Cardiovascular diseases (CVD) are initiated by endothelial dysfunction and resultant expression of adhesion molecules for inflammatory cells. Inflammatory cells secrete cytokines/chemokines and growth factors and promote CVD. Additionally, vascular cells themselves produce and secrete several factors, some of which can be useful for the early diagnosis and evaluation of disease severity of CVD. Among vascular cells, abundant vascular smooth muscle cells (VSMCs) secrete a variety of humoral factors that affect vascular functions in an autocrine/paracrine manner. Among these factors, we reported that CyPA (cyclophilin A) is secreted mainly from VSMCs in response to Rho-kinase activation and excessive reactive oxygen species (ROS). Additionally, extracellular CyPA augments ROS production, damages vascular functions, and promotes CVD. Importantly, a recent study in ATVB demonstrated that ambient air pollution increases serum levels of inflammatory cytokines. Moreover, Bell et al reported an association of air pollution exposure with high-density lipoprotein (HDL) cholesterol and particle number. In a large, multilethnic cohort study of men and women free of prevalent clinical CVD, they found that higher concentrations of PM2.5 over a 3-month time period was associated with lower HDL particle number, and higher annual concentrations of black carbon were associated with lower HDL cholesterol. Together with the authors’ previous work on biomarkers of oxidative stress, they provided evidence for potential pathways that may explain the link between air pollution exposure and acute cardiovascular events. The objective of this review is to highlight the novel research in the field of biomarkers for CVD.

Biomarkers for Atherosclerosis (Coronary Artery Disease)

Endothelial dysfunction induces the development of atherosclerotic disease. In the maintenance of endothelial function and vascular homeostasis, AMPK (AMP-activated protein kinase) and its downstream signaling of endothelial NO synthase play crucial roles in regulating the appropriate levels of blood pressure. In contrast, risk factors for atherosclerosis, such as hypertension, dyslipidemia, smoking, and diabetes mellitus, deteriorate endothelial function, upregulate adhesion molecules, induce inflammatory cell migration, and activate VSMCs, promoting the development of atherosclerosis. One common mechanism for the deterioration of vascular function is augmented ROS production in vascular tissues. As mentioned above, we previously demonstrated that CyPA can be secreted by oxidative stress, and extracellular CyPA stimulates endothelial cells to induce adhesion molecules, apoptosis, and inflammatory cell migration. Moreover, in vivo studies demonstrated that CyPA promotes the development of intimal thickening, abdominal aortic aneurysms, atherosclerosis, cardiac hypertrophy, and pulmonary hypertension (PH). Further translational research showed that plasma levels of CyPA were significantly increased in patients with coronary artery disease (CAD). Thus, circulating CyPA can be useful as a novel biomarker for patients with CAD. Mechanistically, CyPA participates in lipid uptake by affecting scavenger receptors during fatty streak formation. Additionally, the incidence of all-cause death, rehospitalization, and revascularization was higher in patients with higher plasma CyPA levels than in those with lower plasma levels. In this study, combining other biomarkers, such as hsCRP (high-sensitivity C-reactive protein) and BNP (brain natriuretic peptide), further enhanced the prognostic impacts of CyPA in patients with CAD. Conversely, several biomarkers have been reported in recent publications in ATVB.

From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. Correspondence to Hiroaki Shimokawa, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan. E-mail shimo@cardio.med.tohoku.ac.jp

(ARTERIOSCLER THROMB VASC BIOL. 2018;38:e61-e70. DOI: 10.1161/ATVBAHA.118.310226.) © 2018 American Heart Association, Inc.

