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Chapter 12
Low-Energy Extracorporeal Shock Wave 
Therapy

Kenta Ito, Tomohiko Shindo, and Hiroaki Shimokawa

Abstract Despite recent advances in medical knowledge and technology, ischemic 
heart disease is still one of the major causes of death, with the morbidity increasing 
worldwide. We have recently developed a new, noninvasive angiogenic therapy 
using low-energy shock waves. Low-energy extracorporeal cardiac shock wave 
therapy improves myocardial ischemia in a porcine model of chronic myocardial 
ischemia and in patients with refractory angina pectoris. Shock wave therapy also 
improves walking ability in patients with peripheral arterial disease and ameliorates 
digital skin ulcers in patients with systemic sclerosis. Furthermore, animal studies 
suggest that shock wave therapy may be effective to suppress left ventricular remod-
eling after acute myocardial infarction and to enhance locomotor recovery after 
spinal cord injury. Here, we summarize the studies in animals and humans and dis-
cuss the advantages and perspectives of low-energy shock wave therapy.

Keywords Shock wave therapy • Ischemic heart disease • Growth factors • New 
technology

12.1  Introduction

Despite recent advances in medical knowledge and technology, ischemic heart dis-
ease (IHD) is still one of the major causes of death in developed countries, with the 
morbidity increasing worldwide [1–4]. The standard management of IHD has three 
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major therapeutic options, including medication, percutaneous coronary interven-
tion (PCI), and coronary artery bypass grafting (CABG). However, the number of 
severe IHD patients with multiple comorbidities has been increasing as the popula-
tion is aging. Thus, new, noninvasive therapeutic strategies are urgently needed for 
aged and severely diseased patients.

Shock wave (SW) is a longitudinal acoustic wave that propagates through water, 
fat, and soft tissues as ultrasound does. SW is a single pressure pulse with a short 
needlelike positive spike <1 μs in duration and up to 100 MPa in amplitude, fol-
lowed by a tensile portion lasting several microseconds with lower amplitude. 
Extracorporeal shock wave (SW) therapy was clinically introduced more than 
30 years ago, which has markedly improved the treatment of urolithiasis. In extra-
corporeal SW lithotripsy, high-energy SW is used to break up stones in the urinary 
tract. We and others have demonstrated that low-energy SW (about 10% of the 
energy density that is used for urolithiasis) enhances the expression of vascular 
endothelial growth factor (VEGF) (Fig. 12.1) and nitric oxide (NO) release in cul-
tured human umbilical vein endothelial cells (HUVEC) [5, 6]. Furthermore, we 
have demonstrated that low-energy cardiac SW therapy improves myocardial isch-
emia in a porcine model of chronic myocardial ischemia and in patients with refrac-
tory angina pectoris [5, 7, 8]. In this chapter, we summarize the studies in animals 
and humans and discuss the advantages and perspectives of low-energy SW 
therapy.
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Fig. 12.1 Effects of SW on mRNA expression in HUVECs in  vitro. SW therapy upregulated 
mRNA expression of VEGF (a) and Flt-1 (b) with a maximum effect noted at 0.09 mJ/mm2, in 
which level is approximately 10% of that used for urolithiasis. Results are expressed as mean ± SEM 
(n = 10 each) (from [5] with permission)
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12.2  Extracorporeal Cardiac SW Therapy for Angina 
Pectoris

