriction [62]. Mohri 
et al. prospectively examined a cohort of 117 patients with angina (mostly at rest) 
and normal or minimally diseased epicardial coronary arteries. In 25% of the 
patients studied, no epicardial spasm was demonstrated during angina attack on 
selective coronary arteriography [63]. Chest pain which was similar to patients’ 
previous ones developed in association with ischemic ECG changes and lactate 
production (an objective marker of myocardial ischemia) spontaneously or follow-
ing intracoronary acetylcholine. In these patients, the pressure-rate product (an 
index of myocardial oxygen demand) was comparable between at rest and at the 
onset of angina. Thus, the decrease in coronary blood flow, rather than increased 
myocardial oxygen consumption, was a likely explanation for myocardial isch-
emia. This study suggests that coronary microvascular spasm is the cause of chest 
pain in a subset of patients with rest angina and normal epicardial coronary arter-
ies. Microvascular constriction and myocardial ischemia as evidenced by ECG 
change were also provoked by intracoronary infusion of a peptide neurotransmit-
ter, neuropeptide Y [64].

Acetylcholine provocation test should be performed following the guidelines of 
the Japanese Circulation Society [8]. Briefly, ACh was administered into the coro-
nary artery in a cumulative manner (20, 50, and 100 μg) with careful monitoring of 
arterial pressure and 12-lead ECG and serial coronary angiograms at 1-min inter-
vals. Calcium channel blockers, long-acting nitrates, and nicorandil need to be dis-
continued at least 48 h before the provocation test. To determine whether multivessel 
coronary spasm would develop, the authors first perform ACh provocation test for 
the LCA in a cumulative manner (20, 50, and 100 mg). If the test for the LCA is 
negative or ACh-induced spasms in the LCA resolves spontaneously, ACh is then 
injected into the right coronary artery in a cumulative manner (20 and 50 mg). When 
coronary spasm is induced, 5 mg of isosorbide dinitrate (ISDN) is injected into the 
responsible coronary artery. Additionally, to evaluate the presence of coronary 
microvascular spasm, lactate production during myocardial ischemia induced by 
ACh provocation test is recommended. Myocardial lactate extraction ratio is calcu-
lated as the ratio of the coronary arterial–venous difference in lactate concentration 
to the arterial concentration. Myocardial lactate production defined by negative 
myocardial lactate extraction ratio is considered to be highly sensitive to myocardial 
ischemia [65]. Microvascular spasm (MVS) is defined as myocardial lactate pro-
duction despite the absence of angiographically demonstrable epicardial spasm 
throughout ACh provocation test or prior to the occurrence of epicardial coronary 
spasm following intracoronary injections of ACh [66]. At 1 min after each dose of 
ACh is given to LCA, paired samples of 1 mL of blood are collected from the left 
coronary ostium and the coronary sinus for measurement of lactate concentrations, 
which are immediately determined with a calibrated automatic lactate analyzer. We 
usually evaluate lactate production during ACh provocation test only in the LCA, as 
the great coronary sinus drains blood from the LCAs but not from the right coro-
nary artery.
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7.5  Biomarkers of Coronary Microvascular Dysfunction

The causes of CMD appear to be heterogeneous [14, 17]. Classical coronary risk 
factors are associated with impaired coronary microvascular dilatation and enhanced 
coronary microvascular constriction [67]. Recently, low-grade inflammation attracts 
much attention in the pathogenesis of CMD, as CRP levels correlate with the fre-
quency of angina attacks and impairment of coronary microvascular dilatation in 
patients with syndrome X [68]. Although the importance of CMD has been emerg-
ing, reliable biomarkers for CMD still remain to be developed. Serotonin is released 
from aggregating platelets, causing vasoconstriction and platelet aggregation with 
cyclic flow reduction [69]. Several clinical studies previously addressed the rela-
tionship between systemic serotonin concentrations and coronary vasomotor dys-
function in a small number of patients with inconsistent results [70, 71]. We 
examined the potential usefulness of plasma concentration of serotonin to diagnose 
CMD [72]. CMD was defined as myocardial lactate production without or prior to 
the occurrence of epicardial coronary spasm during acetylcholine provocation test. 
Although no statistical difference in plasma concentration of serotonin [median 
(inter-quartile range) nmol/L] was noted between the vasospastic angina (VSA) and 
non-VSA groups, it was significantly higher in patients with MVS compared with 
those without it (Fig.  7.3). Among the four groups classified according to the 
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Fig. 7.3 (a) Plasma concentrations of serotonin were compatible between the VSA and the non- 
VSA groups. Results are expressed as box-and-whisker plots; the central box covers the interquartile 
range, with the median indicated by the line within the box. The whiskers extend to the most extreme 
values within 1.5 interquartile ranges. More extreme values are plotted individually. (b) Plasma 
concentrations of serotonin were higher in patients with MVS than in those without it. (c) Plasma 
serotonin concentrations of the four groups classified according to the presence or absence of VSA 
and MVS are shown. The serotonin concentrations were significantly higher in the VSA with MVS 
group than in the chest pain syndrome group by Steel-Dwass test. *P < 0.01 for the difference in 
plasma concentrations of serotonin among the four groups by Kruskal-Wallis test. VSA vasospastic 
angina, MVS coronary microvascular spasm. (Reproduced from Odaka et al. [72])
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presence or absence of VSA and MVS, serotonin concentration was highest in the 
VSA with MVS group (Fig.  7.3). Importantly, there was a positive correlation 
between plasma serotonin concentration and baseline TIMI frame count, a marker 
of coronary vascular resistance [73]. The classification and regression trees analysis 
showed that plasma serotonin concentration of 9.55 nmol/L was the first discrimina-
tor to stratify the risk for the presence of MVS. In multivariable analysis, serotonin 
concentration greater than the cut-off value had the largest odds ratio in the predic-
tion of MVS [73]. These results suggest that plasma concentration of serotonin may 
be a novel biomarker to dissect MVS from epicardial coronary artery spasm.

