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Chapter 2
Pathophysiology and Molecular 
Mechanisms of Coronary Artery Spasm

Kimio Satoh and Hiroaki Shimokawa

Abstract Rho-kinase plays a central role in the pathogenesis of coronary artery 
spasm caused by vascular smooth muscle cell (VSMC) hypercontraction. Rho- 
kinase belongs to the family of serine/threonine kinases and is an important down-
stream effector of the small GTP-binding protein RhoA.  Two isoforms of 
Rho-kinase, ROCK1 and ROCK2, have different functions with ROCK1 for circu-
lating inflammatory cells and ROCK2 for vascular smooth muscle cells. The RhoA/
Rho-kinase pathway plays an important role in many cellular functions, including 
contraction, motility, proliferation, and apoptosis, leading to the development of 
cardiovascular diseases. In addition to vasospasm, important roles of Rho-kinase 
in vivo have been demonstrated in the pathogenesis of arteriosclerosis, ischemia/
reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. 
Furthermore, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have 
been demonstrated for the treatment of several cardiovascular diseases in animals 
and humans. Thus, the Rho-kinase pathway is an important new therapeutic target 
in vasospasm and other cardiovascular diseases.
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2.1  Development of Animal Models of Coronary Artery 
Spasm and Identification of Important Pathogenetic 
Roles of Rho-Kinase

Rho-kinase activation plays a central role in the pathogenesis of coronary artery 
spasm caused by vascular smooth muscle cell (VSMC) hypercontraction. In an ani-
mal model in pigs in vivo, we examined whether atherosclerotic coronary lesion, 
induced by a combination of balloon endothelium removal and high-cholesterol 
feeding, exhibits hyperresponsiveness to vasoconstrictor agents [1]. Importantly, 
intracoronary administration of serotonin induced coronary artery spasm at the ath-
erosclerotic lesion, and there was a close topological correlation between the spastic 
site and atherosclerotic lesion (Fig. 2.1a, b) [1]. This is the first experimental evi-
dence for the close relationship between coronary artery spasm and coronary ath-
erosclerosis [1]. Next, we further examined whether chronic adventitial inflammation 
could cause vasospastic activity of the coronary artery without endothelium removal 
in pigs. Two weeks after the adventitial application of interleukin-1β (IL-1β), coro-
nary angiography showed the development of mild stenotic lesion, where intracoro-
nary administration of serotonin repeatedly caused coronary spasm (Fig. 2.1c) [2]. 
Histological examination showed adventitial accumulation of inflammatory cells, 
mild neointimal formation, and a marked reduction in vascular cross-sectional area 
(Fig. 2.1d) [2]. These results provided the first experimental evidence for the role of 
adventitial inflammation in the pathogenesis of coronary artery spasm. Delayed 
cerebral ischemia due to cerebral vasospasm remains a major cause of morbidity in 
patients with subarachnoid hemorrhage (SAH). It has been demonstrated that Rho-
kinase is substantially involved in the pathogenesis of cerebral vasospasm after 
SAH [3]. Coronary artery spasm plays an important role in variant angina, myocar-
dial infarction, and sudden cardiac death [4]. It was demonstrated that elevated 
serum level of cortisol, one of the important stress hormones, causes coronary 
hyperreactivity through activation of Rho-kinase in pigs in vivo [5]. The activity and 
the expression of ROCKs are enhanced at the inflammatory/arteriosclerotic coro-
nary lesions [6]. Accumulating evidence indicates that Rho-kinase plays a crucial 
role in the pathogenesis of coronary artery spasm. Intracoronary administration of 
fasudil [7] and of hydroxyfasudil [8] inhibited coronary spasm in pigs in vivo [2]. 
We have demonstrated that fasudil is effective in preventing coronary spasm and 
resultant myocardial ischemia in patients with vasospastic angina [9]. Thus, fasudil 
is useful for the treatment of ischemic coronary syndromes caused by coronary 
artery spasm. Fasudil is also effective in treating patients with microvascular angina 
[10]. The clinical trials for the effects of fasudil in Japanese patients with stable-
effort angina demonstrated that the long-term oral treatment with the Rho-kinase 
inhibitor is effective in ameliorating exercise tolerance in those patients [11]. We 
also have recently demonstrated that Rho-kinase activity in circulating neutrophils 
is an useful biomarker for the diagnosis and disease activity assessment in patients 
with VSA [12].
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Fig. 2.1 Coronary artery spasm induced in two porcine models in vivo. (a, b) Coronary artery 
spasm was induced in atherosclerotic miniature pigs induced by balloon endothelial injury and 
high-cholesterol feeding (a), where topological correlation was noted between the spastic sites and 
the early atherosclerotic lesions (b). (c, d) Coronary artery spasm was induced in pigs with adven-
titial inflammation (c), where intimal thickening and negative remodeling were noted (d). 
(Reproduced from Shimokawa et al. [1, 2])
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2.2  The Rho/Rho-Kinase System in Vascular Contraction

