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Treadmill exercise prevents
reduction of bone mineral
density after myocardial infarction
in apolipoprotein E-deficient mice
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Abstract

Aims: Recent clinical studies demonstrated the association between myocardial infarction (MI) and osteoporotic frac-

tures. We examined whether MI causes bone loss and the effects of exercise training on bone in mice after MI.

Methods: We created a MI model in 16-week-old male apolipoprotein E-deficient mice (n¼ 42), which were randomly

assigned to exercise group (MI-Ex) and sedentary group (MI-Sed). We also performed sham operations in other mice

(n¼ 10). Treadmill exercise training was performed from one week after operation to eight weeks. At eight weeks, the

bone parameters of the femur were measured by quantitative computed tomography, followed by histological analysis

(n¼ 10–17).

Results: Bone mineral density (BMD) of the femur was significantly decreased in the MI-Sed group as compared with the

sham group (P< 0.001), whereas the BMD was significantly increased in the MI-Ex group as compared with the MI-Sed

group (P< 0.05). In histological analysis, Rho-associated coiled-coil kinase 2 and tartrate-resistant acid phosphate positive

(bone resorptive) area in distal femur were significantly increased in the MI-Sed group as compared with the sham group

(P< 0.05), whereas those parameters were significantly decreased in the MI-Ex group as compared with the MI-Sed

group (P< 0.05). In contrast, alkaline phosphatase (ALP)-positive (bone-forming) area was significantly decreased in the

MI-Sed group as compared with the sham group (P< 0.05), whereas ALP-positive area was significantly increased in the

MI-Ex group as compared with the MI-Sed group (P< 0.05).

Conclusions: The present study demonstrates that MI reduces BMD and treadmill exercise training prevents the

reduction of BMD in apolipoprotein E-deficient mice.
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Introduction

Osteoporosis is characterized by low bone mass with a
resultant bone fragility and, thus, susceptibility to frac-
ture, especially at the proximal femur (hip) and the ver-
tebrae.1 Importantly, osteoporotic fracture is one of the
most common causes of disability and demand of med-
ical care costs in the world with aging population.2

Indeed, hip fracture is the most serious result of osteo-
porosis as it 1) reduces the quality of life due to severe
pain and disability; 2) forces the patients to spend time in
a rehabilitation facility; and 3) even causes high

mortality rates.1 The estimated number of hip fractures
worldwide will rise approximately four-fold from 1990
to 2050.3 Thus, osteoporosis has been recognized as one
of the most important public health issues.
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Similarly, chronic heart failure (HF) is also a leading
cause of hospitalizations and death in rapidly aging
society worldwide.4 The number of patients with car-
diovascular risk factors, such as dyslipidemia, hyper-
tension and diabetes mellitus, has been increasing
with a resultant increase in the incidence of myocardial
infarction (MI).5 Importantly, recent studies indicated
the relation between cardiovascular diseases (CVDs)
and risk of subsequent hip fractures.6,7 Furthermore,
recent large cohort studies have demonstrated that the
association between the history of MI and osteoporotic
fracture has become more evident in the past decades.8

Bone mineral density (BMD) is the most important
factor regulating bone strength, accounting for
approximately 70% of bone strength.9 Bone remodel-
ing is a temporally regulated process with the balance
between resorption and formation of bone tissue.1

Notably, osteoclasts activation increases bone resorp-
tion activity and tips the balance in favor of resorption
of bone, resulting in low BMD and osteoporosis.1

Although exercise training has been shown to reduce
CVD,10 there is no experimental model showing the
link between MI and bone loss.

In the present study, we thus aimed to examine
whether MI causes structural loss of bone in a MI
model of apolipoprotein E-deficient (ApoE-KO) mice.
And if so, we also aimed to examine whether exercise
training after MI is able to prevent the reduction of
BMD after MI and its potential mechanism.