12.2.1  Animal Studies

Based on our in vitro studies in HUVEC, we studied whether low-energy SW therapy 
ameliorates myocardial ischemia in a porcine model in vivo [5]. A porcine model of 
chronic myocardial ischemia was prepared by placing an ameroid constrictor at the 
proximal segment of the left circumflex coronary artery (Lcx). This constrictor gradu-
ally induced a total occlusion of the Lcx with sustained myocardial dysfunction but 
without myocardial infarction in 4 weeks. Four weeks after the implantation of the 
ameroid constrictor, we performed low-energy extracorporeal cardiac SW therapy in 
the SW group (n = 8) three times during the first week, whereas animals in the control 
group (n = 8) received the same anesthesia procedures three times a week but without 
the SW therapy. Low-energy SW was applied to nine spots (0.09 mJ/mm2, 200 shots/
spot) in the ischemic Lcx region in the left ventricle (LV) with a guidance of an echo-
cardiogram equipped within a specially designed SW generator (Storz Medical AG, 
Kreuzlingen, Switzerland) with an R-wave-triggered manner. We evaluated cardiac 
function before (baseline) and at 4 and 8 weeks after the ameroid implantation. Four 
weeks after the implantation of the constrictor, wall motion of the Lcx region in the LV 
was reduced to the same extent in both the control and the SW group (Fig. 12.2a, c). 
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Fig. 12.2 Effects of the SW therapy on LV function in pigs in vivo. The extracorporeal cardiac 
SW therapy improved ischemia-induced myocardial dysfunction in vivo as evaluated by left ven-
triculography. Four weeks after the implantation of an ameroid constrictor, LV wall motion of the 
LCX (posterolateral) region was reduced in both the control (a) and the SW group (before the SW 
therapy) (c). Eight weeks after the implantation of an ameroid constrictor, no significant change in 
LV wall motion was noted in the control group (b), whereas marked recovery was noted in the SW 
group (d). (e) The SW therapy normalized LV ejection fraction in the SW group but not in the 
control group. Results are expressed as mean ± SEM (n = 8 each) (from [5] with permission)
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However, 4 weeks after the SW therapy (8 weeks after the implantation of the constric-
tor), LV wall motion was marked improved only in the SW group (Fig. 12.2b, d, e). We 
also confirmed that the SW therapy upregulated the expression of VEGF, increased 
capillary density (Fig. 12.3), and normalized regional myocardial blood flow in the 
ischemic myocardium in  vivo. No complications or adverse effects, such as tissue 
injury, hemorrhage, or arrhythmia, were noted during or after the SW therapy. These 
results suggest that the low-energy cardiac SW therapy enhances the endogenous angio-
genic system in pigs in vivo. This was the first report that demonstrates the potential 
usefulness of low-energy extracorporeal cardiac SW therapy as a noninvasive angio-
genic approach to chronic myocardial ischemia.
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Fig. 12.3 Effects of the SW therapy on capillary density and VEGF expression in the ischemic 
myocardium in pigs in vivo. The extracorporeal cardiac SW therapy increased the density of factor 
VIII-positive capillaries and VEGF expression in the ischemic myocardium. Capillary density was 
significantly greater in the SW group (SW) than in the control group (control) in both the endocar-
dium (a) and the epicardium (b). The mRNA expression (c) and the protein levels (d) of VEGF 
were significantly higher in the SW group than in the control group. Results are expressed as 
mean ± SEM (n = 6 each) (from [5] with permission)
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12.2.2  Clinical Studies

Standard therapeutic approaches to ischemic heart disease (IHD) include medica-
tion, percutaneous coronary intervention (PCI), and coronary artery bypass grafting 
(CABG). However, the number of IHD patients who are resistant to those therapies 
is increasing. Based on the promising results in animal studies, we conducted the 
first clinical trial of low-energy extracorporeal cardiac SW therapy in nine patients 
with refractory angina pectoris without indication of PCI or CABG (55–82 years 
old, five men and four women) [7]. Low-energy SW was applied to 20–40 spots 
(0.09 mJ/mm2, 200 shots/spot) in the ischemic area in the LV three times during the 
first week. During the therapy, a patient lays on the bed in a supine position without 
any anesthesia or analgesics (Fig. 12.4). The low-energy SW therapy significantly 
improved symptoms and reduced the use of nitroglycerin (Fig. 12.5) and also ame-
liorated myocardial perfusion as assessed by stress scintigraphy only in the isch-
emic area treated with the SW therapy (Fig. 12.6). No complications or adverse 
effects related to the SW therapy were noted. These results indicate that low-energy 
extracorporeal cardiac SW therapy is a safe, effective, and noninvasive therapeutic 

