Eicosapentaenoic acid reduces ischemic ventricular fibrillation via altering monophasic action potential in pigs

Ryuji Tsuburaya, Satoshi Yasuda *, Yoshitaka Ito, Takashi Shirato, Jun Yi Gao, Kenta Ito, Hiroaki Shimokawa

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

A R T I C L E I N F O
Article history:
Received 14 January 2011
Received in revised form 13 May 2011
Accepted 23 May 2011
Available online 30 May 2011

Keywords:
Fish oils
Sudden death
Ventricular arrhythmias
Ischemia
K_{ATP} channel

A B S T R A C T
Although high intake of n-3 fatty acids is associated with reduced mortality of patients with ischemic heart disease, especially reduction in sudden cardiac death (SCD), the detailed mechanisms remain to be elucidated. Thus, the present study was designed to examine whether long-term treatment with eicosapentaenoic acid (EPA), a major component of n-3 fatty acids, reduces ischemia-induced ventricular fibrillation (VF) in pigs in vivo, and if so, what molecular mechanisms are involved. Male pigs were treated with either a control chow (control group) or a control chow plus EPA (600 mg kg/day, PO, EPA group) for 3 weeks and were subjected to myocardial ischemia for 90 min (n = 8 each) with measurement of the monophasic action potential (MAP), as a marker of ventricular electrophysiological activities. The EPA treatment significantly attenuated the occurrence of VF (control 5.1 ± 1.7 vs. EPA 1.5 ± 0.8 times/animal, P < 0.05) and markedly reduced the mortality (control 50% vs. EPA 0%, P < 0.05), with the attenuation of MAP duration shortening during ischemia (control — 28.1 ± 3.0% vs. EPA — 18.2 ± 1.4%, P < 0.05). These beneficial effects of EPA were abolished by pretreatment with cromakalim, a K_{ATP} channel opener (0.3 μg/kg/min, IC). Furthermore, EPA significantly inhibited the mRNA and protein expression of Kir6.2, a major component of sarcolemmal K_{ATP} channels, in both the ischemic region and non-ischemic regions. These results indicate that long-term treatment with EPA reduces ischemia-induced VF and SCD in pigs in vivo, for which attenuation of MAP duration shortening may be involved.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Although the management of patients with acute myocardial infarction (AMI) has been markedly improved, more than 50% of those AMI patients still die prior to hospitalization [1]. Most prehospital deaths due to AMI occur within the first hour after the onset, mainly caused by ischemia-induced ventricular fibrillation (VF) but not by reperfusion arrhythmia [2]. Thus, it is critically important to develop an effective strategy to suppress ischemia-induced VF in the early phase of AMI in order to reduce sudden cardiac death (SCD).

Epidemiologic [3,4] and interventional studies [5,6] have shown that high intake of fish oil and long-chain n-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:5), could reduce SCD. Importantly, the GISSI-Prevenzione trial demonstrated that long-term treatment with n-3 PUFA reduces SCD after AMI [7]. However, the detailed mechanisms for the inhibitory effects of n-3 PUFA on SCD and ischemia-induced VF have not been fully elucidated.

During myocardial ischemia, rapid activation of cardiac ATP-sensitive potassium channel (K_{ATP} channel) plays an important role in ischemia-induced VF via action potential shortening and heterogeneous ventricular repolarization [8,9]. EPA possesses several beneficial effects on the pathological processes of AMI, including inhibition of thrombus formation [10] and inflammation [11] and stimulation of endothelial production of nitric oxide [12]. In addition, the acute effect of EPA on the electrophysiological properties also was reported in the previous study [13], however, the long-term effects of EPA on ischemia-induced VF and SCD in vivo remain to be examined. In the present study, we demonstrated that long-term oral treatment with EPA reduces ischemia-induced VF and SCD in pigs in vivo through the attenuation of ischemia-induced action potential shortening, for which might be mediated by suppression of myocardial K_{ATP} channels.