Methods

In the present study, we created an experimental MI
model in 16-week-old male apolipoprotein E-deficient
mice (n¼ 42), which were randomly assigned to an
exercise group (MI-Ex; n¼ 18) and a sedentary group
(MI-Sed; n¼ 24) (Figure 1). We also performed sham
operations in other mice (n¼ 10). At eight weeks, the
bone parameters of the femur were measured by quan-
titative computed tomography (CT), followed by
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Figure 1. Experimental study design. Three treatment groups were created in the present study: sham group (sham), acute myo-

cardial infarction group treated with LAD coronary artery ligation at 16 weeks old without exercise training by treadmill (MI-Sed), and

acute myocardial infarction group with exercise training by treadmill (MI-Ex). The time points (a) and measurements (b) of the study

are highlighted.

LAD: left anterior descending coronary artery; MI: myocardial infarction.
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histological analysis (n¼ 10–17). Detailed methods are
available in the online supplementary material.

Results

Blood pressure and body weight

Before the ligation of the left anterior descending
(LAD) coronary artery, there were no significant differ-
ences in body weight or blood pressure among the
sham, the MI-Sed, and MI-Ex groups (see online
table). Every two weeks after MI, there were no signifi-
cant differences in each parameter among the 3 groups
(online table).

Blood chemistry

Serum levels of calcium and phosphorus were all com-
parable between the three groups (online table).

Echocardiography and histology

At seven weeks after MI, echocardiography was per-
formed. The motion of the anterior wall in the MI
group appeared akinetic. In contrast, the sham group
showed no asynergy (online Figure 1(a)). Left ventricu-
lar ejection fraction (LVEF) was significantly decreased

in the MI group as compared with the sham group
(MI-Sed 26.4� 3.4%, MI-Ex 25.8� 3.4% versus sham
61.4� 4.0%; P< 0.001 each) (online Figure 1(b)). Left
ventricular fractional shortening (LVFS) was also sig-
nificantly decreased in the MI group as compared with
the sham group (MI-Sed 12.7� 1.9%, MI-Ex
12.4� 1.9% versus sham 32.5� 0.9%; P< 0.001 each)
(online Figure 1(b)). Left ventricular diastolic dimen-
sion was significantly increased in the MI-Sed and
MI-Ex group as compared with the sham group (MI-
Sed 5.4� 0.2, MI-Ex 5.4� 0.2 versus sham 3.9�
0.1mm; P< 0.001 each) (online Figure 1(b)).
Histological analysis of the heart showed that left ven-
tricular (LV) infarct size (% of LV) was comparable
between the MI-Sed group (36� 3%) and the MI-Ex
group (37� 4%), whereas no LV infarct was noted in
the sham group (online Figure 2).

CT analysis of the bone

Quantitative CT analysis demonstrated that the
total BMD of the femur was significantly lower in the
MI-Sed group as compared with the sham group,
whereas the total BMD was significantly increased in
the MI-Ex group as compared with the MI-Sed group
(MI-Sed 598.1� 3.8 versus sham 626.1� 4.8mg/cm3,
P< 0.05, versus MI-Ex 616.1� 5.3, P< 0.05)
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Figure 2. Analysis of bone parameters by CT. Representative microstructural images of metaphysis by micro-CTwere shown in the

sham group, MI-Sed group and MI-Ex group (a). Scale bars¼ 1 mm. Total bone mineral density (b) and cortical bone thickness (c) were

measured. Results are expressed as mean� standard error of the mean (SEM).
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(Figure 2(a) and (b)). The cortical bone thickness was
also significantly decreased in the MI-Sed group as
compared with the sham group and MI-Ex group
(MI-Sed 0.197� 0.0003 versus sham 0.199�
0.0005mm, P< 0.001, versus MI-Ex 0.198�
0.0004mm, P< 0.05) (Figure 2(c)). The trabecular
density was significantly low in the MI-Sed group as
compared with the sham group and MI-Ex group
(MI-Sed 350.3� 4.3 versus sham 378.2� 5.3mg/cm3,
P< 0.005, versus MI-Ex 369.6�5.6mg/cm3, P< 0.05).