ARTERIOSCLER THROMB VASC BIOL is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.118.310226
that coronary artery ectasia predicts future cardiac events in patients with acute myocardial infarction. They demonstrated that 3% of patients with acute myocardial infarction harbored coronary artery ectasia. Moreover, patients with coronary artery ectasia more frequently developed nonfatal myocardial infarction and cardiac death.35 Thus, they concluded that coronary artery ectasia is an important morphological characteristic of CAD that causes cardiac events. In addition to these biomarkers in CAD, we have demonstrated the importance of several biomarkers, including Rho-kinase for vasospastic angina36–38 and serotonin for microvascular angina.39

Biomarkers for Atherosclerosis (Other Than CAD)

Key mechanisms in abdominal aortic aneurysm formation include VSMC senescence, oxidative stress, local proinflammatory cytokine production, and increased matrix metalloproteinase activity, all of which degrade the extracellular matrix.19 Here, CyPA also plays a crucial role in the development of aortic aneurysms and can be a novel therapeutic target.12,40 Besides CyPA, several factors have been proposed as possible biomarkers for types of atherosclerosis other than CAD. Leung et al41 reported that blood pressure and heart rate measures were associated with increased risk of silent cerebral infarction and worsening leukoaraiosis in elderly adults. This study provided evidence that systolic hypertension is associated with increased risk for silent cerebral infarction and diastolic hypertension is associated with increased risk for leukoaraiosis. Thus, these findings suggest a need to reevaluate the balance of benefits and risks of controlling systolic and diastolic hypertension in elderly adults. Then, Lin et al42 reported that endogenous cholesterol excretion is negatively associated with carotid intima–media thickness in humans. The authors showed that fecal excretion of endogenous cholesterol (the principal pathway of cholesterol elimination in humans) is negatively correlated with carotid intima–media thickness. Additionally, Yu et al43 reported that mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. This study suggested that preventing the mitochondrial DNA damage and dysfunction seen in atherosclerosis is important in modulating plaque composition. Conversely, Nguyen et al44 reported that extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Moreover, Heffron et al45 showed that greater frequency of fruit and vegetable consumption is associated with lower prevalence of peripheral artery disease. Their adjusted analyses demonstrated a stepwise reduction in odds for peripheral artery disease with increasing consumption of fruit and vegetable. Notably, this association was restricted to people who were current or former cigarette smokers.44 Goettsch et al46 reported that serum levels of sortilin are associated with aortic calcification and cardiovascular risk in men. Their study demonstrated that high serum sortilin levels associate with increased risk for major adverse cardiac event and stroke after adjustment for multiple relevant confounders, including CRP, total cholesterol, and low-density lipoprotein (LDL) cholesterol in older men, suggesting a cholesterol-independent role of sortilin in CVD.46 Conversely, He et al47 reported that serum levels of HMGB2 (high-mobility group box 2) are associated with in-stent restenosis. They demonstrated an association between HMGB2 and in-stent restenosis in patients. Furthermore, Small et al48 recently reported on the biomarkers of calcific aortic valve disease. Potential use of such biomarkers in calcific aortic valve disease includes screening for early aortic valvular disease and identifying patients who are most likely to progress to severe disease. Havulinna et al49 reported that circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. The ceramide analysis of the FINRISK cohort showed that distinct ceramide
species are associated with major cardiovascular events at the population level. The relatively strong univariate associations of ceramides with fatal events suggested that ceramides may play a role in the rupture of atherosclerotic plaques. Amor et al reported a relationship between total serum bilirubin levels and carotid and femoral atherosclerosis in familial dyslipidemia. This study showed that, in participants with familial dyslipidemia, total bilirubin levels were inversely associated with carotid and femoral atherosclerosis, independent of other classical and nonclassical cardiovascular risk factors or hypolipidemic drug treatment. Finally, Prats-Puig et al reported that serum levels of ferritin are related with carotid intima–media thickness in the offspring of fathers with higher serum ferritin levels. The findings of this study indicate that circulating ferritin levels are associated with carotid intima–media thickness in healthy children. Furthermore, the association between the level of ferritin in children and the change in carotid intima–media thickness was highly significant in children whose fathers had higher ferritin levels.