2. Materials and methods

The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). All procedures were performed according to the protocols approved by the Institutional Committee for Use and Care of Laboratory Animals of Tohoku University (20MdA-46).
2.1. Animals and EPA treatment

A total of 32 domestic male pigs (2–3 month-old and weighing 20–30 kg) were randomly divided into the following 2 groups; 16-pigs were orally given EPA (600 mg/kg/day, EPA ethyl ester of purity >99%, Mochida Pharmaceutical, Tokyo, Japan) for 21 days (EPA group), and the remaining 16-pigs were fed with a standard chow alone (control group). The present dose and duration of the EPA treatment were determined based on the previous study with rabbits [14]. The 30 kg body weight animals in the control group were fed only with the regular diet including 28 g fat, whereas a total fat intake in the EPA group was assessed to be 46 g.

2.2. Fatty acid analysis

The fatty acids composition of plasma, RBC, and homogenized heart tissue extracted from the interventricular septum (IVS) (100 mg of tissue/ml of saline) was determined by capillary gas chromatography [11]. Total lipids were extracted by Folch’s procedure and then fatty acids were methylated with boron trifluoride and methanol, and then methylated fatty acids were analyzed using a gas chromatograph (Shimadzu GC-17A, Shimadzu Corporation, Kyoto, Japan) and a BPX70 capillary column (0.25 mm in internal diameter × 30 m in length, SGE International Ltd., Melbourne, Australia). Tricosanoic acid, C23:0 was used as an internal standard.

2.3. Porcine model of acute myocardial ischemia

After the 3-week treatment, the animals were anesthetized with ketamine hydrochloride (20 mg/kg, IM) and sodium pentobarbital (20 mg/kg/h, IV). Surface ECG, heart rate, and arterial blood pressure were continuously monitored by a polygraph recording system (LEG1000, Nihon-Kohden, Tokyo, Japan). We inserted a 7-Fr sheath into the left carotid artery for cardiac catheterization and a 9-Fr sheath into the right carotid artery for evaluation of monophasic action potential (MAP), which is a useful marker of cardiac electrical stability [15]. MAP signals (amplitude and duration at 50% repolarization (MAPD90) and at 50% repolarization (MAPD50) was measured, and global and regional left ventricular function during ischemia and isopotential diastolic baseline (phase 4) persisted for at least 5 min. The QT interval, MAP duration at 90% repolarization (MAPD90) and at 50% repolarization (MAPD50) was measured, and collected for root square of RR interval (QTc, MAPD90c and MAPD50c) because these parameters highly depend on heart rate [17]. The upstroke velocity in phase 1 of MAP (dV/dt) was also calculated [18]. Chart5 (AD Instruments Inc., Colorado, CO) was used for analysis of MAP and ECG.

2.5. Intracoronary pre-treatment with cromakalim and 5-hydroxydecanoate

To evaluate the possible role of cardiac K_{ATP} channel, additional 16-pigs (n = 8, each) were pre-treated with cromakalim (Sigma-Aldrich Inc., St Louis, MO), an agent selectively opens K_{ATP} channel in the heart [19]. Cromakalim was dissolved in the vehicle (saline with polyethylene glycol and ethanol at a final concentration of <1%), selectively infused into the LCx, starting with 10 μg/kg bolus infusion at 10 min before myocardial ischemia followed by continuous infusion at 0.3 μg/kg/min until the end of the experiment. For selective drug administration into the ischemic LCx area, an infusion balloon catheter (Attendant®, Terumo Clinical Supply Co., Ltd, Gifu, Japan) was used, which enables to deliver drugs to the distal site while occluding the proximal LCx. To further evaluate the specific role of mitochondrial K_{ATP} channel, additional 8-pigs were pre-treated with 5-hydroxydecanoate (5-HD; Sigma-Aldrich Inc., St Louis, MO), an agent selectively inhibits mitochondrial K_{ATP} Channel in the heart [20]. 5-HD was infused into the LCx for 45 min before myocardial ischemia followed by continuous infusion at 0.5 mg/kg/min until the end of the experiment. The present dose and duration of cromakalim or 5-HD were determined based on the previous study in dogs [21,22].