Rho-kinase belongs to the family of serine/threonine kinases and is an important 
downstream effector of the small GTP-binding protein RhoA. The Rho family of 
small G proteins comprises 20 members of ubiquitously expressed proteins in mam-
mals, including RhoA, Rac1, and Cdc42 [13–15]. Among them, RhoA is the best- 
characterized protein that acts as a molecular switch that cycles between an inactive 
GDP-bound and an active GTP-bound conformation interacting with downstream 
targets to elicit a variety of cellular responses (Fig. 2.2) [16]. The activity of RhoA 
is controlled by the guanine nucleotide exchange factors (GEFs) that catalyze 
exchange of GDP for GTP [17]. In contrast, GTPase activating proteins (GAPs) 
stimulate the intrinsic GTPase activity and inactivate RhoA [18]. Additionally, it 
has been demonstrated that guanine nucleotide dissociation inhibitors (GDIs) block 
spontaneous RhoA activation (Fig. 2.2) [19].

In 1996, Rho-kinase (Rho-kinase α/ROCK 2/ROKα and Rho-kinase β/ROCK 1/
ROKβ) was identified as the effector of Rho (Fig. 2.2) [20–22]. Phosphorylation of 
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myosin light chain (MLC) is a key event in the regulation of VSMC contraction 
(Fig.  2.3). MLC is phosphorylated by Ca2+-calmodulin-activated MLC kinase 
(MLCK) and dephosphorylated by MLC phosphatase (MLCP) (Fig. 2.3). Agonists 
bind to G-protein-coupled receptors and induce contraction by increasing both cyto-
solic Ca2+ concentration and Rho-kinase activity through mediating GEF. The sub-
strates of Rho-kinase have been identified, including MLC, myosin-binding subunit 
(MBS) or myosin phosphatase target subunit (MYPT-1), ERM family, adducin, 
PTEN, and LIM-kinases (Figs. 2.2 and 2.3). Rho-kinase enhances MLC phosphory-
lation through inhibition of MBS of myosin phosphatase and mediate agonists- 
induced VSMC contraction (Fig. 2.3).

The interaction between endothelial cells (ECs) and VSMCs plays an important 
role in regulating vascular integrity and vascular homeostasis [23, 24]. ECs release 
vasoactive factors, such as prostacyclin, nitric oxide (NO) and endothelium-derived 
hyperpolarizing factor (EDHF), participating in the regulation of vascular tone and 
arterial resistance [1, 25–27]. It has been demonstrated that both endothelial NO 

Agonists (AngII, 5-HT, ET-1, PDGF-BB, NE, Thrombin, etc) 

DG/PKC

Rho-kinase inhibitors 

+

Gα12/13 
β γ

–
Statins

SmgGDS↑

Rac-1
degradation

–

Rhophillin
Rhotekin

PKN citron
citron-kinase 

p140mDia

–

Rho-kinase inhibitors ERM family (ezrin, radixin, moesin)
Adducin, LIM-kinase, etc. 

Contraction
Stress fiber formation
Focal adhesion
Migration
Cytokinesis
Hypertrophy
Gene expression
↑PAI-1, ↑MCP-1, ↑eNOS, etc. 

–

Cellular responses

Smooth muscle cells
Endothelial cells
Inflammatory cells
Fibroblasts  etc.

