Coronary microvascular dysfunction in stable ischaemic heart disease (non-obstructive coronary artery disease and obstructive coronary artery disease)

Udo Sechtem 1*, David Brown 2, Shigeo Godo 3, Gaetano Antonio Lanza 4, Hiro Shimokawa 3, and Novalia Sidik 5

1Department of Cardiology, Robert Bosch Krankenhaus, Auerbachstr. 110, D-70376 Stuttgart, Germany; 2Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA; 3Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; 4Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Cardiology Institute, Roma, Italy; and 5University of Glasgow, Golden Jubilee National Hospital, Glasgow, UK

Received 14 November 2019; revised 9 December 2019; editorial decision 12 December 2019; accepted 15 January 2020; online publish-ahead-of-print 8 February 2020

Abstract

Diffuse and focal epicardial coronary disease and coronary microvascular abnormalities may exist side-by-side. Identifying the contributions of each of these three players in the coronary circulation is a difficult task. Yet identifying coronary microvascular dysfunction (CMD) as an additional player in patients with coronary artery disease (CAD) may provide explanations of why symptoms may persist frequently following PCI and why global coronary flow reserve may be more prognostically important than fractional flow reserve measured in a single vessel before percutaneous coronary intervention. This review focuses on the challenges of identifying the presence of CMD in the context of diffuse non-obstructive CAD and obstructive CAD. Furthermore, it is going to discuss the pathophysiology in this complex situation, examine the clinical context in which the interaction of the three components of disease takes place and finally look at non-invasive diagnostic methods relevant for addressing this question.

Keywords

Coronary microvascular dysfunction • Non-obstructive coronary artery disease • Obstructive coronary artery disease • Pathophysiology • Index of microvascular resistance • Fractional flow reserve

This article is part of the Spotlight Issue on Coronary Microvascular Dysfunction.

1. Introduction

Recently, it has become increasingly obvious that diffuse and focal epicardial coronary disease and coronary microvascular abnormalities may exist side-by-side. Identifying the contributions of each of these three players in the coronary circulation is a difficult task. However, looking at the problem of coronary microvascular dysfunction (CMD) as an adjunct to diffuse and focal plaque and stenosis formation in the coronary arteries makes sense in the context of the vexing challenges of proving the symptomatic and prognostic value of percutaneous coronary interventions (PCIs). Identifying CMD as an additional player in patients with coronary artery disease (CAD) may provide explanations of why symptoms persist so frequently following PCI and why global coronary flow reserve (CFR) may be more prognostically important than fractional flow reserve (FFR) measured in a single vessel before PCI. The term CMD focuses on the functional aspect of microvascular disease. However, we should not forget that, especially in patients with epicardial coronary plaque formation or stenoses morphological changes, such as occlusive microvascular lesions or microvascular rarefaction, may also be found in the resistance vessels of the coronary tree.

In this review, we take a closer look at the challenges of identifying the presence of CMD in the context of diffuse non-obstructive CAD (NOCAD) and obstructive CAD (OCAD). Furthermore, we are going to discuss the pathophysiology in this complex situation, examine the clinical context in which the interaction of the three components takes place and finally look at the non-invasive diagnostic methods relevant for addressing this question.

* Corresponding author. Tel: 49-711-257 9392, fax: 49-711-257 9348, E-mail: udo.sechtem@rbk.de

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
2. How to identify microvascular abnormalities in the presence of diffuse non-stenotic coronary epicardial plaque formation or coronary epicardial stenosis?

There are several clinical scenarios in which the identification of CMD existing in addition to NOCAD or OCAD would be helpful. Let us have a look at a common situation in the catheterization laboratory: a patient is lying on the catheterization table because his general practitioner felt that clarity regarding the patient’s symptoms is needed: does this man have an epicardial stenosis or not? There has been no testing for myocardial ischaemia. The coronary arteries of the patient show diffuse disease and some of the irregularities may represent stenoses of 50% severity. The interventional cardiologist performs a measurement of the FFR which is 0.81. Fortunately, the interventional cardiologist used a dual-purpose wire which also carries a thermistor at its tip which allows temperature measurements over time (alternatively the colleague might have also used a dual-purpose catheter equipped with a pressure sensor for FFR measurements and a Doppler probe for measurements of the velocity of coronary blood flow). Using this wire, CFR is measured and returns a value of 1.9 which is abnormal in this laboratory. What is the interpretation of this finding of a normal FFR value and low CFR value? FFR has been designed as a surrogate measure of impairment of coronary flow to the myocardium. The pressure drop across a coronary stenosis is proportional to the magnitude of coronary flow through the stenosis which is the essence of Ohm’s law. Thus, a low coronary flow through a stenosis is usually associated with a normal FFR value even if the stenosis is tight, whereas a high coronary flow through the same stenosis will result in a low FFR. An increase of flow through a coronary stenosis can be achieved by administration of vasodilator drugs such as adenosine. But what determines the amount of flow through the stenosis once adenosine has been applied? It is the degree of vasodilatation in the periphery of the coronary artery, the microvasculature! Therefore, CMD resulting in very little vasodilatation in response to adenosine will as a consequence result in a rather normal FFR value whereas—in the presence of the same stenosis—a normally functioning microvasculature by inducing a much larger increase in coronary flow will result in a low FFR value.

The thermodilution catheter used in our patient does not measure coronary flow but measures how quickly a bolus of 3 mL of room temperature saline passes the thermistor at its tip. This value is called the transit time. When coronary flow is high, transit time will be low and vice versa. Using this technique, CFR is determined by dividing the transit time at rest by the transit time during maximal vasodilatation of the microvasculature after adenosine stimulation. Coming back to our patient: a low CFR of 1.9 may mean one of two things: (i) resting flow is elevated resulting in a short mean transit time at rest; thus, even if flow after adenosine would rise to levels regarded as almost normal and mean transit time would shorten further as compared to the value at rest, CFR would be low. Under these circumstances, the normal FFR value is reliable (due to the near-normal flow following adenosine) and the epicardial stenosis is not significant; and (ii) flow at rest is normal, whereas maximal flow following adenosine is low; in this case, FFR will underestimate the significance of the stenosis. One way of deciding whether resting flow is abnormally high is to compare mean transit time of the afflicted vessel with a normal vessel although this increases the complexity of the procedure. Unfortunately, indeed, there are no absolute normal values for mean transit times due to the complexity of the measurement and the variability of parameters influencing mean transit times.