2.6. RT-PCR for cardiac K_{ATP} channels

Total RNA was extracted using RNeasy Maxi kit (QIAGEN, Hilden, Germany) and 500 ng total RNA was reverse-transcribed using QuantiTect Reverse Transcription Kit (QIAGEN). Quantitative RT-PCR was performed for the 5 components of K_{ATP} channel, including Kir6.1 (KCNJ6), Kir6.2 (KCNJ11), SUR1 (ABCC8), SUR2A and SUR2B (ABCC9), using a real-time detection system (Bio-Rad Lab, Hercules, CA). The primer sets were based on the previous studies [23,24]. GAPDH was used as an internal control. SYBR Premix Ex Taq™ TM II (Takara Bio Inc.) was used for the detection of each components and GAPDH cDNA, respectively.

(a) KCNJ9 (forward, 5′-TGGTTCCGTGTTGGGCGACTA-3′, and reverse, 5′-CAACGGCGGTATCAAGGAAATG-3′).
(b) KCNJ8 (forward, 5′-TGGTGGAAACACAGGCGATC-3′, and reverse, 5′-TGGTGGTGGCGAACTTGGAGTA-3′).
(c) ABCB8 (forward, 5′-TGGCGCACTGCTTCTTCTCTCTCA-3′, and reverse, 5′-CAGGATGCCCTTCTGCATCTCACA-3′).
(d) ABCB9 (SUR2A: forward, 5′-CAGCTGAAGAATATGGTCAAATC-3′, and reverse, 5′-GCCTTCATTGACATGGGGCACAGA-3′, and reverse, 5′-GCCAAGGGCTTCTGCAGTGTC-3′).
(e) GAPDH (forward, 5′-TGGTGGCATGAAACACTGAGA-3′, and reverse, 5′-TCCAGATGGCGGAACTGTC-3′).

GAPDH, KCNJ8 and KCNJ11 were custom designed (Takara Bio Inc., Shiga, Japan), based on the sequence of Sus scrofa publicly available on the web site of the National Center for Biotechnology Information. The sequence of ABCB8 and ABCB9 were based on the previous studies [23,24]. GAPDH was used as an internal control. SYBR Premix Ex Taq™ II (Takara Bio Inc.) was used for the detection of each components and GAPDH cDNA, respectively.

2.7. Western blot analysis for cardiac Kir6.2

To study further the inhibitory effect of EPA on Kir6.2 expression, western blot analysis for Kir6.2 was performed. The extracted samples
(20 μg of protein) were subjected to SDS-PAGE/immunoblot analysis by using the specific antibody for Kir6.2 (sc-11228, Santa Cruz Biotechnology, Inc., CA). The regions containing proteins were visualized by electrochemiluminescence Western blotting luminal reagent (RPN2132, GE Healthcare UK Ltd., UK). The extents of Kir6.2 expression were normalized by that of GAPDH.

2.8. Statistical analysis

All results are expressed as mean±SEM. The results of mortality were analyzed by Fisher's exact probability test. Unpaired Student's t-test was used for comparison of fatty acids, arrhythmic events, MAP evaluation and the result of RT-PCR analysis. Statistical analyses were performed with SigmaStat for Windows version 3.00.0 (SPSS Inc, Chicago, IL). A value of P<0.05 was considered to be statistically significant.

3. Results

3.1. Effects of EPA treatment on fatty acids components

The long-term EPA treatment markedly increased the proportion of EPA (mol%) not only in plasma but also in RBC and cardiac tissue (all P<0.01) (Table 1). In contrast, the EPA treatment significantly decreased the proportion of arachidonic acid and DHA (mol%) in plasma, RBC and heart tissue (all P<0.01) (Table 1). The long term treatment with EPA also significantly increased the net concentration of EPA and decreased that of arachidonic acid and DHA, while the concentration of total fatty acids and other kinds of fatty acid including saturated fatty acids, oleic acids, linoleic acids and alpha-linoleic acids, did not change significantly in the 2 groups (Supplemental Table).

3.2. Inhibitory effect of EPA treatment on ischemia-induced VF in vivo

As reported previously [25], during myocardial ischemia, VF was frequently induced and was refractory to DC shocks in the control group, whereas VT was spontaneously terminated and was not sustained in the EPA group. The prevalence of pulseless VT/VF (EPA 1.5±0.8 vs. control 5.1±1.7 /animal, P<0.05) (Table 1). In contrast, the EPA treatment significantly decreased that of arachidonic acid and DHA, while the ischemia (Fig. 1D). Although MAPD90c at ischemic region significantly shortened during myocardial ischemia, there was no difference between the 2 groups (EPA; 193±12 ms, vs. control 191±3 mm Hg). Neither post-ischemic heart rate nor blood pressures differed between the 2 groups.