Rho

Rho-kinase 

GPCR

Fig. 2.2 The important roles of Rho/Rho-kinase pathway in the pathogenesis of cardiovascular 
diseases. The Rho/Rho-kinase pathway plays important roles in the pathogenesis of vasospastic 
disorders as well as atherosclerotic cardiovascular diseases in general. (Reproduced from 
Shimokawa et al. [27])
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production and NO-mediated signaling in VSMCs are targets and effectors of the 
RhoA/Rho-kinase pathway [23, 28]. In ECs, the RhoA/Rho-kinase pathway nega-
tively regulates NO production [29]. In contrast, VSMCs are among the most plastic 
of all cells in their ability to respond to different stimuli [30–32]. The initial works 
in our laboratory on the therapeutic importance of Rho-kinase were previously sum-
marized [23, 33]. Since then, a significant progress has been made in our knowledge 
on the therapeutic importance of Rho-kinase in cardiovascular medicine. In this 
article, we will briefly review the recent progress in the translational research on the 
therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

2.3  Substrates of Rho-Kinase

Rho-kinase is a serine/threonine kinase with a molecular weight of ~160 kDa. Two 
isoforms of Rho-kinase encoded by 2 different genes have been identified [34–36]. 
In humans, ROCK1 and ROCK2 genes are located separately on chromosome 18 
and chromosome 2, respectively. They are ubiquitously expressed in invertebrates 
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Fig. 2.3 Molecular mechanisms of vascular smooth muscle cells hypercontraction for coronary 
spasm. The central molecular mechanism of vascular smooth muscle cell hypercontraction for 
coronary spasm is Rho-kinase-mediated enhancement of myosin light chain phosphorylations 
through inhibition of myosin light chain phosphatase. (Reproduced from Shimokawa et al. [27])
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and vertebrates with ROCK1 especially in circulating inflammatory cells and 
ROCK2 in VSMCs. ROCKs consist of 3 major domains, including a kinase domain 
in its N-terminal domain, a coiled–coil domain that includes Rho-binding domain in 
its middle portion, and a putative pleckstrin homology (PH) domain in its C-terminal 
domain [13]. Rho-kinase activity is enhanced by binding of GTP-bound active form 
of RhoA [35] (Fig. 2.2). Rho-kinase inhibitors, fasudil [8] and Y-27632 [37], have 
been developed and they inhibit Rho-kinase activity in a competitive manner with 
ATP at the Rho-binding site [38]. It has been demonstrated that hydroxyfasudil, a 
major active metabolite of fasudil, exerts a more specific inhibitory effect on Rho- 
kinase [8, 39].

Although regulation of Rho-kinase expression has not been fully elucidated, 
some studies have reported changes in Rho-kinase expression. Functional differ-
ences between ROCK1 and ROCK2 have been reported; ROCK1 is specifically 
cleaved by caspase-3, whereas ROCK2 is cleaved by granzyme B [40, 41]. The 
small G-protein RhoE specially binds to the N-terminal region of ROCK1 at the 
kinase domain, whereas the MYPT1 binds specially ROCK2 [42, 43]. RhoE bind-
ing to ROCK1 inhibits its activity and prevents RhoA binding to the Rho-binding 
domain [44]. Both ROCK1 and ROCK2 mRNAs and proteins are upregulated by 
angiotensin II (AngII) via AT1 receptor stimulation and by interleukin-1β (IL-1β) 
[45]. A number of Rho-kinase substrates have been identified [46] (Fig. 2.2) and 
Rho-kinase-mediated substrate phosphorylation causes actin filament formation, 
organization, and cytoskeleton rearrangement (Fig.  2.2) [47]. The N-terminal 
regions, upstream of the kinase domains of Rho-kinase, may play a role in deter-
mining substrate specificity of the 2 isoforms [47].

The majority of Rho-kinase substrates have been identified in  vitro. Thus, 
ROCK1- and ROCK2-deficient mice have been generated to further elucidate the 
functions of the ROCK isoforms [48, 49]. Importantly, ROCK1-deficient mice 
showed the eyelids opened at birth [49], whereas ROCK2-deficient mice placental 
dysfunction and fetal death [48, 50–52]. Thus, the role of ROCK2, the main isoform 
in the cardiovascular system, remained to be fully elucidated in vivo. In order to 
address this point, we have recently developed VSMC-specific ROCK2-deficient 
mice and found the crucial role of ROCK2 in the development of hypoxia-induced 
pulmonary hypertension [30].