A partial solution is measuring the index of microvascular resistance (IMR) which in contrast to CFR is a measure independent of stenosis severity. IMR is calculated as the product of distal coronary pressure times hyperaemic mean transit time. Although IMR measurements...
suffer from similar limitations as those of mean transit times a value >25 mmHg × seconds has been agreed upon to indicate abnormally high microvascular resistance.13,14 A somewhat worse clinical course has recently been demonstrated, however, for values above only 18 mmHg × seconds.15

Possible combinations of FFR and CFR measurements fall into four main categories (Figure 2) allowing one to better distinguish between the epicardial and microvascular parts contributing to ischaemia and symptoms. Measurements of hyperaemic microvascular resistance (HMR) using intra coronary Doppler wires or IMR may further help in interpreting the extent of microvascular involvement17 (Figure 3). Obviously, such measurements are time-consuming and need meticulous attention to detail. However, clarifying the haemodynamic situation in the coronary artery by measuring FFR plus CFR coupled with HMR or IMR may avoid useless interventions and direct attention to necessary medical treatment.18

3. Pathophysiology of CMD

Accumulating evidence has demonstrated that CMD plays an important role in the pathophysiology of myocardial ischaemia in patients with stable ischaemic heart disease (IHD).2,19 Although structural and functional abnormalities of epicardial coronary arteries in IHD patients have been the main focus of interest, those of coronary microvasculature have attracted growing attention in view of their unexpectedly high prevalence and their potential prognostic impact on clinical outcomes in various clinical settings.20–22 The aetiologies of CMD may be heterogeneous; several structural (e.g. vascular remodelling, vascular rarefaction, extramural compression, etc.) and functional (e.g. endothelial dysfunction, vascular smooth muscle cell (VSMC) dysfunction, and microvascular spasm, etc.) alterations have been proposed for the pathophysiological mechanisms of CMD.19,23 As structural alterations may also play an important part in the ultimate consequences of microvascular abnormalities it may also be justified to summarize the entire complex of abnormalities as coronary microvascular disease. Herein, we will briefly summarize the current knowledge on coronary vasomotor abnormalities relevant to CMD in patients with stable IHD with a special reference to endothelial modulation of vascular tone and coronary microvascular spasm (CMS). Further discussions on the coronary microcirculation physiology are available elsewhere.2,23–26

3.1 Endothelial modulation of vascular tone

The endothelium plays crucial roles in modulating vascular tone by synthesizing and releasing endothelium-derived relaxing factors including vasodilator prostaglandins (e.g. prostacyclin), nitric oxide (NO), and endothelium-derived hyperpolarizing factor(s) (EDHF) in a distinct vessel size-dependent manner (Figure 4).24,27 Endothelium-derived NO mainly mediates vasodilatation of relatively large, conduit vessels (e.g. epicardial coronary arteries), while EDHF-mediated responses are the predominant mechanisms of endothelium-dependent vasodilatation of resistance arteries (e.g. coronary microvessels). This vessel size-dependent contribution of NO and EDHF to endothelium-dependent vasodilatation is well-preserved from rodents to humans, making a physiological balance between them.27 EDHF cause hyperpolarization and subsequent relaxation of underlying VSMCs with resultant vasodilatation of small resistance vessels and thus finely regulate blood pressure and organ perfusion in a moment to moment manner in response to diverse physiological demands.27 Although the nature of EDHF probably varies depending on the vascular bed, vessel size, and species of interest,27 endothelium-derived hydrogen peroxide (H$_2$O$_2$) is one of the major EDHF in human,28,29 porcine,30 and canine coronary arteries.31–33 The estimated normal concentrations of H$_2$O$_2$ as an EDHF are in micro molar order (<50 mol/L),30,31 which are much lower than those observed in various pathological conditions.34 In the canine coronary microcirculation in vivo, endothelium-derived H$_2$O$_2$ exerts cardioprotective effects, including myocardial protection against ischaemia/reperfusion injury,31 coronary autoregulation,32 and metabolic coronary vasodilatation.33 Given that H$_2$O$_2$ has potent vasodilator properties in coronary resistance vessels, impaired endothelial H$_2$O$_2$ production, or impaired H$_2$O$_2$-mediated vasodilatation may lead to CMD. Coronary vascular resistance is predominantly determined by pre-arterioles (>100 μm in diameter) and arterioles (<100 μm) where EDHF-mediated responses become more prominent than NO-mediated relaxation. Thus, for an adequate treatment of CAD, it would be essential to maintain a physiological balance between NO and EDHF. This notion is supported by the fact that significant negative interactions exist between NO and several EDHF35–37 and that nitrates as NO donors are
ineffective for the chronic treatment of CMD. However, clinical observations also suggest that intracoronary nitrate may quickly relieve microvascular spasm elicited by acetylcholine (ACh) provocation in some patients.

Recent studies have highlighted the association of CMD with advanced coronary plaque characteristics beyond conventional coronary risk factors. For example, Siasos et al. demonstrated that endothelium-dependent CMD is associated with low endothelial shear stress and larger plaque burden in the epicardial coronary artery. Steady laminar or pulsatile shear stress exerts antiatherogenic effects on the vascular wall, whereas conversely, altered oscillatory or low shear stress with disturbed flow promotes atherogenesis through endothelial and VSMC proliferation, inflammation, lipoprotein uptake, and leucocyte adhesion. Indeed, altered shear stress on the coronary artery wall has been implicated in the local progression of atherosclerotic coronary plaque. Another possible explanation for the link between CMD and epicardial coronary atherosclerosis comes from a novel mechanism of CMD in human CAD, which has been proposed by the Gutterman’s
In brief, as stated above, the healthy human coronary circulation is regulated by NO and low physiological levels of H_2O_2 as an EDHF. However, various atherosclerotic risk factors (e.g. ageing, hypertension, obesity, and smoking) can cause a switch from NO to H_2O_2 as the mediator of endothelium-dependent vasodilatation in human coronary arteries. The resultant impaired production of NO and pathologically elevated levels of H_2O_2, both favour vasoconstrictor, pro-inflammatory, pro-proliferative, and pro-thrombotic states, thus contributing to the development of coronary atherosclerosis. Taken together, these observations may provide insight into the underlying mechanisms by which CMD contributes to the development of epicardial coronary atherosclerosis, even though these focal lesions are located upstream to the microcirculation.