Shock wave 
generator head

In-line UCG probeECG UCG monitor

Fig. 12.4 Extracorporeal cardiac SW therapy in action in a patient with refractory angina pectoris. 
The machine is equipped with a SW generator head and in-line echocardiography probe. The SW 
generator is attached to the chest wall of the patient when used. The SW pulse is easily focused on 
the ischemic myocardium under the guidance of echocardiography. There is no need of anesthesia 
or analgesics
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strategy for severe ischemic heart disease. To further confirm the effectiveness and 
safety of the SW therapy, we performed a second clinical trial in a randomized and 
placebo-controlled manner [8]. In this second clinical trial, we again demonstrated 
that the low-energy SW therapy not only improves symptoms and reduces the use 
of nitroglycerin but also improves LV function (Fig. 12.7), establishing cardiac SW 
therapy as an effective and safe angiogenic strategy for severe ischemic heart dis-
ease. Following our initial report, several clinical studies with positive results were 
reported worldwide [9–15]. Although the SW therapy improves the quality of life 
(QOL) in patients with angina pectoris as mentioned above, it should be clarified 
whether the SW therapy improves the long-term prognosis of those patients.
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Fig. 12.5 Effects of the extracorporeal cardiac SW therapy on symptom and the use of nitroglyc-
erin. Extracorporeal cardiac SW therapy significantly improved Canadian Cardiovascular Society 
(CCS) class scores (a) and the use of nitroglycerin (NG) (b) in patients with refractory angina 
pectoris. Results are expressed as mean ± SEM. *P < 0.05 and †P < 0.01 vs. 0 month (statistically 
analyzed by post hoc test after one-way ANOVA) (from [7] with permission)

Fig. 12.7 Effects of the extracorporeal cardiac SW therapy in patients with refractory angina 
pectoris in the placebo-controlled and double-blind study. CCS Canadian Cardiovascular Society, 
NTG nitroglycerin, Max. exercise maximum exercise capacity in watts (W), Peak VO2 peak oxygen 
uptake, LVEF left ventricular (LV) ejection fraction, LVSV LV stroke volume, LVEDV LV end- 
diastolic volume, BNP brain natriuretic peptide. Results are mean ± SE (n = 8 each) (from [8] with 
permission)
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SPECT

Washout rate

Before Tx After 1st Tx After 2nd Tx

Fig. 12.6 Effects of the extracorporeal cardiac SW therapy on myocardial perfusion in patients 
with refractory angina pectoris. Dipyridamole stress thallium-201 single-photon emission com-
puted tomography (SPECT) imaging and polar map in a patient with severe three-vessel coronary 
artery disease before and after the SW therapy. The results clearly demonstrated that the SW 
therapy ameliorated myocardial perfusion only where SW was applied, in the anteroseptal wall 
after the first treatment (1st Tx) and in the lateral wall after the second treatment (2nd Tx) (arrows) 
in a stepwise manner after the staged SW treatment. The areas treated with the SW therapy are 
indicated with dotted lines (from [7] with permission)
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12.3  Extracorporeal Cardiac SW Therapy for Acute 
Myocardial Infarction