Importantly, in the control group, MAPD90c at the ischemic region was significantly shortened within the first 5 min and reached to the steady state of 277±11 ms (−28.5±3.0% change from 387±11 ms at baseline) in 15 min (Fig. 1A), when VF occurred frequently (Supplemental Figure 2), whereas QTc and MAPD50c at the non-ischemic region did not change during ischemia (Fig. 1C). In contrast, in the EPA group, the ischemia-induced shortening of MAPD90c was significantly attenuated (315±11 ms, −18.1±1.4% change from 384±10 ms at baseline. P<0.05 vs. the control group) (Fig. 1B and 1C). Although MAPD90c at ischemic region significantly shortened during myocardial ischemia, there was no difference between the 2 groups (EPA; 193±12 ms, −41.8±3.6% change from baseline; control; 191±3 ms, −40.4±3.6% change from baseline). The dV/dt in phase 1 of MAP markedly decreased to a similar extent in the 2 groups during the ischemia (Fig. 1D).

3.3. EPA treatment ameliorates ischemia-induced MAP shortening in vivo

At the baseline, heart rate (EPA 149±11 vs. control 140±8 beats/min), mean blood pressure (EPA 97±5 vs. control 99±5 mm Hg), QTc on surface ECG (EPA 455±10 vs. control 463±10 ms), MAPD50c in ischemic (EPA 384±11 vs. control 389±12 ms) and non-ischemic region (EPA 384±10 vs. control 387±11 ms), or MAPD80c in the ischemic (EPA 334±11 vs. control 320±9 ms) and the non-ischemic region (EPA 321±11 vs. control 329±9 ms) did not differ significantly between the 2 groups. The baseline MAP90c was comparable between the ischemic (387±8 ms) and non-ischemic (385±7 ms) region.

During the LCx occlusion, as compared with the baseline (=pre-ischemic) values, heart rate tended to increase in the control group (155±12 beats/min, P=0.06), whereas it did not change significantly in the EPA group (157±13 beats/min). Blood pressure did not change significantly in both groups (control group, 87±5 mm Hg; EPA group, 92±5 mm Hg). Neither post-ischemic heart rate nor blood pressures differed between the 2 groups.

3.4. Pre-treatment with cromakalim abolishes the beneficial effects of EPA in vivo

Before and after intracoronary administration of cromakalim, a KATP channel opener, QTc on surface ECG did not change in the control (before 449±8 vs. after 448±8 ms) and the EPA group (before 452±10 vs. after 447±9 ms). Also, cromakalim pre-treatment did not significantly change heart rate or blood pressure before and during myocardial ischemia (data not shown). However, cromakalim abolished the inhibitory effects of EPA on ischemia-induced MAPD90c shortening in the EPA group (EPA+cromakalim, −32.0±4.0%, P<0.05 compared with EPA alone), whereas cromakalim did not affect ischemia-induced shortening of MAPD50c in the control group (Fig. 2A–2C). Cromakalim also abolished the inhibitory effects of EPA on VT/VF occurrence (Fig. 2D) and deteriorated survival rate during ischemia in the EPA group (EPA + cromakalim 50%, P<0.05 compared with EPA alone). In the additional experiment, the pre-treatment with 5-HD, a selective mitochondrial KATP channel blocker, tended to shorten MAPD90c in the control group with a

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>RBC</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA</td>
<td>EPA</td>
<td>DHA</td>
</tr>
<tr>
<td>Control (n=8)</td>
<td>6.88±0.68</td>
<td>2.18±0.27*</td>
<td>14.32±0.40</td>
</tr>
<tr>
<td>EPA (n=8)</td>
<td>0.38±0.06</td>
<td>11.38±1.13*</td>
<td>1.30±0.18</td>
</tr>
<tr>
<td></td>
<td>1.18±0.18</td>
<td>0.32±0.07*</td>
<td>1.62±0.13</td>
</tr>
</tbody>
</table>

Results (mol% to total fatty acids) are expressed as mean±SEM. AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; RBC, red blood cells.