2.4  Rho-Kinase-Mediated Inflammation 
and Oxidative Stress

Rho-kinase augments inflammation by inducing pro-inflammatory molecules, 
including IL-6 [53], monocyte chemoattractant protein (MCP)-1 [54], macrophage 
migration inhibitory factor (MIF) [55, 56], and sphingosine-1-phosphate (S1P) 
[57]. In ECs, Rho-kinase downregulates eNOS [58] and substantially activates pro- 
inflammatory pathways including enhanced expression of adhesion molecules. The 
expression of Rho-kinase is accelerated by inflammatory stimuli, such as AngII and 
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IL-1β [45], and by remnant lipoproteins in human coronary VSMCs [59]. Rho- 
kinase also upregulates NAD(P)H oxidases and augments AngII-induced ROS pro-
duction [39]. Several growth factors are known to be secreted from VSMC in 
response to oxidative stress. Rho GTPases including RhoA are key regulators in 
signaling pathways linked to actin cytoskeletal rearrangement [60]. RhoA plays a 
central role in vesicular trafficking pathways by controlling organization of actin 
cytoskeleton. It has been reported that active participation of Rho GTPases is 
required for secretion. Myosin II is involved in secretory mechanisms as a motor 
 for vesicle transport [61]. Rho-kinase mediates myosin II activation via phosphory-
lation and inactivation of myosin II light chain phosphatase [20]. Thus, the Rho/
Rho- kinase is important for the secretion of inflammatory cytokines and growth 
factors (Fig. 2.2).

2.5  Rho-Kinase in Vascular Function and Contraction

Rho-kinase has been implicated in the pathogenesis of cardiovascular disease, in 
part by promoting VSMC proliferation [62–64]. Changes in vascular redox state are 
a common pathway involved in the pathogenesis of vasospastic angina (VSA), ath-
erosclerosis, aortic aneurysms, and vascular stenosis. Vascular ROS formation can 
be stimulated by mechanical stretch, pressure overload, shear stress, environmental 
factors (e.g. hypoxia), and growth factors (e.g. AngII) [65]. Importantly, Rho-kinase 
is substantially involved in the vascular effects of various vasoactive factors, includ-
ing AngII [39, 54, 66, 67], thrombin [68, 69], platelet-derived growth factor [70], 
extracellular nucleotides [71], and urotensin [72] (Fig. 2.2). It has previously been 
shown that statins enhance eNOS mRNA by cholesterol-independent mechanisms 
involving inhibition of Rho geranylgeranylation [73]. Rho-kinase plays an impor-
tant role in mediating various cellular functions, not only VSMC contraction [74, 
75] but also actin cytoskeleton organization [76, 77], adhesion, and cytokinesis 
[33]. Thus, Rho-kinase plays a crucial role in the development of cardiovascular 
disease through ROS production, inflammation, EC damage, VSMC contraction 
and proliferation (Figs. 2.2 and 2.3).

2.6  Rho-Kinase in Arteriosclerosis

As mentioned above, Rho-kinase plays a crucial role in the ROS augmentation and 
vascular inflammation. ROS have been implicated in the pathogenesis of neointima 
formation in part by promoting VSMC growth [64, 78] and by stimulating pro- 
inflammatory events [79–81]. Accumulating evidence indicates that Rho-kinase 
inhibitors have broad pharmacological properties [33, 75, 82]. The beneficial effects 
of long-term inhibition of Rho-kinase for the treatment of cardiovascular disease 
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have been demonstrated in various animal models, such as coronary artery spasm, 
arteriosclerosis, restenosis, ischemia/reperfusion injury, hypertension, pulmonary 
hypertension, stroke, and cardiac hypertrophy/heart failure [33, 75, 82]. Gene trans-
fer of dominant-negative Rho-kinase reduced the neointimal formation in pigs [83]. 
Long-term treatment with a Rho-kinase inhibitor suppressed neointima formation 
after vascular injury in  vivo [84, 85], MCP-1-induced vascular lesion formation 
[86], constrictive remodeling [87], in-stent restenosis [88], and the development of 
cardiac allograft vasculopathy [56] (Fig. 2.2).