Biomarkers for Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is categorized as group I of PH World Health Organization clinical classification system. In addition to genetic backgrounds, environmental factors are substantially involved in the development of PAH. Pulmonary artery smooth muscle cells (PASMCs) of patients with PAH have the unique characteristic of excessive proliferation, which is markedly different from those of healthy controls. Pulmonary artery endothelial cells contribute to pulmonary vascular homeostasis, and deterioration initiates the development of PAH. Indeed, we have revealed a protective role of the endogenous Epo (erythropoietin)/EpoR (Epo receptor) system against the development of PH. This system also plays a crucial role in the functional recovery of ischemic heart and ischemic lower limb, demonstrating the importance of endothelial function and homeostasis. However, excessive Epo (exogenous Epo administration) did not show beneficial effects, with conflicting results among several CVD studies. These conflicting results may suggest the opposing mechanistic roles of Epo in the cardiovascular system. Here, Epo production is regulated by hypoxia-inducible factor-1-α, which also regulates the transcription of many other proteins. Moreover, the Epo-mediated increase in circulating erythrocytes enhances oxygen supply but results in higher oxidative stress. Oxidative stress induces endothelial dysfunction, PASMC proliferation, and vascular inflammation, all of which promotes the development of PAH. As mentioned before, extracellular CyPA augments oxidative stress in cardiovascular tissue. Rhokinase has a crucial role in the secretion of CyPA from VSMCs. Moreover, Rhokinase was substantially involved in the development of PH in mice and humans. Indeed, Karoor et al reported that sustained activation of Rhokinase promoted a synthetic PASMC phenotype in nprilysin knockout mice. Moreover, extracellular CyPA and its receptor, Bsg (basigin), played a crucial role in hypoxia-induced PH by inducing growth factor secretion, inflammation, and VSMC proliferation.

Importantly, a recent study in *ATVB* by Xue et al further demonstrated that extracellular CyPA, especially acetylated CyPA, causes PH by stimulating endothelial apoptosis, redox stress, and inflammation. Clinically, plasma CyPA levels were significantly elevated and predicted poor outcomes in patients with PAH. Besides CyPA, recent studies have revealed novel pathogenic proteins that can be useful biomarkers for patients with PAH. Additionally, the development of imaging techniques enabled a more precise evaluation of pulmonary arterial remodeling in patients with PAH. More drug repositioning is the process of discovering, validating, and marketing previously approved drugs for new indications. Here, we found that pravastatin and metformin ameliorate hypoxia-induced PH in animals. Conversely, Meloche et al showed inflammation and epigenetic readers in coronary artery remodeling in patients with PAH. Importantly, they explored coronary abnormalities at the cellular and molecular level in patients with PAH. Interestingly, they observed that BRD4 (bromodomain-containing protein 4), which is increased in the lungs of patients with PAH, is strongly expressed in their coronary arteries. Moreover, they showed that the coronary arteries of patients with PAH had greater wall thickness, exhibited increased inflammation, sustained DNA damage, and had significantly more BRD4-expressing cells.

Biomarkers for Vascular Inflammation and Growth Factors

There are several important publications on novel biomarkers in the recent issues of *ATVB*. First, Sonneveld et al reported the effect of vWF (von Willebrand factor) and a disintegrin and metalloproteinase with a thrombospondin motifs 13 (ADAMTS13) on the risk of mortality. In this large prospective cohort study, ADAMTS13 activity and vWF:Ag levels were associated with an increased risk of mortality, especially cardiovascular mortality. These risks were independent of prevalent CVD and established cardiovascular risk factors. Additionally, Song et al reported that FGF12 (fibroblast growth factor 12) is a novel regulator of VSMC plasticity and fate. In this study, they identified FGF12 as a novel master regulator of VSMC plasticity and fate. By performing both in vitro and in vivo experiments, they observed that FGF12 was necessary and sufficient for inducing phenotype switching of VSMCs into the quiescent and contractile states. Additionally, Hata et al reported that serum ANGPTL2 (angiopoietin-like protein 2) is a novel risk factor for CVD in the community (the Hisayama study). They demonstrated that the risk for the development of CVD increased significantly with elevating serum ANGPTL2 levels. Januzzi et al reported the association between circulating proneurotensin concentrations and CVD events in the community (the Framingham Heart Study). The principal findings of this analysis were that concentrations of proneurotensin were associated cross-sectionally with a more deleterious cardiometabolic phenotype, and they were prospectively associated with incident cardiovascular events in the population, independently of LDL concentrations.