3.2 Coronary microvascular spasm

CMD comprises both impaired coronary microvascular dilatation and enhanced coronary microvascular constriction. Coronary artery spasm at both epicardial and microvascular levels has been implicated in a wide variety of IHD endotypes. Mechanistically, rho-kinase-induced myosin light chain phosphorylation with resultant VSMC hypercontraction is a major mechanism in the pathogenesis of coronary artery spasm, whereas the role of endothelial dysfunction may be minimal (Figure 4). Intracoronary administration of the rho-kinase inhibitor, fasudil, is indeed effective not only for relieving coronary spasm resistant to nitrates or calcium-channel blockers but also for suppressing CMS in most patients with the disease. In addition, enhanced epicardial and CMSs are associated with increased production of vasoconstrictive mediators, such as endothelin and serotonin in patients with CMD.

Intracoronary ACh provocation testing is useful in inducing coronary artery spasm with high sensitivity and specificity in susceptible patients. A high prevalence (around 33%) of ACh-induced CMS has been reported in patients with stable chest pain and NOCAD. Recently, the Coronary Vasomotion Disorders International Study Group (COVADIS) proposed a consensus set of standardized diagnostic
criterion for microvascular angina, i.e. angina attributable to CMD, including ACh-induced CMS. The diagnostic value of these criteria has been demonstrated by a recent randomized clinical trial.

3.3 Clinical implications: CMD as a manifestation of systemic small artery disease

CMD may be a cardiac manifestation of systemic small artery disease, which supports the concept of 'primary coronary microcirculatory dysfunction' and provides important implications for practice and research. Identifying CMD in patients with stable IHD may provide physicians with useful information for decision-making and risk stratification beyond conventional coronary risk factors. A comprehensive and invasive assessment of coronary physiology is feasible and may have both prognostic and therapeutic implications.

Further research is warranted to address how to modulate CMD to improve clinical outcomes of patients with this condition.

4. CMD in patients with stable IHD

In the absence of coronary obstruction, CFR, the ratio of coronary flow achieved at maximal coronary vasodilation to flow under baseline conditions, reflects coronary microvascular function such that a reduced CFR indicates CMD. CFR may be measured invasively as an adjunct to coronary angiography, or non-invasively, using positron emission tomography (PET) cardiac magnetic resonance (CMR) imaging or transthoracic Doppler echocardiography of the left anterior descending coronary artery. Thus, the assessment of CMD requires technology and skills that are not widely available.

CMD may exist in two varieties: first, impaired microvascular conductance ('classical' CMD) and second, arteriolar dysregulation (microvascular spasm). Procedural details of how these two entities can be distinguished is nicely described in the new European Society of Cardiology (ESC) guidelines for the diagnosis and management of chronic coronary artery disease (CAD). The recommendation given by the ESC new guidelines can and may extend into the arterioles as depicted in Figure 1. Taqueti and Di Carlo recently proposed a simplified classification of CMD in which the clinical spectrum of CMD is conceptualized as a function of the degree of atherosclerosis (none, non-obstructive, or obstructive), the severity of CMD, and factors that amplify clinical risk such as metabolic syndrome, obesity, diabetes, female sex, and chronic kidney disease (CKD).

4.1 CMD without atherosclerosis

CMD is prevalent in a number of clinical conditions where atherosclerosis plays little or no role in its pathogenesis including hypertension, aortic stenosis, and non-ischaemic cardiomyopathies including idiopathic, hypertrophic, infiltrative, and stress cardiomyopathies. It is unknown if CMD in non-ischaemic cardiomyopathies is a cause or effect of the underlying myopathic process. However, in all of these conditions, severe CMD has been implicated in the pathophysiology of subendocardial ischaemia, subclinical myocardial injury, and diffuse interstitial fibrosis; worsening systolic and diastolic function, heart failure, and arrhythmias, which may result in adverse cardiac events.

4.2 CMD with NOCAD

As many as 80% of patients with chest pain and NOCAD have evidence of diffuse atherosclerosis by intravascular ultrasound. The presence of CMD appears to be associated with more extensive atherosclerosis. CMD in combination with NOCAD represents the largest cohort of CMD patients with CAD.

The association of non-obstructive atherosclerosis with CMD has important clinical and prognostic implications. First, diffuse atherosclerosis may generate a longitudinal pressure gradient in more than half of atherosclerotic coronary arteries without focal obstructive lesions, reducing coronary blood flow and myocardial perfusion that can result in myocardial ischaemia and symptoms. Second, since coronary plaque rupture and thrombosis commonly occur at sites of NOCAD, CMD with NOCAD is a more ominous condition than CMD with normal coronary arteries because of the coexistence of CMD and extensive substrate for plaque rupture.

The subgroup of patients with the combination of CMD and NOCAD includes patients with obesity, diabetes, metabolic syndrome, CKD, and heart failure with preserved ejection fraction (HFP EF), and a predominance of females. In obese patients, CMD is frequently present, increasing in severity with increasing body mass index, and may...
serve as a better predictor of adverse clinical events than body mass index or traditional risk factors.

Although patients with diabetes and metabolic syndrome are at a markedly increased risk of future atherosclerotic and heart failure adverse events, this excess risk is incompletely explained by OCAD or left ventricular dysfunction and is significantly higher in women with diabetes than in men.

Mounting evidence suggests that diabetes and prediabetic states contribute to important alterations in the regulation of coronary vascular tone before they present with OCAD. Patients with diabetes show a range of structural and functional microvascular abnormalities which vary in extent and severity across cardiometabolic states. Symptomatic patients with diabetes, even without known CAD, demonstrate a variable risk of events when stratified by the severity of coronary vasomotor dysfunction, and those with metabolic syndrome and diabetes, respectively, demonstrate a stepwise increase in rates of CMD and cardiac events.