Bone immunohistochemistry

Semiquantitative analysis of immunohistochemistry
demonstrated that the number of tartrate-resistant acid
phosphate (TRAP)-positive areas in metaphysis was also
significantly increased in the MI-Sed group as compared
with the sham group, whereas the number of TRAP-
positive areas was significantly decreased in the MI-Ex
group as compared with the MI-Sed group (Figure 3).
In contrast, the number of alkaline phosphatase (ALP)-
positive areas was significantly decreased in the MI-Sed
group as compared with the sham group, whereas the
number of ALP-positive areas was significantly

increased in the MI-Ex group as compared with the
MI-Sed group (Figure 4). The number of Rho-asso-
ciated coiled-coil kinase 2 (ROCK2)-positive areas was
significantly increased in the MI-Sed group as compared
with the sham group, whereas the number of ROCK2-
positive areas was significantly decreased in the MI-Ex
group as compared with the MI-Sed group (Figure 5).

Discussion

The major findings of the present study were that 1)
post-infarction HF significantly reduced BMD and
cortical bone thickness and increased ROCK2 expres-
sion in the femur of ApoE-KO mice; 2) exercise
training prevented the reduction of BMD and cortical
bone thickness after MI; 3) exercise training reduced
bone resorption activity of osteoclast; 4) exercise
training accelerated bone formation activity; and 5)
exercise training reduced ROCK2 expression in the
bone tissue. To the best of our knowledge, this is the
first study that demonstrates that post-infarction
HF causes reduction in BMD, and exercise training
prevents the reduction of BMD in mice with post-
infarction HF.
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Figure 3. Histological analysis for TRAP staining of bone tissue. Representative histology for TRAP staining for the bone resorption

activity of the metaphyseal area of the femur was demonstrated in the sham group, the MI-Sed group and the MI-Ex group (a).

The semi-quantitative analysis of TRAP-positive areas of metaphysis was examined (b). Scale bars¼ 200 mm. Results are expressed as

mean� SEM.
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Figure 4. Histological analysis for ALP staining of bone tissue. Representative immunohistochemistry for ALP staining of the femur

for bone morph genic activity was demonstrated in the sham group, the MI-Sed group and the MI-Ex group (a). The semi-quantitative

analysis of ALP-positive areas of metaphysis was examined (b). Scale bars¼ 200mm. Results are expressed as mean� SEM.
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Figure 5. Histological analysis for ROCK2 staining of bone tissue. Representative histology for ROCK2 staining of femur bone tissue

focused on the trabecular was demonstrated in the sham group, the MI-Sed group and the MI-Ex group (a). The semi-quantitative

analysis of ROCK2-positive areas of metaphysis was examined (b). Scale bars¼ 200 mm. Results are expressed as mean� SEM.
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MI decreases bone mass and strength

Accumulating evidence links atherosclerotic vascular
factors to osteoporotic fractures.11–13 The previous
large cohort studies showed that patients with chronic
HF have lower BMD.14 However, it remains unknown
whether CVD (e.g. MI) directly causes bone tissue loss.
The present study has demonstrated that MI causes a
loss of BMD and cortical bone thickness in mice in vivo.

It has been recently demonstrated that cortical bone
thickness could be an important factor regulating
bone strength.15 Osteoporosis is defined by the World
Health Organization as a disease characterized by low
bone mass and microarchitectural deterioration of bone
tissue, leading to enhanced bone fragility and a result-
ant increase in fracture risk.16 Osteoporosis is the con-
dition with weakened bone strength, and bone fractures
would occur easily by a slight hit or small injury.
Importantly, the present study showed that MI reduces
not only BMD but also cortical bone thickness. These
results indicate that MI decreased bone strength and
enhanced bone fragility. Thus, the present experimental
model may be close to the clinical conditions in patients
with osteoporosis.

MI changes bone resorption and morphogenic
activity

In the present study, the histological examination
showed that the number of TRAP-positive spots
(bone resorption areas) was significantly increased
and ALP-positive areas were decreased in the MI-Sed
group, indicating MI might increase osteoclast and
decrease osteoblast activity in the bone after MI.
These results suggest that the bone metabolism was
driven to high turnover state in favor of bone resorp-
tion over bone formation after MI.