7.6  Comprehensive Evaluation of the Coronary 
Functional Abnormalities

Although the importance of coronary functional abnormalities (epicardial coronary 
spasm and CMD) in patients with chest pain and non-obstructive CAD has been 
emerging, their pathogenesis and prognostic implications remain to be fully eluci-
dated. Lee et al. showed that integration of microvascular assessment by both CFR 
and IMR can improve the accuracy of prognostic prediction for patients with high 
FFR; however, no attention was paid to epicardial coronary spasm [58]. Recent 
studies demonstrated that VSA is frequently noted in Caucasian patients with chest 
pain and non-obstructive CAD and those with acute myocardial infarction and non- 
obstructive CAD than ever thought [74, 75]. Thus, attention should always be paid 
to possible involvement of epicardial coronary spasm in patients with chest pain and 
non-obstructive CAD. Thus, we examined the significance of coronary functional 
abnormalities in a comprehensive manner for both epicardial and microvascular 
coronary arteries in patients with angina and non-obstructive CAD [76]. Recently, 
the combined invasive assessment of coronary vasoconstrictor as well as vasodilator 
abnormalities has been titled interventional diagnostic procedure (IDP) [50, 77]. 
When examining patients with chest pain and non-obstructive CAD, we routinely 
performed intracoronary ACh testing for detection of coronary spasm as well as 
coronary flow reserve and microvascular resistance assessment in response to ade-
nosine using a coronary pressure–temperature sensor guidewire. Then, we prospec-
tively enrolled consecutive patients, who underwent ACh provocation test for 
coronary spasm and measurement of IMR to evaluate coronary microvascular func-
tion, and followed them. Multivariable analysis revealed that IMR correlated with 
the incidence of cardiac events and receiver-operating characteristics curve analysis 
identified IMR of 18.0 as the optimal cut-off value. Importantly, there were substan-
tial overlaps of coronary functional abnormality in various combinations among 
VSA, low CFR (CFR < 2.0), and high IMR (IMR ≥ 18) (Fig. 7.4). Among the four 
groups based on the cut-off value of IMR and the presence of VSA, the Kaplan- 
Meier survival analysis showed a significantly worse prognosis in the group with 
high IMR (≥18.0) and VSA compared with other groups (Fig. 7.5). Importantly, 
intracoronary administration of fasudil, a Rho-kinase inhibitor, significantly 
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ameliorated IMR in the VSA patients with increased IMR. These results indicate 
that in patients with angina and non-obstructive CAD, coexistence of epicardial 
coronary spasm and increased microvascular resistance is associated with worse 
prognosis, for which Rho-kinase activation may be involved. Thus, comprehensive 
assessment of coronary functional abnormalities, including epicardial coronary 
spasm and increased microvascular resistance, could be useful for risk stratification 
of patients with angina and non-obstructive CAD. Furthermore, Rho-kinase inhibi-
tion with fasudil may be useful for the treatment of those coronary functional 
abnormalities.

There is a critical missing link between the use of relevant diagnostic tests of 
coronary artery function and therapeutic agents with proven efficiency and health 
outcomes of patients with angina without obstructive CAD. This gap in evidence 
was recently addressed in CORonary MICrovascular Angina randomized controlled 
trial (CorMicA), which tested whether an IDP linked to stratified medicine improves 
health status in patients with ischemia but non-obstructive CAD [77]. CorMicA trial 
demonstrated that vasoreactivity testing with ACh and measurement of CFR and 
IMR can be used to guide medication therapy in patients without non-obstructive 
CAD. Moreover, the stratified medical therapy leads to marked and sustained angina 
improvement and better quality of life at 1 year following invasive coronary angiog-
raphy [78]. Based on these results of CorMicA, it was suggested that the IDP could 
provide the most comprehensive coronary vasomotor assessment.

Overall n=187

n=48

n=19
n=28

n=33

n=15 n=4
n=10

Negative
n=30

Vasospastic angina

Low CFR High IMR

Fig. 7.4 Among 187 patients, 128 (68.4%) were diagnosed as having VSA by ACh provocation 
test. Furthermore, 66 (35.3%) had low CFR (CFR < 2.0) and 75 (40.1%) high IMR (IMR ≥ 18). 
Thus, more than half of VSA patients had microvascular functional abnormalities, including low 
CFR (n = 19, 10.2%), high IMR (n = 33, 17.6%), and both of them (n = 28, 15.0%). CFR coronary 
flow reserve, IMR index of microcirculatory resistance, VSA vasospastic angina. (Reproduced 
from Suda et al. [76])
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