Spatial non-uniformity of excitation–contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle

Masahito Miura1*, Yuji Wakayama2, Hideaki Endoh2, Makoto Nakano2, Yoshinao Sugai2, Masanori Hirose2, Henk EDJ ter Keurs3, and Hiroaki Shimokawa2

1 Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; 2 Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; and 3 Department of Medicine, University of Calgary, Calgary, Canada T2N 4M1

Received 2 March 2008; revised 25 May 2008; accepted 10 June 2008; online publish-ahead-of-print 16 June 2008

Time for primary review: 29 days

Aims We examined whether non-uniform muscle contraction affects delayed afterdepolarizations (DADs) by dissociating Ca2+ from myofilaments within the border zone (BZ) between contracting and stretched regions.

Methods and results Force, sarcomere length (SL), membrane potential, and [Ca2+]i dynamics were measured in 31 ventricular trabeculae from rat hearts. Non-uniform muscle contraction was produced by exposing a restricted region of muscle to a jet of solution containing 20 mmol/L 2,3-butanedione monoxime (BDM). DADs were induced by 7.5 s-2 Hz stimulus trains at an SL of 2.0 μm (24°C, [Ca2+]o 2.0 mmol/L). The BDM jet enhanced DADs (n = 6, P < 0.05) and aftercontractions (n = 6, P < 0.05) with or without 100 μmol/L streptomycin and occasionally elicited an action potential. A stretch pulse from an SL of 2.0 μm to 2.1 or 2.2 μm during the last stimulated twitch of the trains accelerated Ca2+ waves in proportion to the increment of force by the stretch (P < 0.01) with or without streptomycin. In the presence of 1 mmol/L caffeine, rapid shortening of the muscle after the stretch pulse increased [Ca2+]i within the BZ, whose amplitude correlated with the increment of force by the stretch (n = 15, P < 0.01).

Conclusion These results suggest that non-uniform muscle contraction can enhance DADs by dissociating Ca2+ from myofilaments within the BZ and thereby cause triggered arrhythmias.

KEYWORDS Ca2+ waves; Non-uniformity; Delayed afterdepolarizations

1. Introduction

Life-threatening ventricular arrhythmias are likely to occur in diseased hearts,1,2 where non-uniform segmental wall motion commonly occurs3,4 as a result of ischaemia,5 heterogeneous adrenergic activation,6 heterogeneous protein expression,7 or heterogeneous electrical activation.8,9 Improving the mechanical uniformity by resynchronization pacing can reduce the occurrence of sudden death in patients with heart failure,10 indicating a possible arrhythmogenic nature of the mechanically non-uniform muscle contraction.11 It remains unknown, however, how non-uniformity of muscle contraction in such diseased hearts by itself would affect the development of delayed afterdepolarizations (DADs), which may play a critical role in the incidence of ventricular arrhythmias.12,13

Exposing a trabecula to a small jet of solution with a composition that reversibly reduces excitation–contraction coupling (ECC) within the segment can create a non-uniform ECC model of a trabecula,14 which is amenable to the investigation of the role of non-uniform muscle contraction in arrhythmogenesis. In this model, a surge of Ca2+ emerges within the border zone (BZ) between contracting and stretched regions15–18 and propagates in a wave-like manner along the muscle, triggering arrhythmias.14 This Ca2+ surge always emerges during the relaxation phase,14,19 whose maximum rate is important for the determination of the amplitude of the Ca2+ surge and the propagation velocity of Ca2+ waves.20 In addition, the reduction of sarcomere shortening within the BZ during the relaxation phase can decrease the amplitude of aftercontractions.20 From these observations, dissociation of Ca2+ from the myofilaments within the BZ during relaxation has been proposed as a possible mechanism underlying the emergence of the Ca2+ surge.14,19 It is still unclear, however, how mechanically non-uniform muscle contraction can affect the DADs with the emergence of the Ca2+ surge and induce a triggered action potential.
Thus, using the model of trabeculae with non-uniform ECC produced by the regional application of 2,3-butanedione monoxime (BDM) jet to trabeculae, we measured the membrane potential to determine how the regional application of the BDM jet affects the membrane potential with the emergence of the Ca\(^{2+}\) surge. We also investigated which source of Ca\(^{2+}\) is responsible for the formation of the Ca\(^{2+}\) surge, using a transient stretch of the muscle length in the presence or absence of a stretch-activated channel blocker. Results of the present study indicate that non-uniform muscle contraction can enhance DADs by inducing a Ca\(^{2+}\) surge within the BZ without a further global increment of intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) and that the Ca\(^{2+}\) surge consists of the Ca\(^{2+}\) dissociated from the myofilaments within the BZ, but not the Ca\(^{2+}\) through a stretch-activated channel.