IHD is highly prevalent in patients with CKD, is responsible for more than one-half of their associated mortality, and is not fully explained by the presence of OCAD. The severity of CMD increases with decreasing glomerular filtration rate, beginning in the early stages of CKD and is associated with increased cardiovascular mortality across the spectrum of kidney function.

Recent evidence suggests that CMD likely plays an important role in the pathophysiology of HFpEF that is mediated through cardiomyocyte injury. Chronic elevation in high-sensitivity troponin levels is common in patients with left ventricular hypertrophy, diabetes, and CKD and is associated with an increased risk of cardiovascular death and heart failure. In otherwise low-risk patients with ischaemic symptoms and minimally elevated troponin, only those with CMD have a significantly increased risk of major adverse cardiac events. Moreover, CMD is independently associated with worsening diastolic dysfunction and, only in the presence of CMD, is a mild troponin elevation associated with diastolic dysfunction.

Strikingly, patients with CMD and diastolic dysfunction experience a >5-fold risk of HFpEF hospitalization. With increased oxygen demand, factors tipping the balance towards cardiomyocyte injury in patients with existing CMD may worsen myocardial mechanics and increase the risk of HFpEF, even without OCAD.

The pathophysiology of stable IHD in women is different from that in men. Women present with a higher burden of symptoms and comorbidities compared with men and experience similar or worse outcomes but are less likely to manifest OCAD, regardless of whether they present with stable IHD or acute coronary syndromes. A major contributor to this apparent paradox is CMD, which often coexists with diffuse, non-obstructive atherosclerosis. CMD increases cardiovascular risk in both women and men, but may constitute an especially malignant phenotype in a subset of severely affected women. Sex-specific factors may promote the development of CAD in a diffuse pattern with a greater propensity for CMD than focal obstruction.

Although not a uniquely female disorder, this pattern of abnormalities in the coronary microcirculation, is prevalent across a broad spectrum of kidney function. Recent evidence suggests that CMD likely plays an important role in the pathophysiology of HFpEF that is mediated through cardiomyocyte injury. Chronic elevation in high-sensitivity troponin levels is common in patients with left ventricular hypertrophy, diabetes, and CKD and is associated with an increased risk of cardiovascular death and heart failure. In otherwise low-risk patients with ischaemic symptoms and minimally elevated troponin, only those with CMD have a significantly increased risk of major adverse cardiac events. Moreover, CMD is independently associated with worsening diastolic dysfunction and, only in the presence of CMD, is a mild troponin elevation associated with diastolic dysfunction.

Strikingly, patients with CMD and diastolic dysfunction experience a >5-fold risk of HFpEF hospitalization. With increased oxygen demand, factors tipping the balance towards cardiomyocyte injury in patients with existing CMD may worsen myocardial mechanics and increase the risk of HFpEF, even without OCAD.

The pathophysiology of stable IHD in women is different from that in men. Women present with a higher burden of symptoms and comorbidities compared with men and experience similar or worse outcomes but are less likely to manifest OCAD, regardless of whether they present with stable IHD or acute coronary syndromes. A major contributor to this apparent paradox is CMD, which often coexists with diffuse, non-obstructive atherosclerosis. CMD increases cardiovascular risk in both women and men, but may constitute an especially malignant phenotype in a subset of severely affected women. Sex-specific factors may promote the development of CAD in a diffuse pattern with a greater propensity for CMD than focal obstruction.

Although not a uniquely female disorder, this pattern of abnormalities may be more prognostically important in women.

4.3 CMD with obstructive atherosclerosis

Although underdiagnosed, CMD also occurs in patients with OCAD. This finding is not surprising because endothelial and coronary vasomotor dysfunction represent early manifestations of atherosclerosis, which may long precede the development of obstructive stenosis. In patients with stable CAD, reductions in microcirculatory reserve exacerbate the functional significance of upstream coronary stenosis and may magnify the severity of inducible myocardial ischaemia. From a clinical perspective, the presence of CMD in patients with stable OCAD has several important prognostic implications.

First, depending on its severity, CMD may have a significant effect on the evaluation of the physiological significance of a coronary stenosis using trans-stenosis pressure gradients or non-invasive imaging for ischaemia. In the presence of CMD, values of FFR measured for any given stenosis are higher (and potentially pseudonormal) than when coronary microvascular function is normal, which can lead to underestimation of the severity of a stenosis. This may help, in part, to explain discrepancies observed between obstructive lesion severity as defined by FFR and the extent and severity of myocardial ischaemia. Second, some studies suggest that reduced CFR as determined by PET, reflecting the combined haemodynamic effects of obstructive stenosis, diffuse atherosclerosis, and CMD, may identify patients at higher risk of adverse events, independent of the severity of angiographic disease.

Third, in OCAD patients the severity of CMD may have prognostic implications. For example, patients with normal FFR but abnormal CFR who have revascularization deferred on the basis of FFR have been reported to experience an increase in adverse events, suggesting a significant role for CMD in their outcomes. The prevalence of severe CMD in patients who have revascularization deferred based on FFR, however, is unknown. Some studies have estimated that this phenomenon may affect up to one-third of patients with normal FFR. This suggests that interrogation of CMD in patients with OCAD could potentially identify circumstances in which mixed abnormalities from upstream stenoses and the microcirculation synergize to alter the apparent functional significance of a focal stenosis. A recent study found that measurement of global CFR modified the effect of revascularization such that only patients with severely reduced global CFR appeared to benefit from revascularization, and only if the revascularization was with coronary artery bypass graft surgery. This finding suggests that sensitive measures of diffuse atherosclerosis and downstream CMD may be able to determine if greater therapeutic benefit will result from more complete revascularization with coronary artery bypass grafting. Furthermore, residual CMD may account for the high frequency of persistent angina following successful PCI in patients with stable IHD even in those with normalization of previously abnormal stress tests.

Thus, CMD represents a combination of structural and functional abnormalities in the coronary microcirculation, is prevalent across a broad spectrum of cardiovascular risk factors and diseases and may be associated with increased risk of adverse outcomes. Contemporary evidence indicates that most patients with CMD have coexisting obstructive or non-obstructive atherosclerosis that has important implications for their prognosis.