*P<0.01 vs. the control group.
P-value of 0.06, which was not statistically significant (Supplemental Figure 4).

3.5. EPA suppresses cardiac expression of Kir6.2

RT-PCR analysis showed that among the 5 components of KATP channel, the EPA treatment significantly reduced cardiac mRNA expression of Kir6.2 (a major component of sarcolemmal KATP channel) and increased that of SUR2B (a major component of vascular smooth muscle cells), whereas other 3 components, Kir6.1, SUR1 and SUR2A, were unaffected by the EPA treatment (Fig. 3). Importantly, the EPA treatment also significantly reduced the cardiac protein expression of Kir6.2 (Fig. 4).

4. Discussion

The major findings of this study were that (1) the long-term EPA treatment ameliorated ischemia-induced VF and mortality, (2) ischemia-induced MAP shortening was significantly attenuated in the EPA group, (3) these beneficial effects of EPA were abolished by pre-treatment with cromakalim, a KATP channel opener, and (4) the EPA treatment significantly suppressed cardiac expression of Kir6.2, a major component of sarcolemmal KATP channel.

4.1. Validation of the present EPA treatment and comparison with previous study

In the present study, highly purified EPA was used. This may have advantage in comparison with the previous studies with fish oil or combination of EPA and DHA, which the usage formation, purity and dose of n-3 PUFA were too inhomogeneous to elucidate the exact anti-arrhythmic mechanism [26]. Indeed, fatty acids analysis showed that the EPA treatment of the present study markedly increased the concentration of EPA alone in the plasma, RBC and heart tissue, whereas it decreased the concentration of DHA, another major component of n-3 PUFA. It has been reported that the long-term treatment with EPA decreases DHA concentration which could be explained by the competitive inhibition by EPA of Δ⁶-desaturase, leading to DHA incorporation into the cell membrane [27].

The 30 kg body weight animals in the control group were only fed with the regular diet including 28 g fat, whereas a total fat intake was calculated to be 46 g in the EPA group. However, the concentration of total fatty acids and the other kinds of fatty acid including with saturated fatty acids, oleic acids, linoleic acids and alpha-linoleic acids did not change significantly in the 2 groups (Supplement Table). These results suggest that the non-specific effects of fatty acids may be minimal and that the present results with EPA were mediated by the increase in EPA.

4.2. Inhibitory effects of EPA on MAP shortening during myocardial ischemia

Pathogenesis of ischemia-induced ventricular arrhythmia is variable, depending on the time elapsed from onset of ischemia, typically classified to acute phase and delayed phase. Most pre-hospital deaths occur due to the acute phase arrhythmia within the first hour from onset of ischemia [2], whereas the delayed phase ventricular arrhythmia developing 6–72 h is associated with severe LV dysfunction and heart failure. In the present study, all VT/VF events in the control group occurred in the first 15 min following coronary artery occlusion (Supplemental Figure 2), and those acute phase fatal ventricular arrhythmias were suppressed by EPA treatment [25].

Previous ex vivo study with pigs receiving diets rich in fish oil for 8-weeks demonstrated that the number of ischemia-induced VT and VF increased in an experimental condition of isolated heart perfused with blood and Tyrodes solution and stimulated by pacing [28].
Although anti-arrhythmic effects of n-3 PUFA still remain controversial, accumulating clinical and experimental evidence indicates that patients with coronary artery disease are relatively sensitive to anti-SCD effect of n-3 PUFA [26]. In line with this notion, acute and chronic administration of n-3 PUFA actually decreases the frequency of ischemia-induced VT in vivo [29,30].

The changes in electrophysiological properties, such as ion channels and action potentials, following acute and chronic administration of n-3 PUFA were reported in vitro but in non-ischemic conditions [31,32]. Because these changes during myocardial ischemia remained to be elucidated, we measured MAP, which is well known to reflect transmembrane action potential of cardiomyocytes [33], and thought to be suitable for studying the local myocardial electrophysiology in vivo. Indeed, the continuous signal recording for several hours is available in MAP by contact electrode technique [34], and thought to be suitable for studying the local myocardial electrophysiology in vivo. Indeed, the continuous signal recording for several hours is available in MAP by contact electrode technique [34] and ischemia-induced shortening of action potential could be demonstrated when recording MAP in humans [35]. Also, the present finding on MAP (Supplemental Figure 1) is consistent with the previous study in pigs in vivo [36,37].