Although primary PCI substantially reduced the mortality of patients with acute 
myocardial infarction (AMI), LV remodeling after AMI still remains an important 
issue in cardiovascular medicine [16]. Thus, it is crucial to develop new therapeutic 
strategies to suppress post-MI LV remodeling. Since capillary density in the border 
zone adjacent to the infarcted myocardium is negatively correlated with infarct size 
1 month after AMI [17], enhancing angiogenesis in the border zone is expected to 
ameliorate the progression of post-MI LV remodeling in patients. Thus, we studied 
whether the SW therapy is also effective to ameliorate post-MI LV remodeling in 
pigs in vivo. First, we created AMI by surgically excising the proximal segment of 
the Lcx [18]. Low-energy extracorporeal cardiac SW therapy was performed at 3, 
5, and 7 days after AMI in the SW group. The animals in the control group were 
treated in the same manner but without the SW therapy. Four weeks after the ther-
apy, LV ejection fraction and LV end-diastolic volume were significantly improved 
in the SW group compared with the control group (Fig.  12.8). Furthermore, 
regional myocardial blood flow and capillary density in the border zone were sig-
nificantly improved in the SW group compared with the control group. Again, no 
procedural complications or adverse effects were noted. These results suggest that 
the low-energy extracorporeal cardiac SW therapy is an effective and noninvasive 
therapy to ameliorate post-MI LV remodeling as well. This was the first report that 
demonstrates the usefulness and safety of extracorporeal cardiac SW therapy as a 
noninvasive treatment of AMI. We also confirmed the beneficial effects and safety 
of the SW therapy in another porcine model of AMI due to myocardial ischemia 
(90 min)/reperfusion to mimic the clinical setting [19]. Based on the promising 
results in two types of AMI models in pigs, the first clinical trial in AMI patients is 
conducted to examine the feasibility, effectiveness, and safety of cardiac SW ther-
apy. In this trial, low-energy SW is applied to the border zone around the infarcted 
area in AMI patients who are successfully treated with PCI as an adjunctive 
therapy.
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Fig. 12.8 Effects of the extracorporeal cardiac SW therapy on LV remodeling in pigs in vivo. The 
SW therapy significantly ameliorated LV remodeling characterized by the increase in LV end- 
systolic volume (LVESV) and end-diastolic volume (LVEDV) and reduced LV ejection fraction 
(LVEF) in a porcine model of AMI (from [18] with permission)
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12.4  Additional Indications of Low-Energy Extracorporeal 
SW Therapy

12.4.1  SW Therapy for Peripheral Arterial Disease

Peripheral arterial disease (PAD) is often associated with IHD and the prognosis of 
patients with critical limb ischemia is quite poor [20–22]. Thus, we studied the effects 
of SW therapy on hindlimb ischemia in rabbits [23]. Hindlimb ischemia was induced by 
surgical excision of the entire unilateral femoral artery. One week after the operation, 
low-energy SW was applied to 30 spots (0.09 mJ/mm2, 200 shots/spot) in the ischemic 
region three times a week for 3 consecutive weeks. Four weeks after the operation, 
blood flow, blood pressure, and capillary density were all significantly higher in the SW 
group than in the control group. Based on the results in animal studies, we conducted a 
clinical trial in 12 patients with PAD with intermittent claudication (Fontaine stage II; 
60–86 years old, ten men and two women) [24]. Low-energy SW was applied to 40 
spots (0.1 mJ/mm2, 200 shots/spot) in the ischemic region three times a week for 3 
consecutive weeks. Subjective walking ability was evaluated with a Walking Impairment 
Questionnaire (WIQ), and walking ability was evaluated with a treadmill test at 4, 8, 12, 
and 24 weeks after the SW therapy. The low-energy SW therapy significantly improved 
symptoms, maximum walking distance, and peripheral perfusion (Fig. 12.9). Tara et al. 
also reported the beneficial effects of low-energy SW therapy in PAD patients including 
Fontaine stage III and IV [25]. These results suggest that low-energy SW therapy is 
promising as a new, noninvasive angiogenic therapy for PAD.
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Fig. 12.9 Effects of the extracorporeal cardiac SW therapy on walking ability in patients with PAD 
and intermittent claudication. Maximum walking distance during the treadmill test was significantly 
increased and was maintained for 24 weeks after the SW therapy (from [24] with permission)
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12.4.2  SW Therapy for Refractory Skin Ulcer

Raynaud’s phenomenon and digital skin ulcers are severe complications of systemic 
sclerosis (SSc) which is related to immune activation, endothelial cell damage, and 
persistent vasospasms [26]. However, conventional immunosuppressive therapies, 
vasodilators, and anticoagulants are often ineffective. We and others have reported 
that low-energy SW therapy enhances wound healing in rodents [27–30] and in 
patients [31, 32]. We have demonstrated that the SW therapy facilitates wound heal-
ing in a mouse model of skin ulcers and that eNOS, VEGF, and angiogenesis play 
important roles in the repair process. Thus, we studied the effects of low-energy SW 
therapy on digital skin ulcers in nine patients with SSc [33]. Low-energy SW was 
applied to 20 areas on both hands and to 15 areas on both feet, totaling 7000 pulses 
once a week for 9 consecutive weeks with observations over 20 weeks. The low- 
energy SW therapy significantly improved digital ulcers in terms of size and num-
ber. No adverse effect was noted during the study period, demonstrating that this 
therapy can be safely repeated for a long period. These results suggest that the SW 
therapy may be added to standard treatments for refractory digital ulcers due to SSc.