4.4 Patients with angina post-PCI—role of CMD

While the exact contribution to myocardial ischaemia and angina of CMD in OCAD patients is difficult to demonstrate due to the presence of flow-limiting stenosis, the clinical relevance of CMD can become evident after the removal of the epicardial obstruction by PCI. CMD is indeed a major cause of angina and myocardial ischaemia on non-invasive stress tests after successful PCI. The persistence/recurrence of angina after PCI has been reported in 20–40% of patients and is independent of the type of procedure applied. The mechanisms of chest pain in these patients are, in fact, heterogeneous, and include restenosis, the development of new critical coronary
lesions, diffuse non-critical atherosclerosis, coronary dissection, thromboembolism and, possibly, myocardial bridging. Moreover, among patients in whom no cause of chest pain can immediately be identified at angiography, a significant epicardial constriction or spasm at the level of or distal to the treated stenosis is a further possible cause of angina. Induction of epicardial spasm by provocative tests, resulting in myocardial ischaemia and angina, has indeed been reported in up to about 50% of these patients.115,116 In addition, CMD may be present in these patients and potentially explain ongoing or recurrent symptoms.115 Li et al.113 found a reduced CFR (2.62 ± 0.98 vs. 3.01 ± 1.13 in a control group without angina, P = 0.029) and a higher IMR (29.3 ± 11.7 vs. 24.9 ± 9.7, P = 0.008) in response to adenosine in patients with recurrent angina but no restenosis after 6–12 months from PCI; of note, CMD was associated with evidence of myocardial ischaemia on exercise stress testing. More recently, Hokimoto et al.114 found evidence of CMD in 59% (62/105) of patients with and without angina who had undergone PCI with drug-eluting stents 9 months previously. Of those, 37% showed an impaired coronary blood flow response to both adenosine and ACh, thus suggesting an impairment of both endothelium-independent and endothelium-dependent coronary microvascular dilatation.

There is conflicting evidence on whether the prevalence of CMD is higher in patients with OCAD as compared to those with NOCAD. One reason for this is that data on angiographic or intracoronary imaging features of the arterial wall regarding the presence of plaques is often not reported in patients without epicardial obstruction who underwent intracoronary function testing. In Japanese patients, the prevalence of CMD was significantly higher (P < 0.001) in those who had undergone PCI due to significant epicardial disease (59%) compared to those who were initially suspected to have functional coronary disease (29.5%).114 In contrast, the prevalence of epicardial spasm was similar in the two groups. The prevalence of smooth coronary arteries in the group with suspected functional coronary disease is not available from this report.114 Corcoran et al.,115 in a British cohort of patients, observed a similar prevalence of CMD in patients with suspected CAD who had NOCAD (17/25 patients = 68%) and in patients with OCAD (23/28 = 61%). Again, the prevalence of patients with smooth coronary arteries in the NOCAD group has not been reported.

An impaired coronary microvascular dilatation in post-PCI patients has also been demonstrated using non-invasive methods. Thus, Milo et al.116 found reduced dilator responses to both adenosine and cold pressor test (representing endothelium-independent and endothelium-dependent vasodilatation) by transthoracic echocardiography of the left anterior descending in patients who had undergone PCI of this vessel 1 day before. Of note, these alterations persisted at 3- and 6-month follow-up and correlated with persistence of exercise-induced myocardial ischaemia [by exercise electrocardiogram (ECG) testing]. Importantly, a greater impairment of CFR was associated with restenosis during 3-year follow-up.117

The studies listed above clearly show that obstructive epicardial coronary disease and microvascular dysfunction may coexist. However, several groups have also observed that reversible microvascular abnormalities may be associated with the haemodynamic situation of a proximal epicardial stenosis.116,119 These observations are consistent with the hypothesis that the microvasculature distal to a tight stenosis may not be able to immediately adjust its tone to the level required to maintain normal resting flow. This inability to return to normal autoregulation may be related to anatomic remodelling or functional readjustment in response to the haemodynamic effects of the stenosis.120 The findings by Verhoeff et al.119 suggest that a functional contraction of the microvasculature seems to exist distal to a tight stenosis. They observed an increased HMR which dropped impressively once the stenosis was removed by PCI. HMR in the intervened vessel dropped to values lower than those measured before PCI in a reference vessel.119 However, baseline microvascular resistance was also reduced in the intervened vessel resulting in an increase of basal myocardial blood flow (MBF) post-PCI. Such an increase of basal MBF was also found non-invasively in the perfusion bed of the intervened vessel using PET at 1 and 7 days following PCI.118 The increased basal MBF coupled with a still reduced hyperaemic MBF led to a persistently reduced dipyridamole-CFR in the PCI region of patients at 1 and 7 days after the procedure. However, CFR was normalized in these patients when PET was repeated after 3 months118 indicating the potential reversibility of the microvascular abnormalities developing distal to a tight proximal coronary stenosis.

The inability of the microvasculature in the first days following PCI to fully relax may also explain the persistence of pathologic exercise stress test in some patients shortly after PCI. el-Tamimi et al.121 found that 50% of patients successfully treated by balloon angioplasty continued to have a pathologic exercise stress test 1 week after the procedure. Interestingly, the test became normal after sublingual nitrates administration suggesting nitrate-induced improved relaxation of the microvasculature during exercise. Spastic involvement of the epicardial coronary vessel was excluded by a normal intracoronary ergonovine test. Thus, exercise-induced ischaemia persisting early after coronary intervention seems to be related to microvascular rather than epicardial constriction and may have the potential to be reversible in some patients.