The present study clearly demonstrates a regional electrophysiological alteration that is otherwise undetectable by QT interval measurements on surface ECG. During the coronary occlusion, MAP was significantly shortened in 10–20 min at the ischemic region, whereas it remained unchanged at the non-ischemic region. Although the extent of area at risk was comparable between the 2 groups, the EPA treatment ameliorated the ischemia-induced shortening of MAPD90 which reflects the total repolarization of the cardiomyocytes. Moreover, although previous studies showed that n-3 PUFA reduced adrenoreceptor responses in experimental models [38] and heart rate in humans [39], the present EPA treatment did not significantly affect the hemodynamic parameters. These results indicate that the amelioration of ischemia-induced shortening of MAP duration plays an important role in the anti-arrhythmic effects of EPA.

4.3. Potential involvement of cardiac KATP channel inhibition in the anti-arrhythmic effects of EPA

KATP channel activation in response to ATP depletion induced by hypoxia and myocardial ischemia plays a pivotal role in action potential shortening [40], although this response has been shown to elicit controversial results regarding arrhythmia triggering. Indeed, sarcolemmal KATP channel blockers, either non-selective (e.g. glibenclamide) or selective (HMR-1883), inhibit ischemia-induced action potential shortening and VF in a variety of experimental models [36,41], whereas non-selective antagonists of KATP channel (e.g., glibenclamide) could impair ventricular contraction and reduce coronary blood flow, leading to the development of malignant arrhythmias [42,43]. In the present study, intracoronary pre-treatment with KATP channel opener, cromakalim [19], abolished the beneficial effects of EPA on ischemia-induced shortening of MAP and tachyarrhythmia, whereas pre-treatment with the cromakalim did not increase the MAP shortening and arrhythmia in the control group. These results suggested that inhibiting cardiac KATP channel may contribute, at least in part, to the beneficial effects of EPA.

KATP channel consists of a pore forming inward rectifying potassium channel (Kir6.1 or 6.2) and a regulatory sulfonylurea receptor (SUR1, SUR2A or SUR2B), and the combination of Kir and SUR determine the specificity of KATP channel [44]. In particular, regarding the sarcolemmal membrane, Kir6.2 and SUR2A predominantly consist of the KATP channel [44]. The present result with the quantitative real time RT-PCR and western blot analysis showed that the long-term EPA treatment down-regulates sarcolemmal Kir6.2 both in the ischemic region and non-ischemic region. Interestingly, the EPA treatment did not significantly affect the expression of SUR2A, a target of the KATP channel blockers (glibenclamide and HMR-1883) [45].

Careful interpretation is needed regarding the pharmacological finding that the EPA effects were abolished by pre-treatment with a non-specific KATP channel opener cromakalim. In the case of the
downregulation of Kir6.2 expression, the effect of cromakalim on MAP is unlikely to be associated mainly with sarcolemmal KATP channel activation. Although the selective mitochondrial K$_{ATP}$ channel blocker, 5-HD did not clearly mimic the EPA effects (Supplemental Figure 4), the involvement of mitochondrial K$_{ATP}$ channels, which are also activated by cromakalim, might be considered as a potential site of cardioprotection and anti-arrhythmic activity. Further studies are needed to determine by which mechanism EPA could cause down-regulation of Kir6.2 and whether intracoronary administration of cromakalim could alter Kir6.2 protein expression.

In the present study, the EPA treatment did not affect the expression of Kir6.1, a Kir component in the vascular smooth muscle cells [46] and mitochondria [47], and of SUR1, a potential candidate of SUR component for mitochondria [48]. However, the expression of SUR2B, a main component in vascular smooth muscle cells [46] was significantly increased in the EPA-treated group. Taken together with the previous finding of K$_{ATP}$-mediated, endothelium-independent vasodilation by EPA of isolated rat aorta [49], the increased expression of SUR2B by EPA could be beneficial to ameliorate myocardial ischemia.