Then, Herder et al reported on circulating levels of IL-1RA (interleukin-1 receptor antagonist) and risk of CVD.
Their study showed that CVD risk increased by 11% per 1-SD increase in serum IL-1RA based on data from >20,000 study participants from 6 population-based cohort studies. Additionally, the association between IL-1RA and CVD risk was partially explained by biomarkers of subclinical inflammation, oxidative stress, and cell adhesion. Spiga et al also reported that uric acid is associated with inflammatory biomarkers and induces inflammation via activation of the NF-κB (nuclear factor-κB) signaling pathway in HepG2 cells. In this study, they reported a positive relationship between serum uric acid and acute-phase reactants, such as hsCRP, fibrinogen, ferritin, complement C3, and erythrocyte sedimentation rate. Importantly, the relationship remained significant after adjustment for several confounders potentially affecting either serum uric acid or inflammatory biomarkers levels, including age, sex, adiposity, antihypertensive treatments, and diuretic use. Importantly, they provided evidence that uric acid induces a proinflammatory effect through the NF-κB signaling pathway. Moreover, Liu et al reported on the role of the intracellular apoptosis signaling components FADD, caspase-8, and caspase-3 into the extracellular compartment, suggesting that they represent possible biomarkers of apoptotic activity. In a population-based cohort, they demonstrated an association between the incidence of coronary events and high levels of FADD and caspase-8 for the incidence of coronary events. They demonstrated that activation of apoptosis signaling through the Fas receptor is associated with a release of the intracellular apoptosis signaling components FADD, caspase-8, and caspase-3 into the extracellular compartment, suggesting that they represent possible biomarkers of apoptotic activity. In a population-based cohort, they demonstrated an association between the incidence of coronary events and high levels of FADD and caspase-8, but not caspase-3, at baseline levels. They concluded that an increased rate of apoptosis, as represented by a high expression of FADD and caspase-8 in the blood, was associated with an increased incidence of coronary events.78

Biomarkers for Lipid Metabolism

In the field of lipid metabolism, there are several important recent publications in the ATVB journal (Table 2). First, Moriarty et al reported that lipoprotein(a) mass levels increase significantly according to APOE genotype. They documented that APOE isoforms strongly influence lipoprotein(a) mass levels, with a 65% increase in e4/e4 compared with e2/e2 genotypes. Consistent with this, lipoprotein(a) cholesterol levels were also increased according to APOE genotypes. Additionally, Bajaj et al reported the associations between lipoprotein(a) and risk of myocardial infarction and death in patients with chronic kidney disease. Their study offered substantial evidence for the association between elevated lipoprotein(a) and adverse outcomes in a large and diverse cohort of patients with chronic kidney disease. Findings from the analyses also showed that, with increasing severity of renal disease at baseline, lipoprotein(a) levels were progressively higher. Moreover, Kim et al reported that variability in total cholesterol is associated with the risk of end-stage renal disease. In this nationwide population-based cohort study, they demonstrated that total cholesterol variability was associated with a higher risk for end-stage renal disease development. The association persisted after multivariable adjustment for important potential confounders, including baseline estimated glomerular filtration rate, proteinuria, and underlying diseases. These results add to the evidence that total cholesterol variability is a risk factor for end-stage renal disease, as well as for myocardial infarction, stroke, and all-cause mortality.