Microvascular dysfunction may come in two varieties: firstly, there may be an inability to appropriately relax when stimulated by adenosine and secondly, there may be an inappropriate spastic reaction of the microvasculature when stimulated by ACh. The latter mechanism may also explain some of the persistent anginal symptoms in patients after PCI. Ong et al.112 found evidence of ACh-induced CMS in 18 (17%) of 104 patients with angina and previous PCI but no restenosis. Moreover, 28 of the 51 patients who showed ACh-induced epicardial spasm developed symptoms and ischaemic ECG changes before the angiographic appearance of epicardial spasm. This observation suggests that CMS develops first and is initially responsible for myocardial ischaemia followed by epicardial spasm with subsequent intensification of symptoms and signs of ischaemia. Overall, 46/104 (45%) patients in this study had at least parts of their symptoms potentially related to CMS.112

The mechanisms responsible for post-PCI CMD are poorly known but are likely multiple and heterogeneous. Microvascular changes in response to the reduced perfusion pressure distal to a critical stenosis might negatively affect coronary microvascular dilatation, with microvascular dysfunction persisting for a variable time after restoration of a normal epicardial flow.118,119,122,123 CMD, however, might be present together with, but independently of, coronary stenosis in some patients and become the sole source of persisting angina after removal of the epicardial stenosis. Furthermore, at least in some patients, CMD might depend on mechanisms related to PCI itself, including microvascular damage by coronary microembolization of debris material and reactive inflammation consequent to the procedure,124 and, in patients with drug-eluting stent, negative effects on both endothelial and smooth muscle cell function of the active stent drugs released downstream.125–127

In clinical practice, the diagnosis of a microvascular origin of angina in post-PCI patients is difficult to achieve on the basis of clinical features and results of non-invasive stress tests, as they usually do not allow a distinction between the various mechanisms of myocardial ischaemia. However, similar to patients with primary microvascular angina, some
findings may suggest a microvascular origin of symptoms, including: (i) a slow or delayed response of angina pain to short-acting nitrates; (ii) lack of regional wall motion abnormalities during echocardiographic stress test, despite the induction of angina and ischaemic ECG changes; (iii) absence of OCAD at coronary computed tomography (CT) angiography in patients with evidence of myocardial ischaemia or abnormal CFR on non-invasive testing; (iv) a diffuse, rather than regional, impairment of MBF on PET or CMR stress tests; and (v) failure of calcium-antagonists therapy to prevent angina attacks, which makes epicardial spasm an unlikely cause of symptoms.

While clinical findings and non-invasive assessment of patients may give important clues to the origin of symptoms, a full invasive assessment may still be required in many patients in order to make the exact diagnosis and direct appropriate management of these patients. The COVADIS group has recently proposed an algorithm to distinguish between the various causes of chest pain in patients post-PCI (Figure 3). Thus, CMD is present in most patients with obstructed coronary arteries and is responsible for persistent angina in several patients treated by successful PCI. Further research, however, is required to determine whether routine assessment of CMD may lead to improved clinical management of these patients.

5. Non-invasive diagnosis of CMD in patients suspected to have OCAD

Up to 50–60% of patients undergoing elective coronary angiography for suspected CAD have NOCAD. These patients are often reassured regarding the test result and no further diagnostic or therapeutic steps are undertaken. However, the prognosis of these patients depends on the extent of plaque formation as seen by coronary angiography or coronary CT angiography. Retrospective analysis of all US veterans undergoing elective coronary angiography for CAD over a period of 5 years showed that 45% of patients had no OCAD. Half of those had entirely normal coronary arteries by coronary angiography, whereas the other half showed plaque (NOCAD in the definition of this review paper). The prognosis of patients with entirely normal coronary arteries was good with an annual incidence of death or myocardial infarction of around 1.2%. In another study, patients without plaque by coronary CT angiography have an even lower annual event rate of only 0.4%. Depending on the number of angiographically affected vessels with plaque, this annual incidence increases gradually. Patients with plaque in all three major coronary vessels experience events at a rate of approximately 2.9% annually which closely approximates the event rate of patients with obstructive single-vessel disease (3.0%). Similar data were obtained based on the information from coronary CT angiography when patients were followed for a median of 3.6 years. Extensive diffuse non-obstructive coronary atherosclerosis involving >4 of 18 coronary segments on coronary CT angiography carried a similar prognosis with respect to death (annual death rate of 2.3%) as the same extent of affected segments with obstructive disease.

Although the population of patients with chest pain is heterogeneous, many may have CMD. In order to avoid invasive coronary angiography done for the sole purpose of excluding epicardial stenoses patients should be investigated for evidence of myocardial ischaemia prior to coronary angiography. This is in keeping with current clinical ESC guidelines for the diagnosis and management of patients with chronic coronary syndromes. Patients with a low clinical likelihood of OCAD may also undergo coronary CT angiography in order to exclude obstructive plaque. Patients without ischaemia are recommended to undergo carotid ultrasound to exclude arterial plaque, whereas the presence of plaque is simultaneously revealed in those undergoing only CT angiography. The consequence of finding plaque is to initiate secondary preventive measures. Depending on the type of chest pain antianginal treatment may be justified. Coronary angiography is recommended for patients with a high clinical likelihood of obstructive disease and symptoms refractory to medical therapy.

In a patient with chest pain, the diagnosis of definitive microvascular angina (i.e. angina caused by microvascular disease) can be made if the following criteria are met: (i) symptoms consistent with angina, (ii) absence of OCAD, (iii) objective evidence of myocardial ischaemia, and (iv) evidence of abnormal coronary microvascular function (defined as abnormal CFR, abnormal IMR, microvascular spasm, or coronary slow flow phenomenon). Thus, the diagnosis can be made non-invasively based on a careful clinical history, a coronary CT angiogram demonstrating absence of stenoses, pathologic exercise stress ECG, and an abnormally low CFR measured by transthoracic Doppler echocardiography. Alternatively, one can rely on the invasive coronary angiogram enriched by invasive coronary function testing. However, the invasive path to the diagnosis of microvascular angina requires that ischaemia should be demonstrated beforehand.

5.1 Absence of OCAD demonstrated by anatomical imaging

As outlined above, the diagnosis of CMD requires, firstly, the exclusion of OCAD as a cause of the anginal symptoms. With recent guidelines placing emphasis on CT coronary angiography (CTCA) as a first-line investigation for patients presenting with suspected angina, fewer patients can be expected to undergo invasive coronary angiography for excluding OCAD. In patients in whom CTCA has excluded OCAD, symptoms suggestive of angina should prompt clinicians to consider CMD as a potential mechanism for ischaemia and proceed to functional testing in the first instance. Combining an exercise stress ECG (demonstration of ischaemia) with transthoracic Doppler echocardiography of the left anterior descending coronary artery before and after intravenous adenosine (measurement of CFR) would be a good approach to rule in or rule out the diagnosis of CMD.