2. Methods

2.1 Measurements of force, membrane potential, [Ca\(^{2+}\)]\(_o\), and sarcomere length in rat trabeculae

All animal procedures were performed according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). Briefly, trabeculae (n = 31, length 2.0 ± 0.4 mm, width 225 ± 37 µm, thickness 89 ± 4 µm in a slack condition) were dissected from the right ventricle of rats and mounted between a muscle segment (1000 µm in diameter). To reduce contraction in the exposed region, the jet solution was composed of standard HEPES solution containing 20 mmol/L BDM. The Ca\(^{2+}\) concentration in the jet solution was set at 1 mmol/L in all measurements.

2.2 Reduction of local contraction

A non-uniform ECC model was produced as described previously. Briefly, a restricted region of a trabecula was exposed to a small jet of solution (0.06 mL/min) directed perpendicular to a small muscle segment (300 µm) using a syringe pump connected to a glass pipette (~100 µm in diameter). To reduce contraction in the exposed region, the jet solution was composed of standard HEPES solution containing 20 mmol/L BDM. The Ca\(^{2+}\) concentration in the jet solution was set at 1 mmol/L in all measurements.

2.3 Experimental protocol

Trains of electrical stimuli at intervals of 500 ms for 7.5 s were repeated every 15 s ([Ca\(^{2+}\)]\(_o\)), 2.0 mmol/L; SL 2.0 µm; temperature 24°C). First, force, membrane potential, and [Ca\(^{2+}\)]\(_o\) were measured when the BDM jet was turned off or on. To determine the roles of stretch-activated channels, 100 µmol/L streptomycin, a stretch-activated channel blocker, was added both to the superfusing HEPES solution and to the jet solution. Second, to augment the non-uniform muscle contraction produced by the BDM jet, a 5 or 10% stretch pulse was imposed for 240 ms during the last stimulated twitch contraction of the trains in the presence or absence of 100 µmol/L streptomycin, and force and spatio-temporal changes in [Ca\(^{2+}\)]\(_o\) were measured. Finally, to detect the Ca\(^{2+}\) dissociated from myofilaments, changes in [Ca\(^{2+}\)]\(_o\) within the BZ created by the BDM jet were measured in the presence of 1 mmol/L caffeine with or without the stretch pulse for 400 ms.

2.4 Statistics

All measurements were expressed as mean ± SEM. Statistical analysis was performed using ANOVA and linear regression analysis as appropriate. Values of P < 0.05 were considered to be significant.

3. Results

Regional application of 20 mmol/L BDM to trabeculae reduced electrically stimulated twitch forces by 41 ± 6% (n = 6), but inversely enhanced aftercontractions and DADs by inducing a Ca\(^{2+}\) surge within the BZ (Figure 1A). As shown in Figure 1B, this regional application increased the amplitudes of aftercontractions and DADs and shortened the intervals between the last stimulus of the trains and their peaks, even though it did not change the peak values of the electrically stimulated Ca\(^{2+}\) transients outside the exposed region (Figure 2). Moreover, the regional application of the BDM jet enhanced DADs sufficiently to induce a triggered action potential when [Ca\(^{2+}\)]\(_o\) was further increased (Figure 3A), showing the arrhythmogenic nature of the mechanically non-uniform muscle contraction. Even in the presence of 100 µmol/L streptomycin, a stretch-activated channel blocker, the regional application of the BDM jet increased the amplitudes of aftercontractions and DADs and shortened the intervals between the last stimulus of the trains and their peaks (Figure 3B).

The regional application of the BDM jet to trabeculae initiated a Ca\(^{2+}\) wave from the BZ with aftercontractions, as reported previously. When a 240 ms stretch pulse was imposed during the last twitch of the electrical trains to augment sarcomere shortening within the BZ during the relaxation phase (Figure 4A), the stretch increased the twitch force, and the quick return of muscle length following the stretch induced a larger Ca\(^{2+}\) surge and initiated a faster Ca\(^{2+}\) wave (Figure 4B). The changes in propagation velocity of Ca\(^{2+}\) wave following a 240 ms stretch pulse correlated significantly with changes in twitch force during the stretch pulse in the presence or absence of streptomycin (Figure 5A). In addition, the augmented sarcomere shortening following the stretch pulse increased the amplitude of aftercontractions and shortened the interval between the last stimulus of trains and their peaks, even in the presence or absence of streptomycin (Figure 5B). Note that the changes in the presence of streptomycin were not significantly different from those in the absence of streptomycin.