Rydén et al reported that subcutaneous adipocyte lipolysis contributes to circulating lipid levels. This study sheds new light on the role of subcutaneous fat cell lipolysis in influencing circulating lipid levels. Furthermore, the influence of adipocyte lipolysis was only important for plasma HDL cholesterol and triglycerides. Importantly, the observed relationships were independent of classical risk factors influencing plasma lipids, such as sex, age, body mass index, body shape,
Biomarkers for Cardiovascular Diseases

Kockx et al reported on the LDLr (LDL receptor)–dependent and LDLr-independent mechanisms of cyclosporin A (CsA)-induced dyslipidemia. They demonstrated that CsA-induced dyslipidemia does not require inhibition of the LDLr or the presence of a high-fat Western diet. This study identified a complex interaction among CsA, lipoprotein clearance pathways, and the LDLr. Thus, LDLr deficiency seems to be permissive for CsA-induced hyperlipidemia. Treatment with CsA markedly increased plasma cholesterol and triglyceride levels in chow-fed Ldlr+/− mice, and this was associated with a marked increase in plasma very-low-density lipoprotein and intermediate-density lipoprotein/LDL levels, decreased lipolysis, hepatic lipoprotein clearance, and increased plasma PCSK9 (proprotein convertase subtilisin/kexin type 9) levels.80 Finally, Ogura et al reported an association between cholesterol efflux capacity and atherosclerotic CVD in patients with familial hypercholesterolemia. The main finding of their study was that decreased cholesterol efflux capacity was associated with increased risk of cardiovascular events, even in statin-treated patients with familial hypercholesterolemia. In addition, they found that patients with corneal arcus had lower cholesterol efflux capacity after adjustment for age and sex. Additionally, there was an inverse association of cholesterol efflux capacity with Achilles tendon thickness and carotid intima–media thickness after adjustment for age, sex, and traditional cardiovascular risk factors. However, these associations diminished after additional adjustment for HDL or ApoA-1.81

Biomarkers for Coagulation and Fibrinolysis System

In addition to PAH, we have recently demonstrated that thrombin-activatable fibrinolysis inhibitor (TAFI) is a novel biomarker for patients with chronic thromboembolic PH (CTEPH).82,83 CTEPH is categorized as group IV of PH by World Health Organization classification.84–87 The emergence of balloon pulmonary angioplasty significantly improved the prognosis of patients with CTEPH, which is a serious disorder causing severe right ventricular failure and death.88–101 The main feature of CTEPH is obstruction of pulmonary arteries by organized thrombi.84,86 Because the pathogenesis of CTEPH has been unclear for a long time, we have attempted to find a key molecule to elucidate the pathogenesis of this disorder. Here, we found that plasma levels of TAFI were significantly elevated in CTEPH patients and were unaltered even after hemodynamic improvement.82,83 Additionally, the levels of TAFI released from platelets were increased in CTEPH patients. Taken together, these results indicate that TAFI is substantially involved in the resistance to thrombus fibrinolysis in CTEPH patients. Additionally, we found the minor allele CPB2 in CTEPH patients compared with general population.85 Moreover, plasma levels of activated TAFI (aTAFI) were negatively correlated with clot lysis time in CTEPH patients.82 Thus, to evaluate the effects of aTAFI inhibition, we performed in silico screening using the Life Science Knowledge Bank database and found several aTAFI inhibitors, and one of them ameliorated the development of PH in mice.83 Additionally, we found that PPAR-α (peroxisome proliferator–activated receptor-α) agonists significantly

Satoh and Shimokawa

use of nicotine, treatment of hypertension, diabetes mellitus, or hyperlipidemia, and fat cell size.62 Conversely, Prasad et al reported an interesting relationship of autoantibodies to malondialdehyde-modified LDL and apoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Additionally, Björkbacka et al reported that low levels of apolipoprotein B-100 autoantibodies are associated with an increased risk of coronary events. Moreover, Antiochos et al showed the impact of CD14 polymorphisms on antiapolipoprotein A-1 IgG-related CAD prediction in the general population. The main finding of their study is that anti-apoA-1 IgG is independently associated with nonfatal incident CAD in the general population. This Swedish prospective population-based study including 5393 white individuals currently represents the largest study investigating the role of autoantibodies recognizing apoB-100 peptides in CVD. Additionally, the IgM-p45 malondialdehyde-modified and the IgG-p210 native autoantibodies, respectively, demonstrated independent association with lower risk for future coronary events.84 These recent studies determined that these autoantibody levels can predict risk of future cardiovascular events in individuals of the general community.