5.2 Functional tests to prove the presence of ischaemia and an abnormal CFR

Most stress tests are widely available in the clinical setting and should be utilized when assessing a patient with suspected angina. There are also several other modalities that are specific to CMD, with the caveat that OCAD has been excluded prior to functional testing.

The treadmill stress test remains the most accessible form of functional testing. However, no specific features diagnostic of CMD have been identified. Many women with ‘false positive’ stress ECGs (because of the absence of epicardial stenoses at subsequent coronary angiography) will have CMD as the underlying abnormality causing symptoms. However, a negative treadmill stress test does not exclude the possibility of CMD which only involves non-exercise dependent abnormal vasoconstrictor activity of the microvasculature (microvascular spasm). CMD will usually not produce echocardiographically detectable dysfunction despite the occurrence of symptoms, ECG changes, and perfusion abnormalities. This contrasts to the good sensitivity of stress
contrast echocardiography if perfusion in a sizeable territory of an epicardial artery or a major branch is significantly decreased. Patchy involvement, which is common in CMD, is likely to be missed.

Diffuse mild involvement across the myocardium may also fail to produce an area of localized reduction in stress contrast echocardiography. However, in patients with intermediate coronary stenoses with normal FFR values stress contrast echocardiography may demonstrate ischaemia. This may be related to an inability to increase flow sufficiently through the stenosis due to associated severe CMD.

Transthoracic Doppler echocardiography has been used to evaluate flow in the left anterior descending artery. Coronary flow velocity is measured at baseline and at maximal hyperaemia in response to

Figure 5 Possible combinations of epicardial coronary anatomy and microvascular abnormalities. For the purpose of clarity, functional epicardial abnormalities which may be present in addition to the conditions shown were left out. The comb-like structures shown in the three illustrations on the left are schematic representations of the microvasculature. The drawing of the arteriolar-venous shunt (shown in red in the centre of the seven illustrations) is reproduced with permission from Pries and Reglin. The two images of a normal arteriole and a diffusely diseased arteriole from a patient with OCAD shown in the left and middle panel under MV anatomy were kindly provided by Professor Karin Klingel, MD, Director of Cardiac Pathology, Institute of General and Molecular Pathology and Pathologic Anatomy, University of Tübingen, Germany. The image shown in the right panel demonstrates diffuse rarefaction of capillaries (yellow), precapillary arterioles (orange), and larger intramyocardial arteries (red) in a patient with heart failure with preserved ejection fraction. This image was reproduced with permission from Mohammed et al.

Any combination of these conditions.
adenosine, and the ratio between the latter and the former is taken as representative of CFR. This test requires a high-frequency transducer and highly sensitive and dedicated equipment and is significantly dependent on an appropriate acoustic window. Interpretation of a negative test in a patient with typical anginal symptoms and a pathologic exercise stress ECG in the absence of an epicardial coronary stenosis is challenging. Such a patient would not fulfill the current diagnostic requirements for making a diagnosis of CMD. Nevertheless, if the patient suffers from intense symptoms especially at rest, proceeding to invasive diagnosis including an ACh provocation test may be appropriate.

Single-photon-emission computed tomography (SPECT) nuclear perfusion scans may show relative overall reduction in technetium uptake and reduced washout in CMD. SPECT may also show regional ischaemia in patients with severe, regionally accentuated CMD. However, recent systematic studies studying SPECT in patients with invasively proven CMD do not exist. In the past, overall sensitivity of demonstrating ischaemia in CMD (formerly called syndrome X) was shown to be low. PET has been shown to be a reliable tool to quantify MBF, which has good correlation with invasively measured CFR (see above). It remains the current reference standard for non-invasive quantification of

Figure 6 Flowchart for diagnostic assessment and management of patients with persistent or recurrent angina after percutaneous coronary intervention. ACh, acetylcholine; CFR, coronary flow reserve; Ergo, ergonovine maleate; FFR, fractional flow reserve; IMR, index of microvascular resistance; NHPR, non-hyperaemic pressure ratio; RWMA, regional wall motion abnormalities. Reproduced with permission from Crea et al.5

myocardial ischaemia, with or without OCAD. Unfortunately, cardiac PET is not widely available and reimbursement may be difficult in some countries.

Stress CMR is an alternative to PET and can also be used to measure MBF and myocardial perfusion reserve, both of which correlate with CFR. Liu et al.131 recently showed that patients with NOCAD and IMR invasively measured to be <25 U also had normal values for the myocardial perfusion reserve index (MPRI) which is a non-invasive correlate of CFR. In contrast, patients with IMR \(\geq 25\) U had significantly reduced MPRI values similar to ischaemic myocardium downstream of OCAD. Highly selected patients with severe CMD (typical exertional angina, pathologic exercise ECG, completely normal coronary arteries by invasive coronary angiography, and absence of inducible spasm by ergonovine-provocation testing) may demonstrate circumferential subendocardial ischaemia on CMR perfusion imaging which is associated with provocation of intense chest pain.132 This is in contrast to the pattern seen in patients with epicardial disease, where the transmural and segmental perfusion defects would correspond with the distribution of an epicardial coronary artery.