Potential common pathway underlying post-infarction
bone loss

An experimental MI model by ligating LAD coronary
artery in mice is one of the most commonly used
models of HF.17 There are several epidemiological stu-
dies indicating the association between HF and osteo-
porosis.18 In addition, there are some additional
confounding factors as many HF patients are elderly
people and aging is a major risk for osteoporosis.19

However, the experimental animal model of MI can
exclude these confounding factors and help us identify
potential common pathophysiological mechanisms
linking HF and osteoporosis.

The renin-angiotensin system (RAS) is an essential
regulatory component of the cardiovascular system and
bone metabolism.20–24 We and others have recently
demonstrated that RAS is involved in the pathogenesis

of bone turnover.22–24 Although we were unable to
show RAS activation in the present study, we previ-
ously demonstrated that activation of the RAS is,
indeed, noted in mice with spontaneous MI model.25

An experimental study has shown that angiotensin II
accelerates bone resorption by activating osteoclasts via
the receptor activator of the nuclear factor-kappa B
ligand (RANKL) pathway, and this effect was com-
pletely blocked by an angiotensin II type 1 receptor
blocker.23 Furthermore, it has been recently demon-
strated that in an experimental MI model in mice, the
plasma levels of RANKL and the number of TRAP-
positive cells were markedly increased,24 indicating that
the activation of bone mineral metabolism promotes
catabolic bone remodeling. Based on these studies,
combined with the present findings, the RAS–
RANKL bone resorption pathway may be one of the
underlying mechanisms linking both disorders.

We have repeatedly demonstrated that the Rho-
kinase pathway is as important in the pathogenesis of
CVD and that Rho-kinase is also involved in the bone
metabolism.26–28 We also have demonstrated that
angiotensin II induces ROCK activation,29 whereas
the Rho-kinase inhibitor fasudil suppresses post MI
cardiac remodeling.30 In the present study, we were
able to demonstrate for the first time that elevated
levels of ROCK2 expression in the bone is noted in
mice with MI. Notably, fasudil, an inhibitor of Rho-
kinase, augments osteoblastic differentiation in stromal
cell lines.28 Importantly, exercise training and fasudil
reduce Rho-kinase activity.26,31 Taken together, exer-
cise training after MI is beneficial for bone resorption
and morphogenetic activity toward the balance to
increase BMD in mice with MI.

Study limitations

Several limitations should be mentioned for the present
study. First, although we were able to demonstrate that
our exercise protocol influences BMD in the present
study, we did not have proof of a profit from the exer-
cise training intervention such as a maximal exercise
test. Taking into account the effects of exercise, particu-
larly on bone metabolism as previously reported,32–34

we performed an exercise protocol with a steeper uphill
angle, shorter duration and more frequent interval,
compared with endurance exercise training.35 Indeed,
vertical climbing with short duration time,32 jump exer-
cise33 and hyper gravity environment34 increase BMD
in rodents. Second, the bone quality that accounts
for �30% of bone strength was not examined in the
present study.9 Although some factors such as pentosi-
dine or homocysteine can be utilized as markers of
bone quality in humans,36,37 a reliable marker has yet
to be established in mice. Third, we did not perform
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echocardiography before starting protocol with exercise
training. However, histological LV myocardial infarct
size was comparable between the two groups. Fourth,
in order to eliminate the potential effects of hormonal
changes on bone metabolism during the menstruation
period and to consider osteoporotic risks shared with
atherosclerosis,7,38,39 we used male apolipoprotein
E-deficient mice in the present study.

Conclusion

The present study demonstrates for the first time that
post-infarction HF directly causes structural bone loss
of the femur in ApoE-KO, which is ameliorated by
treadmill exercise training, suggesting importance of
close attention to the bone loss and potential import-
ance of cardiac rehabilitation in terms of exercise train-
ing in patients with MI.
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