van Capelleveen et al reported on apolipoprotein C-III levels and incident CAD risk. Their study demonstrated that elevated apolipoprotein C-III levels are associated with a significantly increased risk of CAD. Furthermore, the risk of elevated apolipoprotein C-III levels was strongly associated with several parameters of triglyceride-rich lipoprotein, small LDL particles, and inflammation. Frej et al reported that a shift in apoM (apolipoprotein M)/sphingosine-1-phosphate between HDL particles in women with type 1 diabetes mellitus is associated with impaired anti-inflammatory effects of the apoM/sphingosine-1-phosphate complex. Here, they showed that light-density HDL particles are less anti-inflammatory than denser HDL particles in both patients with type 1 diabetes mellitus and healthy controls. In addition, they found that when the apoM/sphingosine-1-phosphate complex is located on light HDL particles, it loses its inhibitory effects on the expression of proinflammatory adhesion molecules on the endothelial surface. Finally, they concluded that patients with type 1 diabetes mellitus have increased amounts of lighter density HDL particles and hence have more ineffective HDL with respect to apoM/sphingosine-1-phosphate functionality.87 Bernelot Moens et al reported that remnant cholesterol elicits arterial wall inflammation and a multilevel cellular immune response in humans. Puri et al reported the roles of non-HDL cholesterol and triglycerides in coronary atheroma progression and clinical events. Their study is the first to demonstrate that coronary disease progression is more tightly linked with changes in non-HDL cholesterol compared with those in LDL cholesterol and that on-treatment triglyceride levels are associated with coronary atheroma progression, especially when these levels exceed 200 mg/dL. Moreover, lowered non-HDL cholesterol and triglyceride levels significantly modulated plaque progression. They concluded that their findings provide mechanistic support for the possible roles of non-HDL cholesterol and triglycerides to more definitively emerge as future therapeutic targets, especially in statin-treated patients requiring secondary prevention.89

Downloaded from http://ahajournals.org/ by guest on April 25, 2018
Biomarkers for Heart Failure