A new CMR technique, gadolinium-free CMR stress T1-mapping seems to be able to distinguish epicardial from microvascular disease non-invasively.133 This technique makes use of the fact that the water content of ischaemic myocardium will not increase in response to adenosine, whereas that of non-ischaemic myocardium does. The higher water content leads to a higher T1 relaxation time. Therefore, T1 during adenosine is approximately 4–6% higher in normal myocardium compared to the measurement of T1 at rest. In contrast, T1 only increases up to 1.5% in ischaemic myocardium distal to a high-grade epicardial coronary stenosis. Patients with CMD exhibit differences between rest and stress T1 of 1.5–4%. Although these differences are rather small correlation with invasive indices of CMD seems to be excellent.134 In this first prospective validation of the technique with invasive confirmation, the authors did not look at patients who had epicardial disease and CMD. Moreover, these results await confirmation by other groups. Although combinations of non-invasive tests can be used efficiently to identify patients with symptoms commonly ascribed to stenosing CAD yet without epicardial stenosis, it will need a major change of mainstream thinking to apply them broadly instead of resorting to coronary angiography as a panacea for the patients with angina. The combination of epicardial plaque formation resulting in various degrees of luminal narrowing with CMD will be a continuing clinical challenge. In these patients, conventional thinking will always strive to see whether it is not a stenosis in disguise causing the symptoms. Moreover, coronary CT angiography with its tendency to overestimate the degree of narrowing caused by plaques may be instrumental in perpetuating the enamoured fixation on epicardial stenoses as the sole cause of anginal symptoms. A sharp clinical eye will be helpful to look beyond the visible and the obvious and consider CMD as the main or additional substrate of the patient’s problems. A masterful command of non-invasive testing will also be necessary to come to the right diagnosis of CMD with having to resort to additional invasive support of that diagnosis.

6. Summary

CMD is a complicating factor in many patients with NOCAD and OCAD. The microvasculature may be affected by anatomic and functional derangements and combinations of those. Diagnosing the additional presence of CMD is difficult and often requires invasive diagnostic testing. However, establishing a diagnosis of CMD has important consequences for therapy and prognosis. CMD may explain why angina persists in a substantial portion of patients after successful revascularization. Non-invasive diagnosis of CMD is also possible. Ideally, the absence of OCAD should be established using coronary CT angiography, whereas the presence of CMD can be ascertained using imaging methods such as PET, CMR, or Doppler echocardiography to demonstrate a reduced myocardial perfusion or CFR. However, CMD may also manifest itself as an abnormal tendency for vasocostruction (vasospasm) which can only be proven by invasive provocation testing.

Conflict of interest: none declared.

References

Coronary microvascular dysfunction in stable ischaemic heart disease (NOCAD and OCAD)

Coronary microvascular dysfunction in stable ischaemic heart disease (NOCAD and OCAD)

Coronary microvascular dysfunction in stable ischaemic heart disease (NOCAD and OCAD)

114. Hokimoto S, Tabata N, Yamanaga K, Sueta D, Akasaka T, Tsujita K, Sakamoto K,

101. Taqueti VR, Dorbala S, Wolinsky D, Abbott B, Heller GV, Bateman TM, Meres JH,

102. van de Hoef TP, Nolte F, Echaverria-Pinto M, van Lavieren MA, Damman P,

107. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N,

118. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Delayed recovery
Yamamoto E, Yamamuro M, Izumiya Y, Kaikita K, Kojima S, Matsui K, Ogawa H.

nary microvascular dysfunction with restenosis of left anterior descending coronary artery

117. Uren NG, Crate T, Lefroy DC, de Silva R, Davies GJ, Plieck A. Delayed recovery of
coronary resistive vessel function after coronary angioplasty. J Am Coll Cardiol 2015;
21:612–621.

Kt, Tijssen JGP, Saage AE, Piek J. Influence of percutaneous coronary intervention

120. Sorop O, Merkus D, de Beer JV, Houlanging B, Pista A, McFalls EO, Boomsma F,
van Beestek-HM, van der Giesen WJ, van Bavel E, Dunker DJ. Functional and
structural adaptations of coronary microvascular distals to a chronic coronary

121. el-Tamimi H, Davies GJ, Sirtara P, Hackett D, Crea F, Maseri A. Inappropriate con
striction of small coronary vessels as a possible cause of a positive exercise test early

122. Wilson RF, Johnson MR, Marcus ML, Ayvazian PE, Skorton DJ, Collins S, White
77:873–885.

EO, Kelly RF. Magnetic resonance imaging assessment of cardiac function in a swine
model of hibernating myocardium 3 months following bypass surgery. J Thorac

Channon KM, Neubauer S, Banning AP. Effect of detail distalization on myocardial
perfusion reserve after percutaneous coronary intervention: a quantitative magnetic

Antonio Lanza G, Crea F. Exercise stress test results in patients with bare metal stents
74:2372–2378.

WS, Baek SH, Lee MY. Drug-eluting stent implantation could be associated with

Nakayama M, Takeda M, Shimokawa H. Involvement of rho-kinase activation in the
pathogenesis of coronary hypercontracting responses induced by drug-eluting stents

128. Nihoynannopoulos P, Kashi JC, Tatei S. Absence of myocardial dysfunction

129. Kajander S, Joustraenini E, Saraste M, Pietila M, Ukonnen H, Saraste A, Sipla HT,
Tippula T, Maki H, Envin J, Moilanen T. Gamma camera emission tomography/computed
tomography imaging accurately detects anatomically and functionally

130. Schmaier AA, Taqueti VR. A lack of reserve: recognizing the large impact of small

SK, Neubauer S, Kharbanda RK, Ferrerera VM. Diagnosis of microvascular angina us
ing cardiac magnetic resonance. J Am Coll Cardiol 2016;:949–977.

132. Patel MR, Peterson ED, Dai B, Brennan JM, Redberg RF, Anderson HV, Brindis RG,
362:886–892.

133. Min JK, Dunning A, Lin FY, Achenbach S, Al-Halbousi M, Budoff MJ, Cademorti F,
Cuckler TQ, Chang H, Chen Y, Shinassay K, Chou BJ, Delto A, Hadvamat S, Hauseiter J,
Kaufmann P, Maffei E, Raff G, Shaw LJ, Willines T, Berman DS, CONFIRM Investigators. Age-

134. Bittencourt MS, Hulten E, Goshahbri N, O'Leary D, Christman MP, Montara P,
Truong QA, Steigner M, Murthy VL, Rylbicki FJ, Nasir K, Gwokdal LH, Haner J,
Brady TJ, Di Carlo MF, Hoffmann U, Abbas S, Blankstein R. Prognostic value of non
obstructive and obstructive coronary artery disease detected by coronary computed

136. Fihn SD, Gardin JM, Fowle E, Ayers M, Al-Aasiri M, Boshoff MJ, Redberg RF,