To examine the roles of Ca\(^{2+}\) dissociated from myofilaments within the BZ in initiating Ca\(^{2+}\) waves, the changes in [Ca\(^{2+}\)]\(_o\), following a stretch pulse (Δ[Ca\(^{2+}\)]\(_o\)), which could have been responsible for the Ca\(^{2+}\) surge in Figure 4B, were measured within the BZ in the presence of 1 mmol/L caffeine (Figure 6A). When the amplitude of Δ[Ca\(^{2+}\)]\(_o\) within the BZ was plotted against changes in twitch force by transient stretch, they were significantly correlated (Figure 6B), suggesting that the Ca\(^{2+}\) dissociated from myofilaments owing to the fall in the affinity of troponin C for Ca\(^{2+}\) can enhance the Ca\(^{2+}\) surge within the BZ, thereby accelerating the Ca\(^{2+}\) waves.
4. Discussion

The present study characterized the roles of non-uniform muscle contraction in the development of DADs and the emergence of a Ca$^{2+}$ surge, using a non-uniform ECC model of trabeculae. To the best of our knowledge, the present study shows for the first time that non-uniform muscle contraction can enhance DADs by dissociating Ca$^{2+}$ from myofilaments within the BZ and work as a possible arrhythmogenic mechanism without a further global increment of [Ca$^{2+}$]$_i$, as will be discussed in what follows.

4.1 Enhancement of delayed afterdepolarizations by non-uniform excitation–contraction coupling

Interventions, which increase the Ca$^{2+}$ load of cardiac muscle, such as high [Ca$^{2+}$]$_o$, digitalis glycosides, and β-adrenergic agonists, are known to induce spontaneous Ca$^{2+}$ release from the sarcoplasmic reticulum (SR) and generate DADs through electrogenic Na$^+$–Ca$^{2+}$ exchanger and Ca$^{2+}$-activated Cl$^-$ channels. In contrast, the present study showed for the first time that non-uniform muscle contraction can enhance DADs by dissociating Ca$^{2+}$ from myofilaments within the BZ and work as a possible arrhythmogenic mechanism without a further global increment of [Ca$^{2+}$]$_i$, as will be discussed in what follows.

Non-uniform ECC enhances DADs

4.2 Enhancement of delayed afterdepolarizations by regional jet exposure

Regional jet exposure can induce a Ca$^{2+}$ surge within the BZ (Figure 1A) and initiate new Ca$^{2+}$ waves from the BZ with additional depolarization of the membrane, suggesting that...
these new Ca\(^{2+}\) waves from the BZ can cause the enhancement of the DADs. Here, it is noteworthy that BDM is unlikely to involve the enhancement of DADs by its direct effect on the SR because BDM modestly reduces SR-Ca\(^{2+}\) content\(^{38,39}\) to below the threshold for Ca\(^{2+}\) waves\(^{40}\) owing to the regulation of the ryanodine receptors.\(^{41}\) Rather, the main action of BDM

Figure 3 (A) Induction of an action potential by regional jet exposure. Force and membrane potential at higher [Ca\(^{2+}\)]\(_{o}\) when a 20 mmol/L 2,3-butanedione monoxime jet was turned OFF (thin lines) or ON (thick lines). The upper panel shows force recordings and the lower panel shows membrane potential during the last two electrical stimuli (500 ms stimulation interval). When the 2,3-butanedione monoxime jet was turned ON, a twitch contraction (arrow) in the upper panel and an action potential (arrow) in the lower panel were induced. Arrows with ST indicate the moments of electrical stimulation ([Ca\(^{2+}\)]\(_{o}\) 3 mmol/L, temperature 24.2°C, Experiment Number 060809). (B) Effect of regional jet exposure on aftercontractions and delayed afterdepolarizations (DADs) in the presence of 100 μmol/L streptomycin when a 20 mmol/L 2,3-butanedione monoxime jet was turned OFF (open squares, \(n = 6\)) or ON (closed squares, \(n = 6\)). The upper panels show ratios of the amplitude of aftercontractions (F\(_{AC}\)) to the amplitude of electrically stimulated twitches (F\(_{TW}\)) and the intervals between the last stimulus of a train and the peaks of aftercontractions. The lower panels show the amplitude of delayed afterdepolarizations and the intervals between the last stimulus of a train and the peaks of delayed afterdepolarizations. *P < 0.05 vs. Jet OFF.