Arteriosclerosis is a slowly progressing inflammatory process of the arterial wall 
that involves the intima, media, and adventitia [33, 75]. Accumulating evidence 
indicates that Rho-kinase-mediated pathway is substantially involved in EC dys-
function [58, 69], VSMC contraction [89], VSMC proliferation and migration in the 
media [90], and accumulation of inflammatory cells in the adventitia [86]. Those 
Rho-kinase-mediated cellular responses lead to the development of vascular dis-
ease. In fact, mRNA expression of ROCKs is enhanced at the inflammatory and 
arteriosclerotic arterial lesions in animals [89] and humans [91]. In the context of 
atherosclerosis, Rho-kinase should be regarded as a pro-inflammatory and pro- 
atherogenic molecule. Thus, Rho-kinase is an important new therapeutic target for 
the treatment of atherosclerosis (Fig. 2.2).

2.7  Rho-Kinase in Myocardial Ischemia and Heart Failure

ROS production and Rho-kinase activation play a crucial role in myocardial damage 
after ischemia/reperfusion. Consistently, we have demonstrated that pretreatment 
with fasudil before reperfusion prevents endothelial dysfunction and reduces myo-
cardial infarction size in dogs in vivo [92]. The beneficial effect of fasudil has also 
been demonstrated in a rabbit model of myocardial ischemia induced by intravenous 
administration of endothelin-1 [93], a canine model of pacing-induced myocardial 
ischemia [94], and a rat model of vasopressin-induced chronic myocardial ischemia 
[95]. AngII plays a key role in many physiological and pathological processes in 
cardiac cells, including cardiac hypertrophy [96]. Understanding the molecular 
mechanisms for AngII-induced myocardial disorders is important to develop new 
therapies for cardiac dysfunction [97]. One important mechanism now recognized to 
be involved in AngII-induced cardiac hypertrophy is ROS production [98, 99], how-
ever, the precise mechanism by which ROS cause myocardial hypertrophy and dys-
function still remains to be fully elucidated [100]. It has been demonstrated that 
cardiac troponin is a substrate of Rho-kinase [101]. Rho-kinase phosphorylates tro-
ponin and inhibits tension generation in cardiomyocytes. We have demonstrated that 
Rho-kinase inhibition with fasudil suppresses the development of cardiac hypertro-
phy and diastolic heart failure in Dahl salt-sensitive rats [102]. In patients with heart 
failure, intra-arterial infusion of fasudil caused preferential increase in forearm 
blood flow as compared with control subjects, suggesting an involvement of 
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Rho-kinase in the increased peripheral vascular resistance in patients with heart fail-
ure [103].

2.8  Rho-Kinase in Hypertension 
and Pulmonary Hypertension

Short-term administration of Y-27632, another Rho-kinase inhibitor, preferentially 
reduces systemic blood pressure in a dose-dependent manner in rat models of sys-
temic hypertension, suggesting an involvement of Rho-kinase in the pathogenesis 
of hypertension [37]. The expression of Rho-kinase was significantly increased in 
spontaneously hypertensive rats (SHR) [104]. Local administration of a small 
amount of hydroxyfasudil into the nucleus tractus solitarii of the brain stem causes 
sustained decrease in heart rate and blood pressure in SHR but not in normotensive 
rats, suggesting that Rho-kinase is involved in the central mechanisms of sympa-
thetic nerve activity [105]. Inhibition of Rho-kinase in the brain stem also augments 
baroreflex control of heart rate in rats [106]. Pulmonary hypertension (PH) is asso-
ciated with hypoxic exposure, endothelial dysfunction, VSMC hypercontraction 
and proliferation, enhanced ROS production, and inflammatory cell migration, for 
which Rho-kinase may also be substantially involved. Indeed, long-term treatment 
with fasudil suppresses the development of monocrotaline-induced PH in rats [107] 
and of hypoxia-induced PH in mice [108]. Recently, we were able to obtain direct 
evidence for Rho-kinase activation in patients with pulmonary arterial hypertension 
(PAH) [109]. Furthermore, intravenous infusion of fasudil significantly reduced 
pulmonary vascular resistance in patients with PAH, indicating an involvement of 
Rho-kinase in the pathogenesis of PAH in humans [110].

2.9  Conclusions

Accumulating evidence has indicated that Rho-kinase plays important roles in the 
pathogenesis of a wide range of cardiovascular diseases in general and coronary 
vasomotion abnormalities in particular. Additionally, Rho-kinase inhibitors are use-
ful for the treatment of those cardiovascular diseases. In conclusion, accumulating 
experimental and clinical evidence indicates that Rho-kinase is an important new 
target for the treatment of VSA and cardiovascular diseases.
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