12.4.3  SW Therapy for Other Disorders

We and others have reported the effects of low-energy SW therapy on secondary 
lymphedema in animals [34, 35]. We created a tail model of lymphedema in rats, 
and the tail was treated with low-energy SW on 2, 4, 6, and 8 days after the surgery 
[35]. Secondary lymphedema was sustained in the control group, which was signifi-
cantly attenuated in the SW group. The lymphatic system function, the lymphatic 
vessel density, and the expression of VEGF-C and bFGF were all enhanced by the 
SW therapy. These results suggest that the low-energy SW therapy induces thera-
peutic lymphangiogenesis by upregulating VEGF-C and bFGF and that the SW 
therapy could be a noninvasive therapeutic strategy for lymphedema in humans. 
Low-energy SW has been widely used for the treatment of orthopedic diseases, such 
as bone nonunions, tendinosis calcarea, epicondylitis, and calcaneal spur through 
anti-inflammatory effects [36–39]. We have recently reported the effects of low- 
energy SW therapy on locomotor function after spinal cord injury in rats [40]. In 
this study, thoracic spinal cord contusion injury was inflicted using an impactor. 
Low-energy SW was applied to the injured spinal cord three times a week for 3 
consecutive weeks. The SW therapy enhanced the expression of VEGF, attenuated 
neural tissue damage, and improved locomotor recovery. This study provides the 
first evidence that low-energy SW therapy can be a safe and promising therapeutic 
strategy for spinal cord injury.
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12.5  Potential Mechanisms for the Beneficial Effects of SW 
Therapy

We and others have reported angiogenic effects of low-energy SW therapy in vari-
ous animal models and in humans as mentioned above. Low-energy SW is reported 
to enhance VEGF release from bone marrow-derived mononuclear cells 
(BMDMNCs) and their differentiation into endothelial phenotype cells when 
applied to BMDMNCs [40]. Low-energy SW also activates proliferation and dif-
ferentiation in cultured progenitors and precursors of cardiac cell lineages from the 
human heart [41, 42]. Furthermore, it has been reported that the beneficial effects of 
cell therapy were enhanced by pretreating BMDMNCs with SW before implanta-
tion into infarcted area in rabbits and that the pretreatment of ischemic leg with SW 
before cell therapy in a rat model of hindlimb ischemia enhanced the expression of 
stromal cell-derived factor 1 (SDF-1) in ischemic tissue and the resultant recruit-
ment of endothelial progenitor cells [43, 44]. Thus, combination of cell therapy and 
SW therapy could be one of the potential approaches.

Recently, we have studied the effects of low-energy SW therapy on inflammatory 
responses in a rat model of AMI [45]. In this study, low-energy SW was applied to 
whole hearts at 1, 3, and 5 days after AMI. The SW therapy significantly suppressed 
the infiltration of inflammatory cells during acute phase in addition to enhanced 
angiogenesis in the border zone. These results suggest that the SW therapy sup-
pressed post-MI LV remodeling through anti-inflammatory effects in addition to its 
angiogenic effects.

12.6  Conclusions

The beneficial effects of SW (angiogenesis, anti-inflammatory effects, neuroprotec-
tion, etc.) may be mediated by the enhancement of various intrinsic pathways. 
Although the precise intracellular mechanisms remain to be elucidated, low-energy 
extracorporeal SW therapy is promising as an effective, safe, and noninvasive 
approach to not only ischemic cardiovascular disorders but a wide range of 
disorders.
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