Fig. 3. EPA treatment suppresses myocardial mRNA expression of Kir6.2. The long-term treatment with EPA significantly suppressed myocardial mRNA expression of Kir6.2 (major component of sarcolemmal K$_{ATP}$ channel) in both the ischemic and non-ischemic regions (n=8, each). Results are expressed as mean ± SEM.

Fig. 4. EPA treatment suppresses myocardial protein expression of Kir6.2. The long-term treatment with EPA significantly suppressed myocardial protein expression of Kir6.2 (major component of sarcolemmal K$_{ATP}$ channel) in both the ischemic and non-ischemic regions (n=8, each). Results are expressed as mean ± SEM.
4.4. Limitation of the study

Several limitations of the present study should be mentioned. First, the present study was performed in normal juvenile pigs without preexisting atherosclerotic coronary plaques or myocardial dysfunction, which could affect myocardial responses to acute ischemia. Indeed, the long-term treatment with EPA reduces major coronary events in high-risk patients in the Japan EPA Lipid Intervention Study (JELIS) [50]. Second, the direct evidence for inhibition of KATP function by the EPA treatment needs to be demonstrated in a future study (e.g. patch clamp study with isolated cardiomyocytes). Third, we could not exclude the possible effects of lower AA and DHA levels in the EPA treated animals. Fourth, it has been reported that EPA inhibits cardiac Na+ channels and L-type Ca2+ channels [13,31]. Although the EPA treatment did not affect the upstroke velocity in phase 1 and MAPD50 [51], these possible involvements were not fully investigated in the present study.

4.5. Conclusion

In conclusion, the present study indicates that long-term treatment with EPA suppresses ischemia-induced VF and SCD in pigs in vivo, for which availability of MAP shortening may be involved. These results may account, at least in part, for the beneficial inhibitory effects of EPA on SCD in ischemic heart disease.

Conflict of interest statement

None declared.

Acknowledgments

The authors’ work was supported in part by the grants-in-aid [18890018] from the Scientific Research; and the global COE project [F02] from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan. The authors thank Dr. Teruyuki Yanagisawa (Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine), Dr. Masaaki Soma (Mochida Pharmaceutical Co., Ltd.), and Dr. Takatoshi Hizume (Kyushu University Graduate School of Medicine), Dr. Takatoshi Hizume (Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine), Dr. Masaaki Soma (Mochida Pharmaceutical Co., Ltd.), and Dr. Takatoshi Hizume (Kyushu University Graduate School of Medicine) for their valuable cooperation in the present study and Mochida Pharmaceutical Co., Ltd. for providing the EPA.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.yjmcc.2011.05.018.

References

[37] Geelen P, O’Hara GE, Plante S, Philippon F, Gilbert M, Turgeon J. Ischemia-
induced action potential shortening is blunted by d-sotalol in a pig model of

[38] Reibel DK, Holahan MA, Hock CE. Effects of dietary fish oil on cardiac

[39] Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB. Effect of
fish oil on heart rate in humans: a meta-analysis of randomized controlled trials.

[40] Gasser RN, Vaughan-Jones RD. Mechanism of potassium efflux and action
potential shortening during ischaemia in isolated mammalian cardiac muscle.

[41] Vajda S, Baczko I, Lepran I. Selective cardiac plasma-membrane K(ATP) channel
inhibition is defibrillatory and improves survival during acute myocardial

drugs block cardiac KATP channels and may increase propensity for ischemic

[43] del Valle HF, Lascano EC, Negroni JA, Crottogini AJ. Gilbenclamide effects on
reperfusion-induced malignant arrhythmias and left ventricular mechanical

of sulfonylurea receptors determines the pharmacological properties of ATP-

of the specificity of action of K(ATP) channel openers. EMBO J 2000;19:
6644–51.

possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem

[48] Liu Y, Ren G, O'Rourke B, Marban E, Seharaseyon J. Pharmacological comparison
of native mitochondrial K(ATP) channels with molecularly defined surface K

vasorelaxation induced by eicosapentaenoic acid (20:5n-3) in WKY rat aorta.

Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-

[51] Schouten VJ. The negative correlation between action potential duration and
force of contraction during restitution in rat myocardium. J Mol Cell Cardiol