Figure 4 Effect of a 240 ms stretch pulse during the last stimulated twitch of the electrical trains on force, sarcomere length, and intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{i}\)) when a 20 mmol/L 2,3-butanedione monoxime (BDM) jet was turned OFF (thin lines) or ON (thick lines). The upper panel shows force recordings and the lower panels show the recordings of sarcomere length within the OUT\(_{jet}\) and IN\(_{jet}\) during the last three stimulated twitches (500 ms stimulation interval). When the 2,3-butanedione monoxime jet was turned ON, a stretch induced a larger Ca\(^{2+}\) surge (arrow) and augmented the velocity of the Ca\(^{2+}\) wave from 1.6 to 2.9 mm/s (arrow) ([Ca\(^{2+}\)]\(_{o}\) 2 mmol/L, temperature 23.6°C, Experiment Number 051026). (B) The upper panel shows three-dimensional spatio-temporal representations of [Ca\(^{2+}\)]\(_{i}\), during the last two electrical stimuli (500 ms stimulation interval). The abscissa is time, the ordinate is [Ca\(^{2+}\)]\(_{i}\), and the Z-axis is the position along the long axis of the trabecula. The middle panel shows force (F) and the lower panel shows [Ca\(^{2+}\)]\(_{i}\) within the border zone. The quick return of muscle length following the stretch induced a larger Ca\(^{2+}\) surge (arrowheads in the upper panel and the lower panel) and increased the velocity of the Ca\(^{2+}\) wave from 1.6 to 2.9 mm/s (arrow) ([Ca\(^{2+}\)]\(_{o}\) 2 mmol/L, temperature 24.2°C, Experiment Number 051005).
in the present study was to inhibit cross-bridge cycling within cardiac muscle.42

4.2 Role of Ca\(^{2+}\) dissociated from myofilaments

We have reported previously that the non-uniform muscle contraction produced by regional application of caffeine, BDM, or low [Ca\(^{2+}\)]\(_{o}\) can induce a Ca\(^{2+}\) surge within the BZ during the relaxation phase and initiate a Ca\(^{2+}\) wave from the BZ.14 Indeed, in the present study, the application of the BDM jet induced a Ca\(^{2+}\) surge within the BZ (Figure 1A) and initiated a Ca\(^{2+}\) wave. This Ca\(^{2+}\) surge emerged not during the stretch but upon shortening after a stretch pulse in the presence of 1 mmol/L caffeine\(^{40,43}\) (Figure 6A), suggesting that Ca\(^{2+}\) through a stretch-activated channel\(^{44}\) and Ca\(^{2+}\) released from the SR play...
only minor roles in the generation of the Ca\(^{2+}\) surge, because 1 mmol/L caffeine is a concentration sufficient to suppress Ca\(^{2+}\) waves.\(^{21}\) Actually, non-uniform muscle contraction enhanced DADs even in the presence of 100 μM streptomycin\(^{24,25}\) (Figure 3B).

On the other hand, we have reported previously that the maximum rate of force relaxation can determine the amplitude of the Ca\(^{2+}\) surge\(^{26}\) and that the reduction of sarcomere shortening within the BZ during relaxation can decrease the amplitude of aftercontractions.\(^{25}\) In addition, in the present study, augmentation of sarcomere shortening during relaxation resulted in a higher Ca\(^{2+}\) surge (Figure 4) and accelerated Ca\(^{2+}\) waves from the BZ (Figure 5A) with larger aftercontractions even in the presence of streptomycin (Figure 5B), depending on the changes in twitch force by the muscle stretch. These observations suggest that the more Ca\(^{2+}\) is dissociated from myofilaments owing to shortening of sarcomeres in the BZ,\(^{15–18}\) the higher the emergent Ca\(^{2+}\) surges, resulting in faster Ca\(^{2+}\) waves with higher aftercontractions.\(^{25}\) Taken together, these results support the hypothesis that Ca\(^{2+}\) dissociated from myofilaments by rapid sarcomere shortening in the BZ during the decline of force initiates Ca\(^{2+}\) waves\(^{18}\) and enhances DADs of sufficient amplitude to trigger an action potential.\(^{33,35}\)

4.3 Clinical implications

Ca\(^{2+}\) overload within cardiac muscle, especially in the SR, has been regarded as the basal mechanism involved in the occurrence of DADs.\(^{26–29}\) The present study shows, however, that non-uniformity of muscle contraction can enhance DADs without a further global increase in [Ca\(^{2+}\)]\(\text{cyt}\), and occasionally generate triggered arrhythmias. Because the arrangement in the cardiac wall of muscle fascicles transmits force longitudinally and causes corresponding constraints in ventricles, it is reasonable to assume that regional differences in contractile strength in diseased hearts can enhance DADs and cause arrhythmias in the same manner as shown in trabeculae. This may explain, at least in part, why cardiac resynchronization therapy has reduced the occurrence of sudden death as well as death due to worsening heart failure.\(^{10}\) Therefore, the mechanical non-uniformity of muscle contraction may work by itself as a possible arrhythmogenic mechanism in the diseased hearts.

Conflict of interest: none declared.

Funding

This work was supported in part by grants from the Scientific Research Fund of Ministry of Education, Science, and Culture, Japan (M.M., No. 12877102).

References