Important biomarkers for patients with heart failure (HF) have been elucidated, including BNP, NT-proBNP, and ANP (atrial natriuretic peptide). However, difficulties in the diagnosis of patients with HF with preserved ejection fraction are still encountered. We reported that myocardial fibrosis, evaluated from biopsy samples, predicts long-term prognosis of HF patients. Moreover, we found that Rho-kinase plays a crucial role in the process of cardiac fibrosis in HF patients. Postcapillary PH is a disorder with elevated pulmonary arterial pressure and pulmonary vascular resistance in patients with severe HF. Here, we found that the extent of postcapillary PH is a prognostic factor in HF patients. As mentioned before, CyPA and Bsg play crucial roles in PASMC proliferation and pulmonary vascular remodeling. Thus, we performed analyses to confirm the role of CyPA and Bsg in cardiac function and HF. Consistent with other types of CVD, CyPA and Bsg enhanced ROS production, fibrosis, and hypertrophy in the heart in response to angiotensin II and pressure overload. Because CyPA is secreted in response to Rho-kinase activation and generates a vicious cycle of ROS production, circulating CyPA can be a potential biomarker for HF patients, especially those with cardiac fibrosis. Indeed, activation of Rho-kinase enhances myosin light-chain phosphorylation, induces VSMC contraction, and promotes inflammation and fibrosis. Importantly, excessive activation of RhoA and its downstream Rho-kinase negatively regulate NO production in endothelial cells. Additionally, this system promotes the secretion of growth factors, inducing cell proliferation and migration in VSMCs. Indeed, this system plays an important role in the development of cardiac hypertrophy, fibrosis, arrhythmogenic right ventricular cardiomyopathy, and PH. In contrast, a selective Rho-kinase inhibitor, fasudil, suppresses this system and reduces the secretion of CyPA. Consistently, administration of fasudil ameliorated HF and PH in animal models. Because CyPA has been identified as a ROS-responsive protein that is also secreted by cardiac fibroblasts, secreted CyPA may promote the development of cardiac fibrosis and HF. Thus, it is interesting to evaluate plasma levels of CyPA in patients with HF with preserved ejection fraction. Moreover, it is also important to find agents that inhibit CyPA secretion or CyPA binding to its receptors. Indeed, many vascular cells secrete CyPA in response to ROS production and Rho-kinase activation. Extracellular CyPA behaves as a chemoattractant in cooperation with other cytokines and chemokines in inflammatory cells. The elucidation of the extracellular CyPA receptors will contribute to the development of novel therapies for CVD. However, in contrast to evidence on the role of extracellular CyPA, we had limited information regarding its specific receptors. Because CyPA can be bound weakly with a variety of proteins, it has been difficult to establish a specific receptor. Among them, Bsg has been a candidate as an extracellular receptor for CyPA. Bsg has been known as a receptor for multiple ligands, including malaria parasites, CyPA, and sBsg (soluble Bsg) itself. Interestingly, we found that Bsg is strongly expressed in cardiac fibroblasts, secreted by mechanical stretch, and activates matrix metalloproteinases in cardiac tissues. Importantly, serum levels of sBsg were significantly increased in patients with HF and predicted all-cause death and HF hospitalization. Moreover, they had strong correlations with serum levels of IL-8, adiponectin, and CyPA, suggesting the importance of CyPA and sBsg as biomarkers in HF patients. Further study with a large cohort will provide more information as to the potential of these biomarkers in HF patients. As interactions between CyPA and Bsg promote the development of HF, the discovery and screening of agents that inhibit the binding of CyPA to Bsg will provide a novel therapeutic approach for HF patients. Additionally, in a recent ATVB publication, Varbo et al reported the relationship between nonfasting triglycerides, LDL cholesterol, and HF risk. In 2 prospective studies of 113,554 individuals from the general population of Denmark, a stepwise higher risk of HF for stepwise higher nonfasting triglyceride level was shown. However, there was no association between LDL cholesterol and risk of HF. The mechanism of the association of higher nonfasting triglyceride level and higher risk of HF could be explained by the presence of triglyceride-rich lipoproteins, also known as remnants, and that remnant cholesterol has been shown to be associated with risk of ischemic heart disease, myocardial infarction, and all-cause mortality. Additionally, another explanation could be...
triglyceride accumulation in heart muscle tissue, which, in obese and diabetic individuals, has been shown to cause lipotoxic cardiomyopathy and cardiac steatosis.117

Conclusions
In this issue of Recent Highlights of ATVB, we reviewed >50 articles on the recent development of biomarkers in CVD. Although many points still remain to be clarified, recent basic research elucidated the precise mechanisms for the development of CVD. On the basis of this scientific progress, techniques for the early diagnosis, prognosis prediction, and evaluation of therapeutic effects should be developed. Now, translational research has become increasingly important. Even in basic research with animal models, it is important to confirm the clinical significance using human-derived pathological specimens to develop diagnostic tools and therapies. Thus, the organization of research environments that integrate broad areas from basic to clinical research becomes increasingly important.

Acknowledgments
This work was supported in part by the grants-in-aid for Scientific Research (15H02555, 15H04816, and 15K15046) from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan; the Ministry of Health, Labour, and Welfare, Tokyo, Japan; and the Japan Agency for Medical Research and Development, Tokyo, Japan (15ak0101035h0001, 16ek0109176h0001, and 17ek0109227h0001).

Disclosures
None.

References

Key Words: air pollution ▪ biomarkers ▪ cardiovascular diseases ▪ cyclophilin A ▪ reactive oxygen species
Recent Advances in the Development of Cardiovascular Biomarkers
Kimio Satoh and Hiroaki Shimokawa

Arterioscler Thromb Vasc Biol. 2018;38:e61-e70
doi: 10.1161/ATVBAHA.118.310226

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2018 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/38/5/e61

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Arteriosclerosis, Thrombosis, and Vascular Biology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Arteriosclerosis, Thrombosis, and Vascular Biology* is online at:
http://atvb.ahajournals.org//subscriptions/