Optical Coherence Tomography Is Superior to Intravascular Ultrasound for Diagnosis of Distal-Type Chronic Thromboembolic Pulmonary Hypertension

Shunsuke Tatebe, MD, PhD; Yoshihiro Fukumoto, MD, PhD; Koichiro Sugimura, MD, PhD; Yutaka Miura, MD, PhD; Kotaro Nochioka, MD, PhD; Tatsu Aoki, MD, PhD; Masanobu Miura, MD, PhD; Saori Yamamoto, MD, PhD; Nobuhiro Yaoita, MD; Kimio Satoh, MD, PhD; Hiroaki Shimokawa, MD, PhD

Figure 1. Representative images of pulmonary artery on (Left) optical coherence tomography (OCT) and (Right) intravascular ultrasound (IVUS) in a patient with chronic thromboembolic pulmonary hypertension. Typical lesions were clearly observed on OCT, which were apparently superior to IVUS.
Circulation Journal Vol.77, April 2013

TATEBE S et al.

From July 2009 to September 2011, we prospectively enrolled 9 patients with distal-type CTEPH (mean age, 59 ± 11 years; 8 female, 1 male; WHO functional class II in 7, III in 1 and IV in 1), who were treated with PTPA using both OCT and IVUS. Although IVUS also detected similar vascular structures in CTEPH, such as intimal thickening, wall irregularity, mural thrombus, abrupt occlusion, flaps and meshwork, the resolution of IVUS was apparently inferior to that of OCT (Figures 1, S1).

OCT was found to be more useful than IVUS, not only to detect chronic thromboembolus but also to measure the exact luminal diameter for PTPA to determine the balloon size. Further, OCT helps to predict the failure of PTPA, in that PTPA is seen to fail to dilate the pulmonary arteries with long thrombus-occluded lesions in distal pulmonary arteries (Figure 2).

Future studies are required to compare the detection ratio of abnormal vascular structures of pulmonary arteries in CTEPH between OCT and IVUS, and to clarify whether the OCT findings during PTPA affect the therapeutic and prognostic outcomes.

In conclusion, OCT is apparently superior to IVUS to diagnose CTEPH, to perform PTPA, and to assess the likelihood of Tohoku University and all patients provided written informed consent.

Chronic thromboembolic pulmonary hypertension (CTEPH) is caused by chronic and mechanical obstruction of central and/or distal pulmonary arteries due to thromboembolic masses.1–4 It is one of the distinct disease entities of pulmonary hypertension (PH), with a mean pulmonary arterial pressure >25 mmHg and is classified into the central- and distal-type CTEPH.4–9

As a new therapeutic strategy, percutaneous transluminal pulmonary angioplasty (PTPA) markedly improves pulmonary hemodynamics and long-term prognosis in patients with distal-type CTEPH with no major complications.10 During this procedure, intravascular ultrasound (IVUS) is used to evaluate the presence of chronic thrombus in pulmonary arteries and to determine the diameter of the target. IVUS image resolution, however, is often inadequate.

Optical coherence tomography (OCT) has recently been shown to be useful to observe the pulmonary arterial lesions in distal-type CTEPH.3,4,10 OCT is an interferometer-based imaging modality that produces a 2-D image of optical scattering from internal tissue microstructures with a high resolution of approximately 10–20 μm, 10-fold higher than that of IVUS.11–13 In the present study, we compared OCT with IVUS images in patients with CTEPH during PTPA.

The study protocol was approved by the Ethics Committees of Tohoku University and all patients provided written informed consent.

From July 2009 to September 2011, we prospectively enrolled 9 patients with distal-type CTEPH (mean age, 59 ± 11 years; 8 female, 1 male; WHO functional class II in 7, III in 1 and IV in 1), who were treated with PTPA using both OCT and IVUS. Although IVUS also detected similar vascular structures in CTEPH, such as intimal thickening, wall irregularity, mural thrombus, abrupt occlusion, flaps and meshwork, the resolution of IVUS was apparently inferior to that of OCT (Figures 1, S1).

OCT was found to be more useful than IVUS, not only to detect chronic thromboembolus but also to measure the exact luminal diameter for PTPA to determine the balloon size. Further, OCT helps to predict the failure of PTPA, in that PTPA is seen to fail to dilate the pulmonary arteries with long thrombus-occluded lesions in distal pulmonary arteries (Figure 2).

Future studies are required to compare the detection ratio of abnormal vascular structures of pulmonary arteries in CTEPH between OCT and IVUS, and to clarify whether the OCT findings during PTPA affect the therapeutic and prognostic outcomes.

In conclusion, OCT is apparently superior to IVUS to diagnose CTEPH, to perform PTPA, and to assess the likelihood

Figure 2. Representative images of long thrombus-occluded pulmonary arteries on (Bottom: Left and Middle) optical coherence tomography and (Bottom: Right) intravascular ultrasound. Percutaneous transluminal pulmonary angioplasty (PTPA) failed to dilate these lesions, as show on (Top) pulmonary angiography.
of success of the procedure.

Acknowledgment
The present work was supported in part by grants-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan. Disclosure: no conflict of interest to disclose.

References

Supplementary Files
Supplementary File 1
Figure S1. Images of pulmonary artery on (Left) optical coherence tomography (OCT) and (Right) intravascular ultrasound (IVUS) in patients 2–9 with chronic thromboembolic pulmonary hypertension.

Please find supplementary file(s); http://dx.doi.org/10.1253/circj.CJ-12-1493